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Abstract: The main objective of this paper is to calculate the forgotten topological index of the zero-divisor graph of
Zn. Let p, ¢ and r be distinct prime numbers. We calculate the forgotten topological index of the ring I'(Z, ) where
n = p%, pq, p°q, p°q>, pgr. Also, we study the forgotten topological index of the product of rings of integers modulo n.

We construct a polynomial algorithm to compute the forgotten topological index of I'(Z,).
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1. Introduction and preliminaries

Zero-divisor graphs of commutative rings entered the area of algebraic combinatorics by the work of I. Beck [9].
His definition of zero-divisor graph has a vertex set on R and any two elements x,y € R are adjacent whenever
xy = 0. This definition of a zero-divisor graph of a commutative ring was later modified by Anderson and
Livingston in [5]. After the introduction of zero-divisor graphs, different types of graphs related to commutative
rings emerged such as annihilating-ideal graphs, comaximal graphs, total graphs [1, 4, 6, 35, 37, 39-41, 43].
In recent years, many works have been done on topological indices of graphs. Indeed, these works include
zero-divisor graphs of commutative rings. There are different types of topological indices such as distance-based
and degree-based. One of the most well-studied distance-based index which is called Wiener index was studied
for zero-divisor graphs in [7, 38]. Let G = (V(G), E(G)) be a simple and undirected graph. The Wiener index
of a graph G is defined as:

W(Q) = Z d(u,v)
u,veV(G)
where d(u,v) stands for the distance between the vertices u and v of G.

The first and the second Zagreb indices which are degree-based indices were introduced in [23] and more
details about these indices can be found in [24]. These Zagreb indices are shown by M; and M, and defined
as:

My=M(G)= > dand My=My(G)= Y  dud,
ueV(QG) wEE(G)
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respectively. Many researchers have studied some recent results on these indices [10, 25, 28, 44]. Moreover, the
Zagreb indices of zero-divisor graphs of I'(Z,) were calculated in [38].

Recently, the Sombor index was introduced by Gutman in [26] and defined as:

where d, and d, is degree of vertices u and v, respectively. This novel topological index is degree-based and
has attracted authors and many research have been done about this index [11, 22, 27, 34, 45].

Moreover, the topological indices such as Wiener index, PI index, Zagreb index, and eccentric index
measure the characters of drug molecules. Recently, there are many studies to determine these topological
indices of special molecular graphs in chemical, nanomaterials and pharmaceutical engineering, etc. [13-20, 42].

Followed by the first and second Zagreb indices, Furtula and Gutman (2015) introduced the forgotten

topological index (also called F-index) which was defined as,

FI(G) = Y db= > (d°+d?)
ueV(QG) weE(G)

where d, is denoted as the degree of vertex v (the number of vertices adjacent to vertex v) [12]. Furtula and
Gutman analyzed that predictive ability of the forgotten topological index is almost similar to that of the first
Zagreb index and for the eccentric factor and entropy, and both of them obtain correlation coefficients larger
than 0.95. This fact implies the reason why the forgotten topological index is useful for testing the chemical
and pharmacological properties of drug molecular structures. More recently, Gao et al. presented the forgotten
topological index of some significant drug molecular structures [21]. Also, many researchers continue to examine
the forgotten topological index with different studies [8, 29-33, 36].

The works mentioned above led us to study the forgotten topological index of I'(Z,,), I'(Z,, x Z,,), and
[(Zp, X Zyy X Z,). In section 2, we calculate the forgotten topological index of the graph I'(Z,) and give an
algorithm for this calculation. Finally, in section 3, we examine the forgotten topological index of zero-divisor

graphs of products of rings modulo integers n and m.

2. Forgotten topological index of zero-divisor graph of Z,

Recently, the zero-divisor graph of the ring Z,, is a popular research in spectral graph and chemical graph theory.
Many researchers have studied in this area. Singh and Bhat have examined adjacency matrix and Wiener index
of zero-divisor graph I'(Z,) [38]. Later, Asir and Rabikka have studied Wiener index of zero-divisor graph of
I'(Z,) [7]. Now, we analyze the forgotten topological index of zero-divisor graph I'(Z,) in this section.

Theorem 2.1 Let p be a prime number, then followings hold:
(i) If p=2, then FT(I'(Z,)) =0,
(it) If p > 2, then FT(I(Z,2)) = 2(p — 2)(*3 ") -

Proof

(i) It is clear that Z, has only one nonzero zero-divisor which is 2, then proof follows.
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(ii) Since Zy2 = Kp_1, the proof follows.

