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Abstract: The Euclidean hull of a linear code C is defined as C ∩ C⊥ , where C⊥ denotes the dual of C under
the Euclidean inner product. A linear code with the trivial hull is called a linear complementary dual (LCD) code. A
pair (C,D) of linear codes of length n over the finite field Fq is called a linear complementary pair (LCP) of codes if
C ⊕D = Fn

q . More generally, a pair (C,D) of linear codes of the same length over Fq is called a linear ℓ -intersection
pair of codes if C ∩D has dimension ℓ as a vector space over Fq . In this paper, we give characterizations of LCD, LCP
of cyclic codes and one-dimensional hull cyclic codes of length qm − 1 , m ≥ 1 , over Fq in terms of their basic dual zero
sets and their trace representations. We also formulate the hull dimension of a cyclic code of arbitrary length over Fq

with respect to its basic dual zero set. Moreover, we provide a general formula for the dimension ℓ of the intersection of
two cyclic codes of arbitrary length over Fq based on their basic dual zero sets.

Key words: Cyclic codes, hull of linear codes, linear complementary dual codes, linear complementary pair of codes,
trace representation, basic dual zero set

1. Introduction
Throughout the paper, Fq denotes the finite field of q elements, q is a prime power, n is a positive integer
such that gcd(n, q) = 1 , where gcd(n, q) denotes the greatest common divisor of n and q , and Fn

q is the vector
space of n -tuples over Fq . A linear code over Fq of length n and dimension k is a k -dimensional Fq -subspace
of Fn

q , and a codeword is an element of the linear code. For a linear code C of length n , the (Euclidean) dual

of C , which is denoted by C⊥ , is defined as

C⊥ = {x ∈ Fn
q | < c, x >=

n−1∑
i=0

cixi = 0 for all c ∈ C}.

The Euclidean hull of a linear code C over Fq is defined as the intersection of C with its dual, i.e., Hull(C) =

C ∩ C⊥ , where C⊥ is the Euclidean dual of C . Obviously, Hull(C) is also a linear code over Fq . We denote
the Fq -dimension of the subspace Hull(C) of Fn

q by h(C) .

The concept of the hull has been introduced by Assumus and Key in [1] in order to classify finite projective
planes. The hull of a linear code has applications in classical linear codes and quantum error-correcting codes,
see [11, 15–17, 19]. It turns out that the algorithms for determining permutation equivalence between two codes
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and determining the automorphism group of a linear code are more effective when the size of the hull dimension
of the code is small.

A zero-dimensional hull linear code is called linear complementary dual (LCD) code, which has been
introduced by Massey in [13]. If C is an LCD code of length n over Fq , then C ⊕ C⊥ = Fn

q . More generally,
a pair (C,D) of linear codes of length n over Fq is called a linear complementary pair (LCP) of codes if
C ⊕D = Fn

q . Clearly, if C is an LCD code, then the pair (C,C⊥) is LCP of codes.

The study of LCD and LCP of codes has a cryptographic motivation. It has been shown that certain
cryptosystems, which are defined via linear codes, are more secure against side-channel attacks (SCA) and
fault-injection attacks (FIA) when LCD or LCP of codes are used in their constructions, see [2, 3, 6]. Due to
the above-mentioned applications, codes with small hull dimension (especially one-dimensional hull codes) are
studied in the recent literature, see [4, 12, 17, 18] and references therein.

As a generalization of linear complementary pairs of codes and hulls, the concept of linear ℓ -intersection
pair of codes over a finite field has been introduced in [7]. A pair (C,D) of linear codes is called a linear
ℓ -intersection pair of codes if dim(C ∩D) = ℓ , where dim(C ∩D) denotes the Fq -dimension of the subspace
C ∩D of Fn

q . In [7], characterizations and constructions of linear ℓ -intersection pairs of codes in terms of the
generator and parity check matrices of the codes is provided and as an application, these pairs of codes are used
to construct quantum error-correcting codes.

The class of cyclic codes is a particular class of linear codes with an interesting algebraic structure. It
is well-known that a cyclic code C of length n over Fq can be identified with an ideal of the factor ring
Fq[x]/ < xn − 1 > , where Fq[x] denotes the polynomial ring in one variable x with coefficients in Fq and
< xn − 1 > denotes the ideal of Fq[x] generated by the polynomial xn − 1 . Since the ring Fq[x]/ < xn − 1 >

is a principal ideal domain, the ideal of Fq[x]/ < xn − 1 > corresponding to C is generated by a unique
monic polynomial over Fq that divides xn − 1 , which is called the generator polynomial of C . The generator
polynomial of the cyclic code C⊥ is called the parity check polynomial of C .

