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1. Introduction
Skin cancer is the most prevalent type of cancer, 
accounting for millions of deaths annually worldwide. 
Melanoma is the deadliest form of skin cancer, causing 
10,000 annual deaths worldwide [1]. Melanoma incidence 
increased rapidly around the world in the last 50 years 
[2]. The survival rate is over 95% if it is detected early but 
only about 15% for late detection [3]. This huge difference 
emphasizes the importance of melanoma detection and 
diagnosis at an early stage because the disease is treatable 
at that time. Timely detection helps in reducing mortality 
rates and hence saves patients’ lives. Dermoscopy is an 
imaging procedure that aids in the analysis of skin lesions 
[4]. The subsurface structures of the skin can be visually 
enhanced, exposing deeper skin lesions [5] and providing 
higher accuracy than naked-eye assessments. However, 
manual diagnosis requires an expert dermatologist and 
is also influenced by subjective variation and clinical 
experience, lowering the patient’s life expectancy [6]. As 
a result, computer-aided diagnosis (CAD) systems have 

emerged to help improve the efficiency of dermoscopic 
image analysis [7]. An accurate automatic melanoma 
diagnostic system is critical for assisting dermatologists 
in making precise diagnosis decisions and reducing the 
numbers of unnecessary biopsies. In the field of clinical 
medicine, deep neural networks have made major progress 
and achieved excellent results in image segmentation and 
classification tasks [8]. However, accurate recognition 
of skin lesions from dermoscopic images is challenging 
owing to the presence of various artifacts including hair 
strands, noise, air bubbles, blood vessels, clinical marks, 
and uneven lighting. Skin lesions may be partly obscured 
or covered by these artifacts, creating a partial occlusion. 
This kind of image with partially obscured regions makes 
the diagnosis of a diseased area extremely difficult [9]. 

Many classical techniques have been used in the 
literature for hair and noise removal in dermoscopic 
images [10–18]. Lee et al. [10] presented the first method to 
remove thick hairs, called Dull Razor, and applied bilinear 
interpolation. The PDE-based continuous morphological 
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filter was used by Chung et al. [11] to remove undesirable 
hairs. Curvilinear analysis was used by Zhou et al. [12] to 
achieve automatic hair and ruler marking recognition, and 
artifacts were replaced with a feature-guided exemplar-
based inpainting technique. To eliminate features from 
dark hair, Silveira et al. [13] introduced the morphological 
closing and median filter. Top-hat filtering was applied by 
Xie et al. [14] to eradicate thin and curled hairs followed 
by PDE-based inpainting. Abbas et al. [15] introduced a 
hair detection and repairing algorithm using a derivative 
of the Gaussian method to remove hair and then apply 
inpainting with a fast-marching method. Toossi et al. [16] 
implemented a canny edge detector and morphological 
operators to segment hairs and ruler markings. 
Multiresolution transport inpainting was applied to repair 
hair. Abuzaghleh et al. [17] proposed 84 directional filters 
to identify and disregard hair in images of skin lesions. 
Kasmi et al. presented a new method using 11 × 11 median 
filters to remove thin hairs and a Gabor filter for thick hairs 
[18]. There are various existing methods for removing noise 
from images [19–25]. A new method for Gaussian noise 
removal was proposed using multiscale filter banks [20]. 
A novel effective noise estimation method was proposed 
based on singular values of corrupted images [21]. 

Some deep learning methods are available for 
hair removal and image denoising tasks [26–30]. A 
convolutional neural network (CNN) was built with a 
postprocessing step using the Savitzky–Golay filter and 
Fourier domain filtering [26]. This method can detect 
borders belonging to hair follicles with an average Dice 
score of 0.83 ± 0.06. The FCN8-ResNetC-based approach 
for hair removal and segmentation in dermoscopic images 
was proposed and the obtained training accuracy was 
89.38% for hair removal [27]. Jain et al. [28] proposed a 
fully convolutional CNN for image denoising. An image 
denoising and blind inpainting method was proposed to 
combine sparse coding with pretrained CNNs, achieving 
decent results for both tasks [29]. Mao et al. proposed an 
encoding–decoding framework for image denoising and 
superresolution. Their method combined convolution and 
deconvolution layers symmetrically by skip connections, 
which improved the network’s performance [30].

There are several limitations of these previous studies. 
First, the research available in the present body of literature 
generally measured hair detection accuracy and error, 
oblivious to the impact on skin lesion patterns. Second, 
despite the existence of various methods for hair and noise 
removal, none of the research performed to date has focused 
on the impact of eliminating these artifacts on the overall 
performance of a CAD system. It is essential to address the 
effects of hair lines and image noise on the classification 
accuracy of dermoscopic images to achieve better results 
and more successful treatment. In the present study, a deep 

learning model was developed for the removal of these 
artifacts. This model could be built into a complete CAD 
system for dermoscopic images. This study also addresses 
how hair and noise data affect the automatic detection of skin 
lesions overall. The deep learning model is run with the hair 
and noise artifacts and the results are compared with ground 
truth images. An integrated CNN with image inpainting is 
proposed to address unwanted hairs and restore the color 
and texture of skin pixels below them via dehairing with an 
approach referred to as integrated hair removal (IHR). This 
network initially performs image inpainting to eliminate 
unwanted hair and then integrates with deep learning 
models to perform classification and provide insight into 
the effect of removing hair. Secondly, an integrated CNN 
with image denoising is implemented to remove noise from 
images (i.e. denoising), referred to here as integrated noise 
removal (INR). The integrated CNN first performs image 
denoising to reduce noise and then integrates with the deep 
learning models to perform classification and evaluate the 
effect of removing noise. The training and validation results 
obtained after dehairing and denoising are compared with 
ground truth images. The results show that the training 
and validation accuracies improve when hair strands and 
noise are eliminated. The removal of these artifacts helps 
achieve better pattern analysis of dermoscopic images by 
deoccluding the lesion boundary or texture, resulting in 
more accurate classification. The core contributions of this 
work are as follows:

• The effects of image distortions like hair and noise 
on the performance of a skin CAD system are evaluated.