O
Now we are about to calculate the forgotten topological index of zero-divisor graph for powers of p greater

than or equal to 3.

Theorem 2.2 Let p > 2 be a prime number and o € N with o > 3, then the forgotten topological index of
F(Zpa) s

21 6 gy sl i gy
FT(F(ZPO‘)) = pa(p - 1) Z Z-‘rl + Z l+1 :
51

=1 i=[g

Proof We can show the zero-divisors of (Z,~) as follows:
Ar={pr|z=1,....,p* ' —1,pta},
Ai = {pzx ‘ T = 17.”’pa7i - ]_,p'fl‘},

Aot ={p" "z |o=1,....p— Lpfa}.

The vertex set of the graph I'(Z,») equals Uf:ll A; with A, N A; =0 for ¢ # j, where i,j € {1,..., a0 — 1}.
Besides, |A;| means the number of vertices of 4,. We calculate the number of vertices of all zero-divisor sets
as |[A| = p*t —p¥7 2, |Ag| = p 2 —p* 3, L |Ail = p* i (p—1), .., |Aa_1| = p— 1. Moreover, the degree

of each vertex in these zero-divisor sets can be defined as follows

p—1, u € Ay
p2—1, u € As

pt—1, i<af2
pt—2, i> a2

pa72 - 27 u € Aa—2
pa71 - 27 u € Aa,1

for all u € A;. The forgotten topological index of I'(Zp«) can be attained that
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FI(D(Zpe)) = >, d)° (2.1)

ueV (D(Zyo))

I
&
_|_

(]

(]
&

LQ?J a—1

Example 2.3 For the graph T'(Zas3), we have p* = 3°. Then, FT(I'(Z243)) = 1,089,476, and the set of

zero-divisors can be written as follows:
A; ={3,6,12,15,21, 24, 30, 33, 39, 42,48, 51,57, 60, 66, 69, 75, 78,84, 87,93, 96, 102,
105,111,114,120,123,129, 132,138, 141,147,150, 156, 159, 165, 168,174, 177,
183,186, 192,195, 201, 204, 210, 213, 219, 222, 228 231, 237, 240},
Ay ={9,18,36,45,63,72,90,99,117,126, 144, 153,171,180, 198, 207, 225, 234},
Az = {27,54,108, 135, 189, 216},
Ay = {81,162}.

Additionally, these sets create the graph which can be shown in Figure 1, where Ay = {3z |x =1,...,p* 1 —1,p¢
2}, Ao ={92 |z =1,....p° 2 —1L,pta}, A3={2Tz|x=1,....,p* 3 —1,pta}, and Ay = {8lz | z =
L...,p* % —1,ptz}.

In the next theorem, we give the forgotten index of a zero-divisor graph I'(Z,,) for distinct primes p and

Theorem 2.4 Let p and g be prime numbers with p # q. Then the forgotten index of the graph I'(Z,q) is

FT(0(Zyg)) = (0= g = D](a = 1+ (p— 1]
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Figure 1. The graph I'(Z243)

Proof The graph I'(Z,,) is a complete bipartite graph. The bipartitions of I'(Z,,) are A; = {pz | z =
1,2,...,q—1} and Ay = {gz [2=1,2,...,p—1}. Since [A;| = ¢(Bl) = ¢—1 and |As| = (&) = p—1, then
the size of this graph is (p — 1)(¢ — 1). It follows that

2
FT(C(Zyg) =Y, Y du®

i=1 ueA;
=|A1l(q —1)® + |A2|(p — 1)°
=(p-1(q-1°+(@q-1p-1)°

=(p-Da-D[p-1*+ - 1?.

Example 2.5 For the zero-divisor graph of Zi19, we attain n = pgq where p = 7 and q¢ = 17. Then,
FT(T'(Z119)) = 28,032, and the set of zero-divisors as follows:

Ay = {7,14,21,28, 35,42, 49,56, 63, 70, 77, 84,91, 98, 105, 112},

Ay = {17,34,51, 68,85, 102}.