In the literature, the results on the LCD, LCP of cyclic codes, hull dimensions of cyclic codes and linear
ℓ -intersection pair of cyclic codes have been obtained by using the generator and parity check polynomials of
the codes, to the best of our knowledge. In [21], it has been shown that a cyclic code is LCD if and only if its
generator polynomial is self-reciprocal. In [5], it has been shown that a pair of cyclic codes of length n over Fq

is an LCP of codes if and only if their generator polynomials are relatively prime over Fq and the product of the
generator polynomials is xn − 1 . Similarly, a linear ℓ -intersection pair of cyclic codes has been characterized in
[9] in terms of their generator and parity check polynomials. The possible hull dimensions of a cyclic code of
length n over Fq is formulated in [14] by analysing the irreducible factors of xn − 1 over Fq . In [12], by using
the generator polynomial of a cyclic code, one-dimensional hull cyclic codes have been characterized in terms
of their defining sets.

In [20], a trace representation of a cyclic code C of length qm − 1 , m ≥ 1 , over Fq has been given by
using the basic dual zero set of C . The trace representation of C enables one to obtain the codewords of C

explicitly; hence, one can work on the code C in Fn
q rather than the polynomial representation of C in the ring

Fq[x]/ < xn − 1 > . In this paper, differently from the results in the literature, the characterizations of LCD,
LCP of cyclic codes and one-dimensional hull cyclic codes of length qm − 1 over Fq are given in terms of their
basic dual zero sets, by using the trace representation. Furthermore, a formula for the hull dimension of a cyclic
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code of arbitrary length in terms of its basic dual zero set is obtained. More generally, a linear ℓ -intersection
pair of cyclic codes of the same length is characterized in terms of the basic zero dual sets of the codes.

The paper is organized as follows. In Section 1, we recall the basic definitions and results on cyclic codes
and polynomials over finite fields. In Sections 3 and 4, LCD and one-dimensional hull cyclic codes of length
qm − 1 over Fq are studied, respectively. Moreover, the hull of a cyclic code of arbitrary length n over Fq is
formulated. In Section 5, we study the LCP of cyclic codes of length qm − 1 over Fq . Furthermore, a general
formula for the dimension ℓ of the intersection of two cyclic codes of arbitrary length over Fq based on their
basic dual zero sets is provided.

2. Preliminaries
We recall that Fq denotes the finite field of q elements, q is a prime power, n is a positive integer such that
gcd(n, q) = 1 and Fn

q is the vector space of n -tuples over Fq . A linear code over Fq of length n and dimension
k is a k -dimensional Fq -subspace of Fn

q , and a codeword is an element of the linear code. In this section, we
review cyclic codes, some properties of polynomials over finite fields and trace representation cyclic codes.

2.1. Cyclic codes

A linear code over Fq of length n is called cyclic, if any cyclic shift of a codeword is again a codeword, i.e.,
(c0, . . . , cn−1) ∈ C implies (cn−1, c0, . . . , cn−2) ∈ C . Clearly, the dual of a cyclic code is also cyclic.

Let C be a linear code of length n over Fq and c be a codeword. If c = (c0, . . . , cn−1) is identified with

the polynomial c(x) =
∑n−1

i=0 cix
i over Fq , then the code C can be seen as a subset of the ring Fq[x]/ < xn−1 > .

If C is a cyclic code, then any cyclic shift of a codeword is also a codeword, i.e., the set {c(x) | c ∈ C} is an
ideal of Fq[x]/ < xn − 1 > . Since Fq[x]/ < xn − 1 > is a principal ideal domain, any ideal of Fq[x]/ < xn − 1 >

has a unique monic generator.
We recall that for a polynomial f(x) ∈ Fq[x] with f(0) ̸= 0 , the polynomial f∗(x) = 1

f(0)x
deg f(x)f( 1x ) is

called the reciprocal polynomial of f(x) , where deg f(x) denotes the degree of f(x) . A polynomial f(x) is called
self-reciprocal if f(x) = f∗(x) . Let g(x) be the generator polynomial of a cyclic code C , i.e., C =< g(x) > .
Then C⊥ =< h∗(x) > , where h(x) = xn−1

g(x) and h∗(x) is the reciprocal polynomial of h(x) . The polynomial

h(x) is called the parity check polynomial of C . Since the generator polynomial of a cyclic code of length n

over Fq is a factor of xn − 1 , we recall the factorization of xn − 1 into monic irreducible polynomials over Fq .

2.2. Factorization of xn − 1

We recall that n and q are relatively prime. Let a be a positive integer. Then the q -cyclotomic coset Ba of a

modulo n is defined as follows:

Ba = {a, aq, . . . , aqδa−1},

where δa is the smallest positive integer such that aqδa ≡ a (mod n). Note that the number δa is the
cardinality of Ba , and it is denoted by |Ba| . Clearly, for two positive integers a1, a2 , either Ba1

= Ba2
or

Ba1 ∩Ba2 = ∅ . Let B(n, q) be the set of all the q -cyclotomic coset leaders modulo n . Then ∪a∈B(n,q)Ba = Zn.

That is, the set of q -cyclotomic cosets modulo n forms a partition of Zn . Let α be a primitive n -th root of
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unity over Fq . Then the minimal polynomial mαi(x) of αi over Fq is

mαi(x) =
∏
s∈Bi

(x− αs).