• Two datasets are created wherein new hairs and 
noise are added. 

• Integrated CNNs, namely IHR and INR, are 
developed to leverage the advantage of removing hair and 
noise artifacts, being integrated with deep learning models 
for the improved classification of skin lesions.

• An evaluation of the performance of the proposed 
integrated deep learning models against the hairy and noisy 
datasets is conducted with extensive experimentation.

• The improved results based on accuracy and loss 
function when these distortions are removed are assessed.

The remainder of the paper is structured as follows: 
Section 2 addresses the datasets used, the proposed 
methodology and architecture, and network training. Section 
3 presents the implementation process and experimental 
results. In Section 4, the results are discussed for an analysis 
of the performance of the proposed approach. Section 5 
presents the conclusion and future research directions.

2. Materials and methods
2.1. Dataset description 
The benchmark dataset HAM10000 [31] was utilized 
in this work. It is the International Symposium on 
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Biomedical Imaging (ISBI) Challenge dataset available as 
International Skin Imaging Collaboration (ISIC) 2018, 
constituting a collection of 10,015 skin lesion images 
divided into seven categories. The seven categories 
are melanocytic nevus, basal cell carcinoma, actinic 
keratosis, melanoma, benign keratosis, dermatofibroma, 
and vascular lesion. 

In real-life scenarios, the major artifacts causing 
difficulty in image analysis are hair and noise. Though 
the images in the selected dataset are partially occluded 
by artifacts such as hair, rulers, moles, and ink markings, 
there are very few images involving major occlusion. The 
major concern in the detection and assessment of lesions 
is the lack of an appropriate dataset with major artifacts 
like hair and noise. Therefore, two synthetic datasets 
were generated, referred to as the Hair Dataset and 
Noise Dataset. Hair and noise were introduced in images 
to obstruct the lesion area. These datasets were created 
to produce partial occlusion in skin cancer images and 
each contain a total of 5000 images. The images in the 
Hair Dataset were occluded by adding hair strands. For 
the Noise Dataset, Gaussian noise [32] was added to 
create partial occlusion of the lesion area. For training, 
80% of the whole data were taken and for testing 20% 
of the data were considered. Table 1 shows images from 
each dataset.
2.1.1. Hair Dataset
Hair creates major partial occlusion in dermoscopic 
images of skin. Skin images contain thick and thin 
hairlines. A total of 5000 images were chosen from 
the original HAM10000 dataset. The images chosen 
contained no hair or very few hairs. Hair was extracted 
from other dermoscopic images with more hair. This was 
done to maintain a natural hair artifact appearance. Hair 
was taken from hairy images using a masking technique 
and then those hairs were superimposed on selected 
images for the Hair Dataset. 
2.1.2. Noise Dataset
A total of 5000 images were chosen from the original 
HAM10000 dataset and noise was added. These images 
were chosen from a dataset that contained no noise. 
Low lighting and a scarcity of resources for capturing 
medical images with clinical equipment result in large 
noise fluctuations in lesion images. Gaussian noise 
[32] was chosen here as it is a main source of noise in 

digital photos during acquisition, including sensor noise 
produced by inadequate lighting or transmission noise. 

A typically modest amount was added or subtracted 
from each pixel’s original value in the image. In 
dermoscopic images, Gaussian noise is a major noise 
source arising during acquisition. All images may contain 
noise, varying in intensity. Here, Gaussian noise was 
added with zero mean and the scale (σ) varied from 1 to 
30. Figures 1a–1h show a few examples of Gaussian noise 
added to the Noise Dataset.
2.2. Proposed methodology
The proposed integrated CNN model is described in 
this section. The methods employed for hair and noise 
restoration, i.e. IHR and INR, are presented. The deep 
learning models used for dermoscopic images and their 
classifications are discussed. 
2.2.1. Convolutional neural networks
CNNs contribute to image and video recognition tasks on 
a broad scale. There are several advantages to employing 
CNNs over standard neural networks, including the 
ability to learn spatial hierarchies of patterns. This enables 
CNNs to acquire increasingly complex and abstract visual 
concepts and analyze images with great efficiency. A vast 
number of images are necessary to train a new CNN model 
in a situation in which the entire network must be trained. 
In such a situation, all the network’s parameters must be 
learned from the ground up. This approach necessitates 
extremely large datasets, which are frequently unavailable 
for medical purposes. However, employing a standard 
network allows for the option of transfer learning.