These sets give rise to the graph depicted in Figure 2, where Ay = {7z |x =1,2,...,q— 1} and Ay = {17z |
x=1,2,...,p—1}.
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Figure 2. The graph I'(Z119)

Theorem 2.6 Let I'(Z,2,) be a zero-divisor graph and p and q be distinct prime numbers. If n = p?q, then
the forgotten index of T'(Z,z2,) is

FT(0(Zy20)) = (0= D@ = D]~ 1)* +plg = 1>+ (0~ 1*(p+1)° + @3_3)3}

Proof Since the proper divisors of n = p?q are p,p?,q and pq, then the vertex set can be partitioned as
V(I(Zy)) = A1 UAs UA3U Ay and A;NAj =0 for i # j, where 4,5 € {1,...,4} and

Al :{px|x:1,2,,pq—l,p{x,q)[x,},
A2:{qaL‘|a::1,2,...,p2—1,p)(arj}7
Az ={p*r|z=1,2,...,q -1},

Ay={pgz |z =1,2,...,p—1}.

We can calculate the number of vertices of all zero-divisor sets as |41] = (p — 1)(¢ — 1), |A42| = p(p — 1),

|As| = (¢—1), and |A4] = (p—1). Also, the degree of each vertex in these zero-divisor sets can be determined
as

|A4|, u € Al
d = |A3|, u € A2
b |A2|+‘A4|, U€A3

|A1] +|As| + A4 — 1, uwe Ay
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Then, the forgotten topological index of I'(Z,2,) can be attained that

FIC(Zp) = Y. d°

ueV(T(Z,2,))

4

PP

i=1 ucA;

= |A1||As® + |A2|| A3 + | As|(|Az| + [Aa])® + [As|(JAL| + |As| + |Ag] — 1)°

=(p-Dq-p-1>+plp—1(¢—-1)°*+(¢—)p.(p— 1)+ (p—1))*

- D[e-Da-D+a-D+E-1n-1]
=@p-1D"g-1)+pp -1+ @-1)@* =1+ (- 1)pg - 2)°
= (=D~ 1~V +pla—1*+ @ - 1@+~ 1)+ (pa—2)*]

(pq — 2)3}.

= (p—1)(q—1)[(;0—1)3+p(q—1)2+(p—1)2(p+1)3+ 1

Example 2.7 For the graph T'(Z175), we have n = p*q where p="5 and ¢ = 7. Then, FT(I'(Z175)) = 232,548,

and the set of zero-divisors can be written as follows:
Ay, = {5,10,15, 20, 30,40, 45, 55, 60, 65, 80, 85, 90, 95, 110, 115, 120, 130, 135, 145,
155,160, 165,170},
Ay = {7,14,21,28,42,49, 56,63, 77,84,91,98,112, 119, 126, 133, 147, 154, 161, 168},
As = {25, 50, 75,100, 125,150},
Ay = {35,70,105, 140}.

Moreover, these sets give rise to the graph which can be shown in Figure 3, where Ay = {bx |x=1,2,...,pq—
Lpta,qta}, Ao ={Tx|z=1,2,....p0° ~1,pta}, A3 ={25x |2=1,2,...,q— 1}, Ay = {35z | =z =
1,2,...,p—1}.

Theorem 2.8 Let I'(Z,2,2) be a zero-divisor graph and p and q be distinct prime numbers. If n = p%q?, then
the forgotten index of T'(Zy242) is

FT(D(Zp22)) = (p— )¢ —1)|(p— 1)’q+plg—1)* + (p— 1)*(p+ 1)%¢

(p%q—2)? N (pg* — 2)3]
p—1 g—1 T

+p(g—1)*(¢+1)° + (pg — 2)* +

Proof Since the proper divisors of n = p%¢? are p,q,p?, ¢%,pq,p*>q and pg?, then the vertex set can be
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Figure 3. The graph I'(Z175)

partitioned into seven subsets as V(I'(Z,)) = UZ:1 A; and A;NA; =0 for i # j, where 4,5 € {1,...,7} and

Ay ={pr|z=1,2,....,p¢* = L,ptz,qfz},

Ay ={qz|2=1,2,...,p°¢— L,ptz,qfz},

As={p*z|z=1,2,....¢° —1,qtz},
Ay={¢x|z=1,2,....p° = 1,pta},

As ={pqz |z =1,2,....pg = L, ptw,qfz},
As={p*qz |z =1,2,...,q— 1},

Ay ={pi®z |z =1,2,...,p—1}.