By using the above notation, the factorization of xn − 1 into monic irreducible factors over Fq can be given as
below:

xn − 1 =
∏

i∈B(n,q)

mαi(x). (2.1)

For our purposes, we need to group the irreducible factors of xn−1 over Fq into self-reciprocal polynomials and
reciprocal polynomial pairs. The following lemma characterizes the self-reciprocal irreducible factors in terms
of q -cyclotomic cosets.

Lemma 2.1 Let α be a primitive n-th root of unity over Fq . Then mαi(x) is self-reciprocal if and only if
Bi = B−i .

Proof Suppose that mαi(x) ∈ Fq[x] is self-reciprocal. That is, mαi(x) = m∗
αi(x) . This implies that the set

of roots of m∗
αi(x) is equal to the set of roots of mαi(x) , i.e., Bi = B−i .

Conversely, assume that Bi = B−i . This means that α−i is a root of mαi(x) ; hence, the minimal polynomial
m∗

αi(x) of α−i divides mαi(x) . Since m∗
αi(x) and mαi(x) are both monic and irreducible, we obtain that

m∗
αi(x) = mαi(x) , Hence, the polynomial mαi(x) is self-reciprocal. 2

Let {i1, . . . , it} be the set of all q -cyclotomic coset leaders modulo n , and T = {αij | 1 ≤ j ≤ t} . Suppose
T1, T2 ⊆ T such that T1 = {αij | Bj = B−j} and T2 = T \ T1 . By Lemma 2.1, for any αij ∈ T1 , mαij (x) is
self-reciprocal. Thus, Equation (2.1) can be rewritten as follows:

xn − 1 =
∏

αij∈T1

mαij (x)

∏
αij∈T2

mαij (x)m
∗
αij (x).

2.3. Trace representation of cyclic codes
In this subsection, we consider the case n = qm−1 for some positive integer m . Let C be a cyclic code of length
n over Fq with the generator polynomial g(x) . Let α be a primitive n -th root of unity over Fq and {i1, . . . , it}
be the set of all q -cyclotomic coset leaders modulo n . Suppose that h(x) is the parity check polynomial of C

and S ⊆ {1, . . . , t} such that h∗(x) =
∏

j∈S mαij (x) . Then the basic dual zero set of C is defined as

BZ(C⊥) = {αij | j ∈ S}.

The following theorem gives a trace representation of a cyclic code C of length qm − 1 , where Tqmqk denotes

the relative trace map from Fqm to Fqk , for a divisor k of m , i.e., Tqmqk(α) = α+αqk + · · ·+αq
m
k

−1 for every
α ∈ Fqm .

Proposition 2.2 [20, Proposition 2.1] Let α be a primitive n-th root of unity with n = qm−1 . Suppose that C

is a cyclic code, where the generator polynomial of C⊥ is equal to
∏

j∈S mαij (x) , i.e., BZ(C⊥) = {αij | j ∈ S} .
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Then
C =

{(∑
j∈S

Tqmq(λjx
ij )

)
x∈F∗

qm

∣∣ λj ∈ Fqm

}
.

In connection with the trace representation above, we will use the following theorem for our results.

Theorem 2.3 ([8], Theorem 2.5) For 1 ≤ j ≤ t , let ij ≥ 1 be positive integers which are in different q -
cyclotomic cosets modulo n , where n = qm − 1 . For λ1, . . . , λt ∈ Fqm ,

Tqmq(λ1x
i1 + · · ·+ λtx

it) = 0 for all x ∈ Fqm

if and only if |Bj | = δj < m and Tqmqδj (λj) = 0 for all j = 1, . . . , t .

3. Linear complementary dual cyclic codes

We recall that the hull of a linear code C is defined as Hull(C) = C ∩ C⊥ and we denote the dimension of
Hull(C) by h(C) . A linear code C is called linear complementary dual (LCD) if h(C) = 0 . The characterization
of an LCD cyclic code of length qm − 1 with respect to its basic dual zero is given in the following theorem.

Theorem 3.1 Let n = qm − 1 , C be a cyclic code of length n over Fq , α be a primitive n-th root of unity
over Fq . Let {i1, . . . , it} be the set of all q -cyclotomic coset leaders modulo n . Then C is LCD if and only if
αij ∈ BZ(C⊥) implies that either Bj = B−j or α−ij ∈ BZ(C⊥) for all 1 ≤ j ≤ t .

Proof Suppose that C =< g(x) > and C⊥ =< h∗(x) > . That is, g(x)h(x) = xn − 1 . We also have
gcd(g(x), h(x)) = 1 , since the polynomial xn − 1 has no repeated factors as gcd(n, q) = 1 . These together
imply that g∗(x)h∗(x) = xn − 1 and gcd(g∗(x), h∗(x)) = 1. Since (C⊥)⊥ = C the basic dual zero of C⊥

is a set of representatives of the roots of g(x) , which is equal to BZ(C) . Suppose on the contrary that C

is LCD and there exists 1 ≤ j ≤ t such that αij ∈ BZ(C⊥) , Bj ∩ B−j = ∅ and α−ij /∈ BZ(C⊥) . We,
without loss of generality, assume that j = 1 . The assumptions αi1 ∈ BZ(C⊥) and α−i1 /∈ BZ(C⊥) imply that
mαi1 (x) | h∗(x) and mα−i1 (x) ∤ h∗(x) , respectively. Since g∗(x)h∗(x) = xn − 1 and gcd(g∗(x), h∗(x)) = 1 ,
we obtain mα−i1 (x) | g∗(x) , consequently mαi1 (x) | g(x) . Therefore, αi1 ∈ BZ(C⊥) ∩ BZ(C) . Assume that
BZ(C⊥) = {αi1} ∪ T1 and BZ(C) = BZ((C⊥)⊥) = {αi1} ∪ T2 . By Proposition 2.2, the trace representations of
C and C⊥ are as follows:

C =
{(

Tqmq(λ1x
i1 +

∑
αij∈T1

λjx
ij )

)
x∈F∗

qm

∣∣ λj ∈ Fqm

}
,

C⊥ =
{(

Tqmq(β1x
i1 +

∑
αij∈T2

βjx
ij )

)
x∈F∗

qm

∣∣ βj ∈ Fqm

}
.

We can take λh = βl = 0 for all αih ∈ T1 , αil ∈ T2 , and λ1 = β1 = λ such that Tqmqδj (λ) ̸= 0 . Then we obtain

c =
(
Tqmq(λx

i1)
)
x∈F∗

qm
∈ C ∩ C⊥. Since Tqmq(λ) ̸= 0 , c ̸= 0 by Theorem 2.3. This contradicts the assumption

that C is LCD.
Conversely, assume that αij ∈ BZ(C⊥) implies that either Bj = B−j or α−ij ∈ BZ(C⊥) for all ij ,

1 ≤ j ≤ t . If Bj = B−j , then we have mαij (x) = m∗
αij

(x) by Lemma 2.1. If Bj∩B−j = ∅ and α−ij ∈ BZ(C⊥) ,
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then we have mαij (x) | h(x) and m∗
αij

(x) | h∗(x) . These together imply that h∗(x) is self-reciprocal. That

is, g(x)h∗(x) = xn − 1 and gcd(g(x), h∗(x)) = 1. Therefore, BZ(C⊥) ∩ BZ(C) = ∅ . As C ⊕ C⊥ = Fqn , we
have BZ(C) ∪ BZ(C⊥) = T . Thus, we assume without loss of generality that BZ(C⊥) = {αi1 , . . . , αis} and
BZ(C) = {αis+1 , . . . , αit} . Then by Proposition 2.2, the trace representations of C and C⊥ are as follows:

C =
{(

Tqmq(λ1x
i1 + · · ·+ λsx

is)
)
x∈F∗

qm

∣∣ λj ∈ Fqm , 1 ≤ j ≤ s
}
,

C⊥ =
{(

Tqmq(λs+1x
is+1 + · · ·+ λtx

it)
)
x∈F∗

qm

∣∣ λj ∈ Fqm , s+ 1 ≤ j ≤ t
}
.

Suppose on the contrary that Hull(C) ̸= {0} . Then there exists 0 ̸= c ∈ Hull(C) , and λ1, . . . , λt ∈ Fqm such
that

c =
(
Tqmq(λ1x

i1 + · · ·+ λsx
is)

)
x∈F∗

qm

=
(
Tqmq(λs+1x

is+1 + · · ·+ λtx
it)

)
x∈F∗

qm

Equivalently, (
Tqmq(λ1x

i1 + · · ·+ λsx
is − λs+1x

is+1 − · · · − λtx
it)

)
x∈F∗

qm

= 0. (3.1)

By Theorem 2.3, the equality in (3.1) holds if and only if |Bj | = δj < m and Tqmqδj (λj) = 0 for all 1 ≤ j ≤ t .

We know that the set BZ(C⊥)∪BZ(C) contains all the leaders of q -cyclotomic cosets modulo n , in particular,
the coset leader that contains 1. Since the cyclotomic coset that contains 1 has cardinality m , we have a
contradiction. Hence, C is LCD. 2

Remark 3.2 By Theorem 3.1, a cyclic code C of length qm − 1 over Fq is LCD if and only if for any divisor
mαij (x) of h∗(x) , we have m∗

αij
(x) is also a divisor. Therefore, C is LCD if and only if h∗(x) is self-reciprocal,

which implies

g∗(x) =
xn − 1

h∗(x)
=

xn − 1

h(x)
= g(x)

is self-reciprocal. This has also been observed by Massey in [21] for a cyclic code of arbitrary length n .

Note that in some cases, the condition given in Lemma 2.1 on q -cyclotomic cosets modulo n can be satisfied
for all cyclotomic cosets, which leads to the following corollary.

Corollary 3.3 Let {i1, . . . , it} be the set of all q-cyclotomic coset leaders modulo n . If Bj = B−j for all
1 ≤ j ≤ t , then any cyclic code of length n over Fq is LCD.