Transfer learning is a technique that uses a model 
trained on one dataset as the basis for a model trained 
on another. The model that is already trained is known 
as the pretrained model. Typically, these models are 
built on ImageNet [33], a dataset of over 14 million 
images that can classify images into over 1000 different 
categories. In addition to using the same architecture as 
a standard network, one may also use parameters learned 
by the CNNs with earlier training on a different dataset. 
Therefore, to adjust the network for the classification of a 
new target dataset, there are two possible approaches. One 
is to replace only the final classification layer according to 
one’s target dataset, i.e. the network can be used to classify 
new dataset images. In the other approach, the parameters 
gained from the model’s training over a large dataset 

Dataset Description Number of images opted for occlusion Number of images for classification
Dataset 1 Original ground truth - 10,015
Dataset 2 Hair strands 5000 10,015
Dataset 3 Noise (Gaussian) 5000 10,015

Table 1. Number of images per category in the dataset.
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are fine-tuned through transfer learning. This allows 
the network’s early layers to extract highly generalizable 
patterns from a larger dataset, and the network’s later 
layers will take on the details of the new dataset for the 
adapted model.

In this paper, the first approach is followed: the final 
classification layer is modified. The proposed CNN for 
dermoscopic image classification is given in Figure 2. As 
a result, the time-consuming training stages are avoided, 
and benefits are gained from the features learned during 
the training over many images through transfer learning.

The most successful methods submitted for ISIC 
challenges in 2016, 2017, 2018, 2019, and 2020 used CNNs 
pretrained on the ImageNet database [33]. The five deep 
transfer learning models used in this work were ResNet50 
[34], DenseNet121 [35], ResNet152 [34], VGG16 [36], 
and VGG19 [36]. These models were used to determine 
how the system performs in the event of partially occluded 
image data. Table 2 shows the deep learning architectures 
used. 
2.2.2. Integrated CNN with image inpainting for hair 
removal (dehairing)
An integrated CNN with inpainting is proposed for the 
classification of dermoscopic images as shown in Figure 
3. Integration here entails a combination of two methods: 
skin cancer image inpainting and classification. Inpainting 
is done to restore hairs by substituting them with patches 
that resemble the nearby pixels. This reduces the impact 
of hairs on diagnosis analysis. Five deep learning models 
were applied for the classification of refined skin cancer 
images. These models are referred to as IHR-ResNet50, 
IHR-DenseNet121, IHR-ResNet152, IHR-VGG16, and 
IHR-VGG19. Algorithm 1 explains an integrated CNN 
with inpainting for hair removal. The Hair Dataset 

contains 5000 images where new hairs are added, as 
explained in Section 2.1. The removal of dark, dense hairs 
and regions that resemble hair must be done properly 
as it aids in effective segmentation and classification 
of features. Numerous techniques are available in the 
literature for removing hair in dermoscopic images based 
on morphological operations [37] and thresholding [38]. 
Although they are fast, these techniques tend to eliminate 
subtle, significant features that can be mistaken for hair. 
An effective method for dermoscopic hair removal is 
the blackhat transform followed by inpainting, which is 
employed here as described in Algorithm 2. 

The first step is to perform Gaussian blur and median 
blur operations before applying other methods to reduce 
the high-frequency data. This removes noise and edges 
from an image while preserving its original data. Gaussian 
blur is a low-pass filter that determines the variation to 
be applied to each pixel of the image using a Gaussian 
function. Its purpose is to smooth down sphere edges, 
which frequently have inconsistencies because of the 
marker’s rough surface. It is also used to reduce skin lines, 
air bubbles, light, and small hairs around the lesion. The 
kernel used is 3 × 3 and  is the standard deviation of 
the Gaussian kernel. The median filter is a nonlinear filter 
and it is very effective in removing noise while preserving 
edges. The current pixel value is replaced with the median 
value in a 3 × 3 neighborhood. 

The input dermoscopic image is converted from RGB 
to grayscale, followed by a morphological filter to find the 
hair contours. The morphological filter, called “blackhat,” 
is employed on the grayscale image. It gives the difference 
between the closing and the given input image. Closing 
eliminates the foreground’s tiny holes. The blackhat filter 
extracts dark objects smaller than the structuring element 

                       (a)                                             (b)                                          (c)                                            (d) 

                          (e)                                             (f)                                          (g)                                             (h) 
 Figure 1. (a)–(d) present images from the original HAM10000 

dataset, while (e)–(h) are corresponding noise-added images.
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and finally outputs them as bright spots. An 11 × 11 cross-
shaped structural element is defined. To intensify the hair 
contours, a thresholding operation is applied to the output 
of the blackhat filter. This generates a binary mask. All 
unrequired objects present in the dermoscopic image are 
discarded and only the hairlines are detected. Following 
this, an inpainting algorithm, TELEA [39], given in 

Algorithm 1, is used to restore the image by removing 
the hair structures from it. It preserves the appearance by 
replacing the hair structures with nearby pixels, producing 
a clear dermoscopic image. Eq. (1) shows that point p is 
inpainted as a function of all points q in Bꜫ (p) by summing 
the estimates of all points q, weighted by normalized 
weighting function w(p, q):

 

Figure 2. Proposed CNN for dermoscopic image classification.