We can calculate the number of vertices of all zero-divisor sets as |A;| = (p—1)q(¢—1), |A2] =p(p—1)(¢g—1),

|[As|=q(qg—1), |[A4l =p(p—1), |As| =(p—1)(¢—1), |A¢| = (¢ —1) and |A7| = (p — 1). Also, the degree of

each vertex in these zero-divisor sets can be determined as

|A7], u € Ay
| Ag], u € Ay
|Aa| + |A7], u € As
du = { |As| + |Asl, ue Ay .
|As| + [As| + |A7] — 1, u € As
|Ao| + |A4| + |As| + |A6| + |A7] — 1, w € Ag
|A1] + |As| + |As| + |Ag| + |A7] — 1, w € Ar
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Then, the forgotten index of I'(Z,z2,2) can be attained that

FT(T(Zy22)) = >4’

u€V(IN(Z,2,2))

DIPIE

i=1 u€A;
= [A1||A7]? + | A Ag | + |A3] (| Aa| + |A7])° + [Aa|(|A3] + | Ag])?
+ |A45](|As| + |As| + |A7| — 1)°
+ [ Ag| (| Az| + | Aa] + |As| + |Ag| + |A7] = 1)
+ [ A7|(|Ar] + | As| + |As| + |4 + |A7| - 1)
=(p—Dglg—1)(p—-1)° +plp-1)(¢g—1(¢—-1)°

+alg—Dp-1%(p+1)°+pp—1)(qg—1)*(¢+1)°

Fo-Da-D]E-Da-D+ -+ E-1-1]

Jr(cz—l)[p(p—l)(q—1)+1’v(1f0—1)+(p—1)((1—1)+(q—1)+(p—1)—1}3

+ - 1)[(29—1)61((1— D4gg-D)+p-D@-)+@@-1)+({-1) —1]3
=(p-D'lg-1)+pp-1g-1)"+{@-1)°@+1)%(¢-1)
+pp—1)(g—1)*(g+1)° + (p— (g~ 1)(pg — 2)°

+(@= D% —2°+(p—1pg* - 2)°
=(p-Dg-D|p-1+plg-1)>+@-1*p+1)°

(pq —2)3 N (pg® — 2)3}
p—1 g—1 I

+p(g—1)*(¢+1)° + (pg — 2)* +

Example 2.9 For the graph T'(Zass), we have n = p?>q®> where p = 3 and ¢ = 5. Then, FT(I'(Zags)) =

9
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1,208,678, and the set of zero-divisors can be written as follows.

Ay ={3,6,12,21,24,33,39,42,48,51,57, 66,69, 78, 84,87,93,96,102,111, 114,
123,129,132,138, 141,147,156, 159,168, 174,177,183, 186, 192, 201, 204,
213,219,222},

A = {5,10,20, 35, 40, 55, 65, 70, 80, 85, 95, 110, 115, 130, 140, 145, 155, 160, 170,
185,190, 205, 215,220},

Az ={9,18,27,36,54,63,72,81,99,108,117,126, 144,153, 162, 171, 189, 198,
207,216},

Ay = {25,50,100, 125,175,200},

As = {15, 30,60, 105,120, 165, 195, 210},

Ag = {45,90, 135,180},

Ar = {75,150}.

These sets build the graph T'(Zaes), where Ay = {3z | 2 = 1,2,...,p¢> — L,pt x,qt 2}, Ay = {bx | z =
1,2,...,0%¢—Lpta,qta}, As={9% |2 =1,2,...,¢> = l,qta}, Ay = {252 | v =1,2,....p> — 1,pta},
As = {15z |z = 1,2,...,pg — Lpt z,q t x}, Ag = {4z | © = 1,2,...,q — 1}, and A; = {Tbz | = =
1,2,...,p—1}.

In the next theorem, the relation of the forgotten topological index of I'(Z,) is represented.

Theorem 2.10 Let I'(Z,q) be a zero-divisor graph and p,q and r be distinct prime numbers. Then, the

forgotten topological index of T'(Zpqr) is
FT(L(Zpgr)) = (0= V(g =D =) |(p—1)° + (¢ = 1) + (r — 1)?

(pg—1)3 (pr—1)° (gr —1)°

To-De-0 T e-Do-D  G@-Der-D|

Proof Since the proper divisors of n = pqr are p,q,r,pq,pr and gr, then the vertex set can be partitioned
as V(I'(Zy)) = A1 UAy UA3 UAL U A5 U Ag and A;NA; =0 for i # j, where ¢,j € {1,...,6} and

Ar={pz|xz=1,2,...,qr — L, qgtx,rtz}
As={qz |z =1,2,...,pr—Lipta,ria},
As={rz|z=1,2,...,p¢— 1,pta,qfta},
Ay ={pgz |x=1,2,...,7r — 1},
As={pra|x=1,2,...,q— 1},

A ={qrz|z=1,2,...,p—1}.