Proof Since Bj = B−j for all 1 ≤ j ≤ t , by Lemma 2.1, the polynomial mαij (x) is self-reciprocal for any
1 ≤ j ≤ t . This means that any factor g(x) of xn − 1 is self-reciprocal. Hence, the cyclic code generated by
g(x) is LCD. 2

Example 3.4 Let q = 2 and n = 9 . Then the 2-cyclotomic cosets modulo 9 are B0 = {0} , B1 =

{1, 2, 4, 5, 7, 8} , B3 = {3, 6}. Since B1 = B8 and B3 = B6 , every binary cyclic code of length 9 is LCD
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by Corollary 3.3. Note that the monic irreducible factors of x9 − 1 over F2 are x + 1 , x2 + x + 1 and
x6 + x3 + 1 , which are all self-reciprocal.
Let q = 3 and n = 10 . Then the 3-cyclotomic cosets modulo 10 are B0 = {0} , B1 = {1, 3, 7, 9} ,
B2 = {2, 4, 6, 8} , B5 = {5} . Since B1 = B9 , B2 = B8 , every ternary cyclic code of length 10 is LCD by
Corollary 3.3. Note that the monic irreducible factors of x10−1 over F3 are x+1 , x+2 , x4+x3+x2+x+1 ,
x4 + 2x3 + x2 + 2x+ 1 , which are all self-reciprocal.

4. One-dimensional hull cyclic codes
In this section, we present a condition for a cyclic code to have a one-dimensional hull in terms of its basic dual
zero set. We will use the following theorem.

Theorem 4.1 ([10], Theorem 4.3.7) Let Ci be a cyclic code of length n over Fq with the generator polynomial
gi(x) for i = 1, 2 . Then C1 ∩ C2 has generator polynomial lcm(g1(x), g2(x)) , where lcm(g1(x), g2(x)) denotes
the least common multiple of the polynomials g1(x) and g2(x) .

Let C be a cyclic code of length qm−1 over Fq . Suppose that hHull(C)(x) is the parity check polynomial

of Hull(C) and S ⊆ {1, . . . , t} such that h∗
Hull(C)

(x) =
∏

j∈S mαij (x) . Then BZ((Hull(C))⊥) = {αij | j ∈ S} .

By Proposition 2.2, the trace representation of Hull(C) is as follows:

Hull(C) =
{(∑

j∈S

Tqmq(λjx
ij )

)
x∈F∗

qm

∣∣ λj ∈ Fqm

}
.

Let β ∈ Fqm be a normal element over Fq , i.e., the set {β, βq, . . . , βqm−1} forms a basis of Fqm over Fq . Then

for each λj ∈ Fqm , there exist unique elements cλj0
, . . . , cλjm−1

of Fq such that λj =
∑m−1

u=0 cλju
βqu . Hence,

we get (
Tqmq(λjx

ij )
)
x∈F∗

qm
= cλj0

(
Tqmq(βx

ij )
)
x∈F∗

qm
+ · · ·+ cλjm−1

(
Tqmq(β

qm−1

xij )
)
x∈F∗

qm

for all j ∈ S . This implies that Hull(C) is spanned by the vectors
(
Tqmq(β

qrxij )
)
x∈F∗

qm
for j ∈ S , 0 ≤ r ≤

m− 1 , i.e.,

Hull(C) = span
{(

Tqmq(β
qrxij )

)
x∈F∗

qm
| j ∈ S, 0 ≤ r ≤ m− 1

}
. (4.1)

Therefore, in order to determine h(C) , we need to find the number of linearly independent vectors in the
spanning set given by (4.1). We have the following lemma.

Lemma 4.2 Let β be a normal element of Fqm over Fq . Suppose that k, l are positive integers with Bk∩Bl = ∅ .
Then the vectors

(
Tqmq(βx

k)
)
x∈F∗

qm
and

(
Tqmq(βx

l)
)
x∈F∗

qm
are linearly independent over Fq .

Proof : The proof is by contradiction. Suppose that the vectors
(
Tqmq(βx

k)
)
x∈F∗

qm
and

(
Tqmq(βx

l)
)
x∈F∗

qm
are

linearly dependent over Fq . Then there exist nonzero c1, c2 ∈ Fq such that

c1
(
Tqmq(βx

k)
)
x∈F∗

qm
+ c2

(
Tqmq(βx

l)
)
x∈F∗

qm
=

(
Tqmq(c1βx

k + c2βx
l)
)
x∈F∗

qm
= 0.
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This implies that there exists 0 ̸= ax ∈ Fqm such that c1x
kβ + c2x

lβ = (c1x
k + c2x

l)β = aqx − ax = bx , for
each x ∈ Fqm . Since β is a normal element of Fqm over Fq , the element bx has a unique expression of the

form bx =
∑m−1

u=0 dxu
βqu , where dxu

∈ Fq . This implies that c1x
k + c2x

l = dx0
∈ Fq for all x ∈ Fq . Therefore,

Tqmq((c1x
k+ c2x

l)β) = (c1x
k+ c2x

l)Tqmq(β) = 0 . Since β ∈ Fqm is normal over Fq , Tqmq(β) ̸= 0 , which means
c1x

k + c2x
l = 0 for all x ∈ Fqm . Assume without loss of generality that c1 ̸= 0 and let x = 1 . Then c1 = −c2 .