Features ResNet50 DenseNet121 ResNet152 VGG16 VGG19
Number of Layers 50 121 152 16 19
Top five accuracy 0.921 0.923 0.931 0.901 0.900
Number of parameters 25 million 8 million 60 million 138 million 143 million
Size 98 MB 33 MB 232 MB 528 MB 549 MB
Depth 168 121 - 23 26

Table 2. Details of deep learning architectures.
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Figure 3. Integration of CNN with inpainting for dermoscopic hair removal and classification.
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𝐼𝐼(𝑝𝑝) =
∑ 𝑤𝑤(𝑝𝑝, 𝑞𝑞)[𝐼𝐼(𝑞𝑞) +  𝛻𝛻 𝐼𝐼(𝑞𝑞)(𝑝𝑝 − 𝑞𝑞)]𝑞𝑞∈𝐵𝐵ℰ(𝑝𝑝)

∑ 𝑤𝑤(𝑝𝑝, 𝑞𝑞)𝑞𝑞∈𝐵𝐵ℰ(𝑝𝑝)
. 

𝑁𝑁𝑁𝑁[𝑣𝑣](𝑖𝑖) = ∑ 𝑤𝑤(𝑖𝑖, 𝑗𝑗)𝑣𝑣(𝑗𝑗).
𝑗𝑗∈𝐼𝐼

 

 

 (1)

Here, I(q) is the original image and I(p) is an inpainted 
image. In Algorithm 3, Ω is the region to be inpainted, ∂Ω 
is the boundary of the region to be inpainted, and Bꜫ (p) is 

a neighborhood of p. To inpaint the whole Ω, we apply Eq. 
(1) iteratively to all pixels of ∂Ω, in increasing distance from 
∂Ω’s initial position ∂Ωi. We then complete the boundary 
inside Ω until the whole region has been inpainted. Figure 
4 shows the stages of the hair removal process.

Algorithm 1. Integrated CNN with Inpainting for Hair Removal
Input: Skin Images from HAM10000
Output: Hair removal Inpainted results with Accuracy and Loss
1) Input Skin cancer Images M1……. Mn
2) For each Image Mi,      
do
Dehair_Inpainted (Mi, Kernel, Mask)
3) For each Dehair_Inpainted image Mi, resize = 224*224
4) Fine-tune the last fully connected (FC) layer of deep CNN to identify the probabilities of seven skin cancer classes.
5) Train five deep CNNs IHR-ResNet50, IHR-DenseNet121, IHR-ResNet152, IHR-VGG16 and IHR-VGG19.
6) Validate the model and calculate training and validation accuracy and loss for performance evaluation.

Algorithm 2. Dehair_Inpainted (Image, Kernel, Mask)
Input: Image, Kernel, Mask
Output: Skin images with Inpainted Hair
G_Blur    GaussianBlur (Image, Kernel * Kernel, )
Med_blur  MedianBlur (G_Blur, Kernel)
Image_GrayScale  Color (Med_blur, RGB2GRAY)
Kernel1  StructuringElement (Morph_Cross, Kernel)
Blackhat  MorphologyEx (Image_GrayScale, MORPH_BLACKHAT, Kernel1)
ret_v, Thresh2_Image  Threshold (Blackhat, Thresh, Thresh_MaxVal, THRESH_BINARY)
Output_Image  Inpaint (Med_blur, Thresh2_Image, 1, INPAINT_TELEA)
Dehair_Inpainted  Color (Output_Image, COLOR_BGR2RGB)

Algorithm 3. INPAINT_TELEA
δΩi = boundary of the region to inpaint  
δΩ = δΩi 
while (δΩ not empty) 
{ 
p = pixel of δΩ closest to δΩi 
inpaint p using Eq.1
advance δΩ into Ω 
}

 
Figure 4. Stages of the hair removal process for dermoscopic images.
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2.2.3. Integrated CNN with image denoising for noise 
removal (denoising)
An integrated CNN with noise removal is proposed for the 
classification of dermoscopic images as shown in Figure 5. 
Integration here entails a combination of two methods: skin 
cancer images’ noise removal and classification. Denoising 
is done to remove undesirable noise from images so that 
they can be better analyzed. Five deep learning models 
were applied for the classification of refined skin cancer 
images. These models are referred to as INR-ResNet50, 
INR-DenseNet121, INR-ResNet152, INR-VGG16, and 
INR-VGG19. Algorithm 4 presents an integrated CNN 
with denoising for noise removal. A total of 5000 images 
from the Noise Dataset, to which noise was added, are thus 
denoised. The process of reconstructing a signal from noisy 
images is referred to as denoising an image. The nonlocal 
(NL) means method [40] was utilized as the method for 
denoising to remove any probable aberrations from the 
images. The NL means algorithm selects a pixel, draws a 
small window around it, and searches the image for other 

windows of the same size. It then takes an average of all the 
windows and calculates the resultant value for the pixel. 
NL signifies the whole image search, not an individual 
region. Given a noisy image v = {v (i) | i ∈ I}, the NL[v] 
(i), for pixel i, is computed as a weighted average of all the 
pixels in the image, as given in Eq. (2):

𝐼𝐼(𝑝𝑝) =
∑ 𝑤𝑤(𝑝𝑝, 𝑞𝑞)[𝐼𝐼(𝑞𝑞) +  𝛻𝛻 𝐼𝐼(𝑞𝑞)(𝑝𝑝 − 𝑞𝑞)]𝑞𝑞∈𝐵𝐵ℰ(𝑝𝑝)

∑ 𝑤𝑤(𝑝𝑝, 𝑞𝑞)𝑞𝑞∈𝐵𝐵ℰ(𝑝𝑝)
. 