10
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The number of vertices of all zero-divisor sets can be calculated as |A;| = (¢—1)(r — 1), |As| = (p—1)(r — 1),
[As|=(p—1)(¢g—1), |[A4| = (r—1), |A5] = (¢ — 1), and |A4s| = (p — 1). Besides, the degree of each vertex in

these zero-divisor sets can be determined as

|A6|, u € Ay
|A5|, u € AQ
|A4|, u e A3

|As| + |As| + [Ae|, uve Ay
|Ao| + [A4| + |As], u € As
|A1] + |As] + |As], ue Ag

Hence, we can obtain the forgotten index of I'(Z,q) as

FT((Zpgr) = > d

weV (T (Zy2,))

Yy
i=1 ucA;
= [A1]|A6l® + |A2][A5|? + | Aa|Aal® + [Aa| (| As] + 45| + [ As])°
+ | As|(|A2| + [Aa] + |A6])® + | 6| (| A1| + [Aa] + |45])°
=(@-Dr-De-1’+E-10-1)¢-1)*+F-1)¢-1)0r-1)°
+r=D)((-D-D+ -1 +@-1)°
+a-D(p-Dr -1+ @p-1)+q-1)°
D((g=1)r=1)+(g-1)+@r-1)°
=@p-D’@-Dr-D+@-1g-1)F-D)+@-1)(¢-1)0-1)>

+pg =12 =1+ @r—1%q-1)+ (gr—1)(p—1)
=p-D@-1r-1)|p-1%+(@-1)>+(—-1)7

(pg —1)3 R 1)? I Ul 1)°

To-Da-0 T e-Do-D  G-Der-D1|

Example 2.11 For the graph T'(Zig5), we have n = pgr where p = 3, ¢ = 5 and r = 11. Then,

11
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FT(T'(Z165)) = 483,040, and the set of zero-divisors can be written as follows:
Ay = {3,6,9,12,18, 21,24, 27,36, 39, 42, 48, 51, 54, 57, 63, 69, 72, 78, 81, 84, 87, 93,
96,102,108,111,114,117,123,126,129, 138, 141, 144, 147,153, 156, 159, 162},
Ao = {5,10, 20, 25, 35,40, 50, 65, 70, 80, 85,95, 100, 115, 125, 130, 140, 145, 155, 160},
Ay = {11,22,44,77,88,121, 143, 154},
Ay = {15,30,45, 60, 75,90, 105, 120, 135, 150},
As = {33,66,99,132},
Ag = {55,110}.
Additionally, these sets give rise to the graph which can be shown in Figure 4, where Ay = {3z |x =1,2,...,qr—

Lgtxzrta}, Ao ={bx|x=12,....,pr—Lptarfaz}, A3={llz|2z=12,...,pq—1,pfxqfax},
A4:{151‘|$:1,2,,T—1}, A5:{33I|$:1,27,q—1}, A6:{55x|;]}:1727,p_1}

= 5
Jd o™ P
N N
I8 B

N
a

Figure 4. The graph I'(Z165)

2.1. Matlab code for determining the forgotten topological index of I'(Z,)

In this subsection, we give an algorithm for calculating the forgotten topological index of I'(Z,,) when entering

an integer n.

n=input ($”enter n for Z n:”$)
Vert=strings (1,n-2);
Adj=zeros(n-2);

Deg=zeros (1,n-2);

for i=2:n-1

12
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Vert(i-1)=int2str(i);
for j=2:n-1

if (i=j), continue, end
if mod(ix*j,n)==0
Adj(i-1,j-1)=1;
Deg(i-1)=Deg(i-1)+1;
end

end

end

for i=size(Deg,2):-1:1
if

fi=0;

for i=1l:size (Deg,2)

$fi = fi + Deg(i)~3;$

end

fprintf(”Forgotten Index: %d\n”, fi);

In the lines 1-4 of the algorithm, an integer n for Z, is requested, and the vertex set ( Vert), the adjacency
matrix (Adj) and the degree array (Deg) are initialized. Next, in line 7, all possible vertices in the graph are
inserted into the set. Then, as long as the condition i -j = 0 (mod n), the adjacency matrix is filled and
the degree array is updated in lines 11-12. After that, vertices having no neighbors are removed from vertex
set, degree array and adjacency matrix in lines 17-24. To compute the forgotten index of a zero divisor graph,
the lines 17-24 are not obligatory. However, these lines are used to represent the zero divisor graph properly.
Finally, in lines 26-30, the forgotten topological index of graph I'(Z,,) is calculated and printed out.