If we let x = θ , where θ is a primitive element of Fqm , then c1x
k + c2x

l = c1(θ
k − θl) = 0 . As c1 ̸= 0 , we

obtain θk−θl = 0 . That is, θk−l = 1 , which implies that k ≡ l mod (qm−1). This contradicts the assumption
that Bk ∩Bl = ∅ . Hence, the result follows.

Theorem 4.3 For n = qm − 1 , let C be a cyclic code of length n . Let {i1, . . . , it} be the set of all leaders of
q -cyclotomic cosets modulo n , and T = {αij | 1 ≤ j ≤ t} . Then h(C) = 1 if and only if BZ(C⊥) satisfies the
following:

i) There exists a unique αij ∈ BZ(C⊥) , and |Bj | = 1 and Bj ∩B−j = ∅ and α−ij /∈ BZ(C⊥) .

ii) BZ(C⊥) = T1 ∪{αij} , where T1 ⊂ T satisfies for any αih ∈ T1 , we have either Bh = B−h or α−ih ∈ T1 .

Proof : Let n = qm − 1 , a code C =< g(x) > be cyclic of length n , and h(x) be the parity check polynomial
of C . Let {i1, . . . , it} be the set of all leaders of q -cyclotomic cosets modulo n , and T = {αij | 1 ≤ j ≤ t} .

Suppose that i) and ii) hold. We first show that BZ((Hull(C))⊥) = BZ((C ∩ C⊥)⊥) = {αij}. By
Theorem 4.1, we know that Hull(C) = C ∩ C⊥ =< lcm(g(x), h∗(x)) >=< lcm(x

n−1
h(x) , h

∗(x)) > . By ii), we

can write h∗(x) = mαij (x)t(x), where t(x) =
∏

αih∈T1
mαih (x). Similar to the proof of Theorem 3.1, we can

see that t(x) is self-reciprocal. This implies that h(x) = m∗
αij

(x)t(x) , and hence gcd(g(x), h∗(x)) = mαij (x) .

Then we have lcm(g(x), h∗(x)) = g(x)h∗(x)
gcd(g(x),h∗(x)) =

xn−1
m∗

α
ij

(x) . That is, Hull(C) =< xn−1
m∗

α
ij

(x) > , which implies that

BZ((Hull(C))⊥) = {αij}. By Proposition 2.2, the trace representation of Hull(C) is as follows:

Hull(C) =
{(

Tqmq(λx
ij )

)
x∈F∗

qm
| λ ∈ Fqm}. (4.2)

Let β be a normal element of Fqm over Fq . Then for any λ ∈ Fqm there exist cλ0 , . . . , cλm−1 ∈ Fq such that

λ = cλ0β + cλ1β
q + · · ·+ cλm−1β

qm−1

. Hence, we get(
Tqmq(λx

ij )
)
x∈F∗

qm
= cλ0

(
Tqmq(βx

ij )
)
x∈F∗

qm
+ · · ·+ cλm−1

(
Tqmq(β

qm−1

xij )
)
x∈F∗

qm
.

This implies that Hull(C) is spanned by the vectors
(
Tqmq(β

qrxij )
)
x∈F∗

qm
for 0 ≤ r ≤ m− 1 , i.e.,

Hull(C) = span
{(

Tqmq(β
qrxij )

)
x∈F∗

qm
| 0 ≤ r ≤ m− 1

}
by the equality in (4.2). By i), |Bj | = 1 , i.e., j ≡ jqr mod (qm − 1) for all 0 ≤ r ≤ m− 1 . Hence,
for all 0 ≤ r ≤ m− 1 , the equality

(
Tqmq(β

qrxij )
)
x∈F∗

qm
=

(
Tqmq(βx

ij )
)
x∈F∗

qm
holds. That is, Hull(C) =

span
{(

Tqmq(βx
ij )

)
x∈F∗

qm

}
. Since β is a normal element of Fqm over Fq , we have Tqmq(β) ̸= 0 . Then the

vector (Tqmq(βx
ij )

)
x∈F∗

qm
̸= 0 by Theorem 2.3, and hence h(C) = 1 .

8
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Conversely, suppose on the contrary that h(C) = 1 , and there exist representatives ij such that
BZ(C⊥) = T1 ∪ {αi1 , αi2} , Bij ∩ B−ij = ∅ , |Bij | = 1 and {α−ij} ̸= BZ(C⊥) for j = 1, 2 . Similar to the
proof of Theorem 3.1, we obtain BZ((Hull(C))⊥) = {αi1 , αi2} . By Proposition 2.2, we have the following trace
representation of Hull(C) :

Hull(C) =
{(

Tqmq(λ1x
i1 + λ2x

i2)
)
x∈F∗

qm
| λ1, λ2 ∈ Fqm

}
.

Then we have

Hull(C) = span
{(

Tqmq(β
qrxi1)

)
x∈F∗

qm
,
(
Tqmq(β

qrxi2)
)
x∈F∗

qm
| 0 ≤ r ≤ m− 1

}
.