𝑁𝑁𝑁𝑁[𝑣𝑣](𝑖𝑖) = ∑ 𝑤𝑤(𝑖𝑖, 𝑗𝑗)𝑣𝑣(𝑗𝑗).
𝑗𝑗∈𝐼𝐼

 

 

   (2)

Here, {w(i, j)}j depends on the similarity between 
pixels i and j. It is used as the OpenCV function 
‘fastNlMeansDenoisingColored.’ The function converts 
the image to the CIELAB color space and then separately 
denoises the L and AB components with given h parameters 
using the ‘FastNon-LocalMeansDenoising’ function. 
Larger search windows require longer denoising times. 
The ideal value for the luminance and color components is 
10, and the higher the value, the smoother the image will 
be. All images from the Noise Dataset were run through 
this process for reconstruction.
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Figure 5. Integration of CNN with denoising for dermoscopic noise removal and classification.

Algorithm 4. Integrated CNN with Non-Local Means for Denoising
Input: Skin Images from HAM10000
Output: Noise removal results with Accuracy and Loss
1) Input Skin cancer Images M1….…. Mn
2) For each Image Mi,
        Denoise  fastNlMeansDenoisingColored (Input_img, Out_Image,        
        Lum_comp, color_comp, template_win, search_win)
3) For each Denoised image Mi, resize = 224*224
4) Fine-tune the last fully connected (FC) layer of deep CNN to identify the probabilities of skin cancer classes.
5) Train five deep CNNs INR-ResNet50, INR-DenseNet121, INR-ResNet152, INR-VGG16 and INR-VGG19.
6) Validate the model and calculate training and validation accuracy and loss for performance evaluation.
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2.3. Model training
Transfer learning was employed for training the IHR 
and INR models on the dataset, utilizing pretrained 
weights obtained from training on the ImageNet dataset. 
Five pretrained models were implemented for the given 
dataset. The model’s weights were loaded and the final 
fully connected layer was removed. The remaining part 
of the model was used as a feature extractor for the given 
dataset. A new final fully connected layer was added to get 
the skin lesion classes required for the output, which was 7. 

The network was trained for 25 epochs. Table 1 shows 
the hyperparameters used to train the model. The input 
image for the model was a 224 × 224 × 3 RGB image. The 
ReLU activation function [41] was employed throughout 
the architecture and the optimization function used was 
Adam [42]. The loss function applied was categorical 
cross-entropy [43]. Table 3 shows all the hyperparameters 
and their values.
2.3.1. Fully connected layer
• It is necessary to categorize the data into several classes 
after feature extraction, which can be achieved with a fully 
connected layer.

• The fully connected layer in the convolutional 
network takes the outcome of the convolution/pooling 
process and makes a classification judgement.

• Fully connected input: The output of the final 
pooling/convolutional layer is flattened, turned into a 
single vector, and sent as the input to the fully connected 
layer.

• Fully connected output: This gives the final 
probabilities for each label.

• The final layer employs the softmax activation 
function to determine the likelihood that the input 
belongs to one of several classes (classification). The class 
probabilities are calculated and output in a 3D array with 
[1 × 1 × N] dimensions, where N is the number of classes.
2.3.2. ReLU activation function
• The ReLU activation function [41] is a nonlinear function 
that can  learn complex relationships from the training 
data.

• ReLU is very easy to compute and implement 
since it only requires a comparison between its input and 
the value 0.

• A ReLU function will apply a max (0, x) function. 
The function outputs the input directly if it is positive; 
otherwise, it will output zero.

• The derivative remains constant, i.e. 1, for 
positive input and thus reduces the time taken for the 
model to learn and minimize the errors.

• ReLU has a predictable gradient for the 
backpropagation of the error. As a consequence, the 
computation speed is very fast. 
2.3.3. Categorical cross-entropy loss
• The network’s performance is measured using a metric 
(loss function) that counts the similarity between 
predicted and actual values. Cross-entropy loss is the most 
important cost function used in multiclass classification. 

• The objective of the loss function is to optimize 
the model during training [43]. To optimize the loss 
function, parameters are modified iteratively and help in 
achieving correct prediction. 

• The model performs better when loss is low.

3. Results
The proposed architecture was implemented in Google 
Colab. The classification accuracy and loss of the trained 
CNN models were calculated for training and validation. 
The ResNet50 [34], DenseNet121 [35], ResNet152 [34], 
VGG16 [36], and VGG19 [36] models were run on ground 
truth images from HAM10000 and corresponding images 
changed by the Hair Dataset and Noise Dataset. The models 
IHR-ResNet50, IHR-DenseNet121, IHR-ResNet152, 
IHR-VGG16, and IHR-VGG19 were run on the Hair 
Dataset after dehairing. The models INR-ResNet50, INR-
DenseNet121, INR- ResNet152, INR-VGG16, and INR-
VGG19 were run on the Noise Dataset after denoising the 
images. All models were run for 25 epochs. Results were 
provided for data obtained after 10, 15, and 25 epochs. 
The performance metrics used to validate the results were 
training accuracy (TAcc), training loss (TLoss), validation 
accuracy (VAcc), and validation loss (VLoss).
3.1. Experimental results on the HAM dataset 
Skin cancer images were taken from the ground truth (GT) 
dataset (HAM). This dataset comprises 10,015 images. 

Serial number Name of hyperparameter Value of hyperparameter
1. Input size 224 × 224 × 3
2. Batch size 32
3. Epochs 25
4. Optimization function Adam
5. Learning rate 1e-3
6. Loss function Categorical cross-entropy
7. Activation function ReLU

Table 3. Hyperparameters for the proposed work.
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All models were run on these images. Table 4 shows the 
training and validation accuracies on the GT dataset. Table 
5 shows training and validation loss on the GT dataset.