= span
{(

Tqmq(βx
i1)

)
x∈F∗

qm
,
(
Tqmq(βx

i2)
)
x∈F∗

qm

}
,

where the last equality follows from the assumption that |Bi1 | = |Bi2 | = 1 . We also have h(C) = 1 by
assumption, which implies that all the vectors in the spanning set of Hull(C) are linearly dependent. Using
Lemma 4.2, we obtain Bi1 = Bi2 . Hence, the result follows.

Corollary 4.4 There exist no binary and ternary one-dimensional hull cyclic codes of length qm − 1 .

Proof If C is a one-dimensional hull cyclic code over Fq , then by Theorem 4.3, BZ(C⊥) = T1 ∪{αij} , where
Bj ∩ B−j = ∅ , |Bj | = 1 and α−ij /∈ BZ(C⊥) . This implies that ij ≡ 2ij mod (2m − 1), when q = 2 . Thus,
(2m − 1) | ij , i.e, ij = 2m − 1 , a contradiction to the assumption that ij < 2m − 1 .

Similarly, we have ij ≡ 3ij mod (3m − 1), when q = 3 . Thus, (3m − 1) | 2ij , i.e., α2ij = 1 . Since
ij < qm−1 , we conclude that αij = −1 , which implies that α−ij = −1 . Hence, we have ij ≡ −ij mod (3m−1) ,
which contradicts the assumption that Bj ∩B−j = ∅ . 2

Remark 4.5 The characterization of one-dimensional hull cyclic codes in terms of their defining sets is given
in [12], whereas our characterization is given in terms of basic dual zero sets of cyclic codes. In [12], the authors
also obtain the nonexistence result given in Corollary 4.4 as a consequence of their characterization.

Let C be a cyclic code of length n , where gcd(n, q) = 1 . Suppose that BZ(C⊥) = T1 ∪ T2 , where T1 is
as in Theorem 4.3, and T2 = BZ(C⊥) \ T1 . Then similar to the proof of Theorem 4.3, we can write

BZ((Hull(C))⊥) = T2.

This means that
h∗

Hull(C)
(x) =

∏
αij∈T2

mαij (x),

where hHull(C)(x) is the parity check polynomial of the code Hull(C) . As a result, we arrive at the following

theorem, which generalizes Theorem 4.3 to the hull of cyclic codes of arbitrary length n .

Theorem 4.6 Let C =< g(x) > be a cyclic code of length n over Fq . Let {i1, . . . , it} be the set of all leaders
of q -cyclotomic cosets modulo n , and T = {αij | 1 ≤ j ≤ t} . Suppose that BZ(C⊥) = T1 ∪ T2 , and the
following holds.

9
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i) For any αij ∈ T1 , either Bj = B−j or α−ij ∈ T1 .

ii) For any αij ∈ T2 , Bj ∩B−j = ∅ and α−ij /∈ T2 .

Then BZ((Hull(C))⊥) = T2 and h(C) =
∑

αij∈T2
|Bj |.

5. Linear complementary pair of cyclic codes

A pair (C,D) of linear codes of length n over the finite field Fq is called a linear complementary pair (LCP) of
codes if Fn

q = C ⊕D . The LCP of codes can be considered a generalization of LCD codes. Namely, if C is an

LCD code, then the pair (C,C⊥) is LCP of codes. The following lemma is required to obtain the main result
of this section.

Lemma 5.1 Let C and D be two cyclic codes of length n over Fq . Then

BZ((C ∩D)⊥) = BZ(C⊥) ∩ BZ(D⊥).

Proof Let gC(x) , gD(x) , and g(x) denote the generator polynomials of C , D and C ∩ D , and hC(x) ,
hD(x) and h(x) denote their parity check polynomials, respectively. Take αij ∈ BZ((C ∩D)⊥) . Suppose that
0 ̸= c ∈ C ∩ D , and c(x) is the polynomial corresponding to the codeword c . Since c ∈ C ∩ D , we have
c(x)h(x) = c(x)hC(x) = c(x)hD(x) = 0. This implies that c∗(x)h∗(x) = c∗(x)h∗

C(x) = c∗(x)h∗
D(x) = 0 . As

αij ∈ BZ((C ∩D)⊥) , there exists q(x) ∈ Fq[x] such that h∗(x) = mαij (x)q(x) . Then

c∗(x)mαij (x)q(x) = c∗(x)h∗
C(x) = c∗(x)h∗

D(x) = 0.

Since c(x) ̸= 0 , we obtain that mαij (x) | h∗
C(x) , and mαij (x) | h∗

D(x) . Hence, αij ∈ BZ(C⊥) ∩ BZ(D⊥) , i.e.,
αij ∈ BZ((C ∩D)⊥) ⊆ BZ(C⊥) ∩ BZ(D⊥) .