3.2. Experimental results with the Hair Dataset
The model performance for the Hair Dataset is shown 
in Tables 6–9. Table 6 shows training and validation 

Epoch ResNet50 DenseNet121 ResNet152 VGG16 VGG19
TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc

10 0.9027 0.8407 0.9382 0.8701 0.8921 0.8595 0.8132 0.8210 0.7827 0.8129
15 0.9414 0.8803 0.9569 0.8970 0.9255 0.9004 0.8520 0.8603 0.8230 0.8166
25 0.9694 0.8756 0.9763 0.8972 0.9614 0.9043 0.8918 0.8872 0.8634 0.8380

Table 4. Training and validation accuracy on the GT dataset.

Epoch ResNet50 DenseNet121 ResNet152 VGG16 VGG19
TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss

10 0.2631 0.4683 0.1663 0.4030 0.3471 0.4254 0.5697 0.5685 0.2079 0.5010
15 0.159 0.4446 0.1167 0.5547 0.2351 0.5132 0.4771 0.4619 0.1345 0.4619
25 0.0832 0.5175 0.0665 0.5219 0.1202 0.5213 0.3617 0.4852 0.0675 0.4852

Table 5. Training and validation loss on the GT dataset.

Epoch ResNet50 DenseNet121 ResNet152 VGG16 VGG19
TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc

10 0.9001 0.7932 0.9131 0.8283 0.8688 0.8423 0.7811 0.7731 0.7693 0.7273
15 0.9264 0.8129 0.9398 0.8447 0.9096 0.8752 0.8275 0.7922 0.8053 0.7710
25 0.9478 0.8411 0.952 0.8710 0.9412 0.8819 0.8780 0.8018 0.8503 0.7862

Table 6. Training and validation accuracy on the Hair Dataset.

Epoch ResNet50 DenseNet121 ResNet152 VGG16 VGG19
TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss

10 0.2609 0.4465 0.204 0.4081 0.3087 0.4290 0.5705 0.5050 0.6049 0.5174
15 0.1688 0.4651 0.1352 0.5044 0.2144 0.4828 0.4538 0.4505 0.513 0.5715
25 0.1038 0.5772 0.1165 0.5837 0.1553 0.6012 0.4287 0.5424 0.3114 0.5390

Table 7. Training and validation loss on the Hair Dataset.

Epoch IHR-ResNet50 IHR-DenseNet121 IHR-ResNet152 IHR-VGG16 IHR-VGG19
TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc

10 0.8918 0.8506 0.9184 0.8556 0.8949 0.8481 0.8134 0.7814 0.7754 0.8534
15 0.9327 0.8738 0.9506 0.8836 0.9288 0.8524 0.8549 0.8179 0.8142 0.8229
25 0.9656 0.8847 0.9750 0.8916 0.9601 0.89 0.8879 0.8663 0.8546 0.8445

Table 8. Training and validation accuracy after dehairing on the Hair Dataset.

Epoch IHR-ResNet50 IHR-DenseNet121 IHR-ResNet152 IHR-VGG16 IHR-VGG19
TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss

10 0.2819 0.4567 0.2122 0.3898 0.2701 0.4991 0.5144 0.5511 0.2788 0.4354
15 0.1810 0.4651 0.1318 0.4114 0.1890 0.4860 0.433 0.5582 0.1861 0.4567
25 0.0938 0.4696 0.0779 0.5198 0.1187 0.4581 0.3202 0.4461 0.0914 0.4985

Table 9. Training and validation loss after dehairing on the Hair Dataset.
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Figure 6. Comparison of improvement in training accuracy and loss after dehairing. 
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Figure 6. Comparison of improvement in training accuracy and loss after dehairing.

Epoch ResNet50 DenseNet121 ResNet152 VGG16 VGG19
TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc

10 0.8179 0.7791 0.8871 0.8265 0.8120 0.7712 0.7322 0.7873 0.6642 0.7738
15 0.8821 0.8284 0.9275 0.8623 0.8658 0.8200 0.7848 0.7747 0.7251 0.7694
25 0.9462 0.8158 0.9604 0.8650 0.9114 0.8570 0.8339 0.7748 0.7825 0.7675

Table 10. Training and validation accuracy on the Noise Dataset.

Epoch ResNet50 DenseNet121 ResNet152 VGG16 VGG19
TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss

10 0.4723 0.6156 0.2975 0.5243 0.5669 0.4925 0.7012 0.5876 0.2613 0.5627
15 0.3038 0.5725 0.1949 0.5104 0.4144 0.5598 0.5709 0.6058 0.2171 0.6096
25 0.1475 0.6439 0.1078 0.6173 0.2378 0.5835 0.4398 0.6532 0.1656 0.6328

Table 11. Training and validation loss on the Noise Dataset.

Epoch INR-ResNet50 INR-DenseNet121 INR-ResNet152 INR-VGG16 INR-VGG19
TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc

10 0.8982 0.8525 0.9179 0.8883 0.8672 0.8470 0.7824 0.7744 0.9194 0.8695
15 0.9404 0.8713 0.9505 0.8453 0.9080 0.8425 0.8169 0.8373 0.9272 0.8731
25 0.9701 0.8747 0.9745 0.8758 0.9565 0.8710 0.8617 0.8560 0.9665 0.8882

Table 12. Training and validation accuracy after denoising on the Noise Dataset.
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accuracy on hair-occluded images. Table 7 shows 
training and validation loss on hair-occluded images. 
DenseNet121 gave training accuracy of 95.20% with 
validation accuracy of 87.10%. VGG19 with occluded 
hair gave training accuracy of 85.03% and validation 
accuracy of 78.62%.
3.2.1. Dehairing results using the proposed integrated 
CNN with hair inpainting
Dehairing was performed using Algorithm 3 as proposed 
in subsection 2.2. Table 8 shows the training and 
validation accuracy after dehairing. Table 9 shows the 
training and validation loss after dehairing. It can be seen 
that training and validation accuracy decreased when skin 
images were occluded with hair strands. DenseNet121 
gave training accuracy of 95.20% with hair while IHR-
DenseNet121 provided 97.50% accuracy with hair 
removal. The validation accuracy with DenseNet121 was 
87.10% when hair was present while it was 89.16% with 
IHR-DenseNet121 when hairs were removed. There was 
improvement of approximately 2% accuracy with IHR-
DenseNet121. For each model, there was an increase in 
training and validation loss when the lesion was obstructed 
with hair. 

Figure 6 shows a comparison of improvement in 
training accuracy and loss after dehairing.

Training accuracy and loss curves were drawn and 
contrasted for the datasets with and without hair. It was 
seen that the accuracy and loss curves after dehairing with 
the proposed IHR models were better and show improved 
results compared to those obtained with hair.
3.3. Experimental results with Noise Dataset
The model performance for the Noise Dataset is shown in 
Tables 10–13. Table 10 shows the training and validation 
accuracy obtained for noise-occluded images. Table 11 
shows the training and validation loss for noise-occluded 
images. DenseNet121 achieved the highest training 
accuracy of 96.04% and validation accuracy of 86.50%. 
VGG19 with occluded noise gave training accuracy of 
78.25% and validation accuracy of 76.75%.
3.3.1. Denoising results using the proposed integrated 
CNN with nonlocal means denoising
Denoising was performed using Algorithm 4 as proposed 
in subsection 2.2. Table 12 shows the training and 
validation accuracy after denoising. Table 13 shows the 

training and validation loss after denoising. It can be seen 
that the training and validation accuracy decreased when 
skin images were distorted with noise. DenseNet121 gave 
training accuracy of 96.04% with noise, while a rate of 
97.45% was achieved with INR-DenseNet121 when the 
noise was removed. 

The validation accuracy with DenseNet121 was 
86.50% when noise was present, while INR-DenseNet121 
gave 87.58% accuracy when the noise was removed. There 
was improvement of approximately 1% in accuracy with 
INR-DenseNet121. For each model, there was an increase 
in training and validation loss when the lesions were 
obstructed with noise.

Figure 7 shows a comparison of the improvement in 
training accuracy and loss after denoising. The training 
accuracy and loss curves were drawn and contrasted for the 
datasets with and without noise. It was seen that the INR 
models gave more accurate output. The accuracy and loss 
curves after denoising were better and showed improved 
results compared to the results obtained with noise.
3.4. Comparison of ground truth with hair, noise, 
dehairing, and denoising
Extensive experimentation was performed to analyze the 
effect of distortions on the overall diagnosis of skin lesions. 
Comparison graphs were drawn to compare ground truth 
results with the occluded datasets (Hair Dataset and 
Noise Dataset) and the refined datasets with dehairing 
and denoising. Figure 8 shows a comparison between 
the training and validation accuracy rates for the ground 
truth, hairy images, and dehaired images. Figure 9 shows 
a comparison between the training and validation loss for 
the ground truth, hairy images, and dehaired images.

The proposed IHR model was employed for dehairing 
and the proposed INR model was employed for denoising. 
Figure 10 shows a comparison between the training 
and validation accuracy rates for the ground truth, 
noised images, and denoised images. Figure 11 shows a 
comparison between training and validation loss for the 
ground truth, noised images, and denoised images.

From Figures 10–13, it can be seen that the proposed 
IHR-DenseNet121 achieved 2.3% higher accuracy than 
DenseNet121 with hair occlusion and the proposed 
INR-DenseNet121 achieved 1.41% higher accuracy than 
DenseNet121 with noise occlusion. 

Epoch INR-ResNet50 INR-DenseNet121 INR-ResNet152 INR-VGG16 INR-VGG19
TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss TLoss VLoss

10 0.2631 0.4683 0.2178 0.4030 0.3471 0.4254 0.5697 0.5685 0.2079 0.5010
15 0.159 0.4446 0.1338 0.5547 0.2351 0.5332 0.4771 0.4619 0.1345 0.5318
25 0.0895 0.5015 0.0602 0.5167 0.1242 0.5113 0.3592 0.4922 0.0775 0.5130

Table 13. Training and validation loss after denoising on the Noise Dataset.
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The appearances often resulted in low accuracy and 
high loss in skin lesion classification. The comparison 
of the results obtained by deep learning models with 
and without artifacts revealed a significant difference in 
employing a method for restoring the distorted parts.

4. Discussion
The performance of the proposed hair removal method 
was compared with published hair detection and 
segmentation algorithms. Table 14 shows the accuracy 
metric computed for all algorithms in the presence of hair 

 

 

Figure 7. Comparison of improvement in training accuracy and loss after denoising. 
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Figure 7. Comparison of improvement in training accuracy and loss after denoising.