We prove the reverse inclusion by contradiction. Suppose that αij ∈ BZ(C⊥) ∩ BZ(D⊥) and αij /∈
BZ((C ∩D)⊥) . Then mαij (x) ∤ h∗(x) , i.e., there exist q(x), r(x) ∈ Fq[x] such that h∗(x) = mαij (x)q(x) + r(x)

with 0 ̸= r(x) and deg r(x) < degmαij (x) . Take 0 ̸= c ∈ C ∩D , and consider the corresponding polynomial
c(x) . Since c ∈ C ∩D , we have c(x)h∗(x) = ch∗

C(x) = 0 . As αij ∈ BZ(C⊥) , the polynomial mαij (x) divides
h∗
C(x) . That is, there exists q1(x) ∈ Fq[x] such that h∗

C(x) = mαij (x)q1(x) . Then

0 = c(x)mαij (x)q1(x) = c(x)mαij (x)q(x) + c(x)r(x).

Thus,
c(x)r(x) = c(x)mαij (x)(q1(x)− q(x)),

and as c(x) ̸= 0 ,
r(x) = mαij (x)(q(x)− q1(x)).

This implies that mαij (x) | r(x) , which contradicts deg r(x) < mαij (x) . Therefore, αij ∈ BZ((C ∩D)⊥) , i.e.,
BZ(C⊥) ∩ BZ(D⊥) ⊆ BZ((C ∩D)⊥) . 2

The following theorem characterizes the LCP of cyclic codes (C,D) of length qm − 1 over Fq in terms of the
basic dual zeros of C and D .

10
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Theorem 5.2 Let n = qm − 1 , C and D be cyclic codes of length n . Let {i1, . . . , it} be the set of all leaders
of q -cyclotomic cosets modulo n , and T = {αij | 1 ≤ j ≤ t} . Then the pair (C,D) is an LCP of codes if and
only if BZ(C⊥) = T \ BZ(D⊥) .

Proof Assume that the pair (C,D) is an LCP of codes, and there exists αij ∈ BZ(C⊥) and αij /∈ T \BZ(D⊥) ,
i.e., αij ∈ BZ(C⊥) ∩ BZ(D⊥) . Let BZ(C⊥) = {αij} ∪ T1 and BZ(D⊥) = {αij} ∪ T2 . Similar to the proof of
Theorem 3.1, we can see that there exists λ ∈ Fqm such that Tqmq(λ) ̸= 0 and 0 ̸= c =

(
Tqmq(λx

ij )
)
x∈F∗

qm
∈

C ∩D. This contradicts the assumption that the pair (C,D) is LCP.
Conversely, suppose on the contrary that BZ(C⊥) = T \ BZ(D⊥) and the pair (C,D) is not LCP. As

BZ(C⊥) = T \ BZ(D⊥) , we, without loss of generality, assume that BZ(C⊥) = {αi1 , . . . , αis} and BZ(D⊥) =

{αis+1 , . . . , αit} . Let 0 ̸= c ∈ C ∩ D . Similar to the proof of Theorem 3.1, there exist λ1, . . . , λt ∈ Fqm such
that

c =
(
Tqmq(λ1x

i1 + · · ·+ λsx
is)

)
x∈F∗

qm
=

(
Tqmq(λs+1x

is+1 + · · ·+ λtx
it)

)
x∈F∗

qm
.

Thus,
Tqmq(λ1x

i1 + · · ·+ λsx
is − λs+1x

is+1 − · · · − λtx
it) = 0 for all x ∈ F∗

qm .

By assumption, BZ(C⊥)∪BZ(D⊥) contains all the leaders of q -cyclotomic cosets modulo qm−1 , in particular,
the coset leader that contains 1, which is of cardinality m . Hence, we obtain a contradiction to Theorem 2.3.
2

Remark 5.3 Let (C,D) be an LCP of cyclic codes of length n . By Theorem 5.2, we have BZ(C⊥) =

T \ BZ(D⊥) . Then we have

xn − 1 =
∏

αij∈BZ(C⊥)

mαij (x)
∏

αij∈BZ(D⊥)

mαij (x) = h∗
C(x)h

∗
D(x),

by Equation (2.1). That is,
xn − 1 = gC(x)gD(x).

This implies that gC(x) and gD(x) are relatively prime, which has been also observed in [5, Remark 2.3].

A pair (C,D) of linear codes is called linear ℓ -intersection pair of codes if dim(C ∩D) = ℓ . Note that if (C,D)

is an LCP of codes of length n , then (C,D) is a 0-intersection pair of codes with n = dim(C) + dim(D) . We
then have the following theorem, which generalizes Theorem 5.2 to any linear ℓ -intersection pair of cyclic codes
with arbitrary length n .

Theorem 5.4 Let C and D be cyclic codes of length n over Fq . Then

ℓ = dim(C ∩D) =
∑

αij∈T1

|Bj |,

where T1 ⊆ T such that BZ(C⊥) ∩ BZ(D⊥) = T1 .

11
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Proof Let BZ(C⊥) ∩ BZ(D⊥) = T1 . By Lemma 5.1, we have T1 = BZ((C ∩D)⊥) . This means that

h∗
C∩D(x) =

∏
αij∈T1

mαij (x),

where hC∩D(x) is the parity check polynomial of C ∩D . Therefore, we obtain

ℓ = dim(C ∩D) = deg hC∩D(x) =
∑

αij∈T1

|Bj |.

2
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