     

 

Figure 8. Comparison of improvement in training and validation accuracy for GT, Hair Dataset, 

and proposed IHR model. 
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Figure 8. Comparison of improvement in training and validation 
accuracy for GT, Hair Dataset, and proposed IHR model.
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and after dehairing. The proposed noise removal was also 
compared with available methods for denoising. Table 15 
shows the accuracy metric computed for all algorithms 
after denoising. 

Tables 14 and 15 show that the proposed methods 
achieved results comparable to those of existing computer 
vision techniques. The proposed IHR-DenseNet121, IHR-

ResNet50, and IHR-ResNet152 outperformed the existing 
methods for dehairing. The INR-DenseNet121, INR-
ResNet50, and INR-VGG19 models for noise removal were 
also superior to the available methods in the literature. 
The proposed methods can remove elements causing 
partial occlusion with more accuracy and allow precise 
classification of lesions according to class.

     

     

 

Figure 9. Comparison of improvement in training and validation loss for GT, Hair Dataset, and 

proposed IHR model. 
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Figure 9. Comparison of improvement in training and validation 
loss for GT, Hair Dataset, and proposed IHR model.

    

 

Figure 10. Comparison of improvement in training and validation accuracy for GT, Noise Dataset, 

and proposed INR model. 
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Figure 10. Comparison of improvement in training and validation 
accuracy for GT, Noise Dataset, and proposed INR model.

    

 

Figure 11. Comparison of improvement in training and validation loss for GT, Noise Dataset, and 

proposed INR model. 
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Figure  11.  Comparison of improvement in training and 
validation loss for GT, Noise Dataset, and proposed INR model.



BANSAL and SUNDARAMURTHY / Turk J Med Sci

14

In this work, the effects of skin images occluded with 
hair and noise were analyzed. Components such as hair 
and noise affect image quality and cause classification 
inaccuracies. These artifacts disrupt the features that are 
occluded behind them. If a lesion feature is not accurately 
determined, the diagnosis may not be correct. Therefore, it 
is necessary to diminish the effect of such elements.

This is the first work in which 5000 images were 
adulterated with hair and noise. The projected model 
can successfully eliminate the effects of occluded regions, 
thereby resulting in better precision. Skin lesions bounded 
by undesirable artifacts of hair and noise were successfully 
corrected and classified with the inclusion of the IHR and 
INR models with inpainting and NL means, respectively. 
These methods mask any hair or noise hiding the lesion and 
preserve the features occluded by them. The examination 
of results after applying these methods showed that the 
integrated models are capable of effectively classifying skin 
lesions regardless of the presence of unwanted artifacts. 
This automatic and efficient CAD system can help in the 
robust analysis of skin lesions in dermoscopic images, 
saving time for both doctors and patients.

5. Conclusion
Skin lesion images suffer from artifacts like hairy pixels, 
noise, poor color contrast, low illumination, moles, bubbles, 
and resolution. In this work, datasets were created with 
hair and noise to make a CAD system applicable for more 
realistic scenarios. The hair strands in skin lesion images add 

extra features that can lead to misdiagnosis. Noise artifacts 
diminish the visual quality of digital images, lowering the 
precision and accuracy of image analysis operations. The 
effect of noise and hair artifacts on diagnostic accuracy 
was studied here and it was found that these artifacts lack 
accuracy and can be a reason for inaccurate analysis. Noise 
and hair removal techniques can enhance image quality. 
Removal and restoration of the regions after hair and 
noise removal is vital so that features within lesions can 
be examined more thoroughly and quickly. The proposed 
integrated CNNs with IHR and INR allow for improved 
and accurate diagnosis of lesions from dermoscopic images 
after image restoration. This analysis is crucial in studying 
unwanted segmentation and classification results of lesion 
images due to the presence of the hairs and noise covering 
them. The output of the proposed methods allows more 
accurate and high-quality results. Many other artifacts like 
ruler marks, color charts, ink marks, moles, fuzzy borders, 
or numerous shades of color should also be isolated and 
corrected. There is a need for an automatic hair removal 
method that preserves all lesion features in the presence of 
all of these artifacts while keeping its computational cost 
low for accurate melanoma recognition and classification 
tasks. Future work will focus on developing a deep learning 
method for image inpainting and restoration. 
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Year Method used Accuracy with hair occlusion Accuracy posthair removal
(1997) [10] Dullrazor - 93.15
(2011) [44] PDE - 91.74
(2013) [45] Curvilinear matched filtering - 81.13
(2013) [46] Derivative of Gaussians - 87.36
(2015) [47] Threshold decomposition - 80.13
(2017) [48] ED + MBL - 90.99
(2021) [49] SharpRazor - 93.80

Proposed INR
Inpainting + DenseNet121 95.2 97.50
Inpainting + ResNet50  94.78 96.56
Inpainting + ResNet152  94.12 96.01

Table 14. Comparison with existing hair removal methods.

Year Method used Accuracy with noise occlusion Accuracy postnoise removal
(2015) [50] U-Net - 87.25
(2021) [51] DP-LinkNet - 94.86

Proposed INR
Nonlocal Means + DenseNet121 96.04 97.45
Nonlocal Means + ResNet 50 94.62 97.01
Nonlocal Means + VGG19 78.25 96.65

Table 15. Comparison with existing noise removal methods. 
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