In this algorithm, lines 17-24 are not obligatory. However, these lines are used to construct the graph

I'(Z,) properly.

3. Forgotten topological index of zero-divisor graph of products of rings of integers modulo n

In this section we calculate the forgotten index of the graphs I'(Z, x Z,) and I'(Z, x Zq x Z,.) for distinct prime
numbers p, ¢ and r.
The zero-divisor graph of Z, x Z, and some graph theoretical properties of it have been studied in [2].

In the following theorem, we give the forgotten index of I'(Z, x Z).

Theorem 3.1 Let I'(Z, x Zq) be a zero-divisor graph and p,q be distinct prime numbers. Then the forgotten
index of T'(Zy x Zg) is

FT(D(Zy x Zq)) = (0~ (g — D ((p — 1)* + (¢ = 1)*).
Proof Let z € Z," and y € Z,*, where x = 1,2,...,p—1 and y = 1,2,...,¢ — 1. Since (z,0)(0,y) = (0,0)
the edge set of = € Z," contains only the edges between the vertices (x,0) and (0,y).
The graph I'(Z, x Z,) is a complete bipartite graph K,_; 1. Partitions of vertex set of I'(Z, x Z,) are

A ={(z,0) |1 <z <pzx e},

13
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Ay ={(0,y) |1 <y <q,y €Ly}

such that Ay U Ay = V(I'(Z, x Z;) and A1 N Ay = (). Since |A;1] = p—1 and |Az| = ¢ — 1, the size of this
graph is (p —1)(¢ — 1). Also, d,, = |A2| for all v € A; and d, = |44| for all v € Ay. Hence, we obtain

FT(T(Z, x Z,)) = > d,*
WEV (T(ZpxZyq))

=(p-D(g-1°+(p-1)%@g—-1)

=(p-Dlq-1)((p—1)%+(g—1)%.

Example 3.2 For zero-divisor graph of Z11 X Z17, we attain p =11 and ¢ = 17. Then, FT(T'(Z11 X Z17)) =

56,960, and the set of zero-divisors as follows:
A1 ={(1,0),(2,0),(3,0),(4,0),(5,0), (6,0), (7,0), (8,0),(9,0), (10,0)},

Az ={(0,1),(0,2),(0,3),(0,4), (0,5), (0,6), (0,7),(0,8), (0,9), (0, 10), (0, 11),
(0,12), (0,13), (0,14), (0,15), (0, 16)}.

These sets give rise to the graph depicted in Figure 5, where A; = {(z,0) | 1 < z < p,x € Z11} and
Ay ={(0,y) |1 <y < q,y€Zi7}.

Akgunes and Nacaroglu have studied some properties of zero-divisor graph of Z, X Z, x Z, [3]. Moreover,
they have calculated irregularity index and Zagreb indices of this graph. We obtain the forgotten index of
I'(Z, x Zq x Z,) in the following theorem.

Theorem 3.3 Let I'(Z, X Zy X Z,) be a zero-divisor graph and p,q,r be distinct prime numbers. Then, the
forgotten index of T(Z, X Zy X Zy) is
FT(D(Zp x Zq X Zp)) = (p = 1) (g = D(r = 1) | (p = 1)* + (¢ = 1)* + (r = 1)°

(pg—1)3 (pr—1)* (gr —1)°
p-D@-1) @-Dr-1) (@-)r-1}

Proof We divide the vertex set of I'(Z, x Z, x Z,) into six subsets such that V(I'(Z, x Z, X Z,)) = US_, 4;
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Figure 5. The graph I'(Z11 X Z17)

and A;NA; =0, where i =1,2,...,5 and j =i+ 1,...,6. We show that these vertex subsets as follows:

Ay ={(z,0,0) |1 <z <p, z €L},
Ay ={(0,5,0) [ 1<y <q, y €Ly},
A3 ={(0,0,2) [1<z<r, 2€ L},
Ay ={0,y,2) | 1<y<q 1<z<r yeZ, 2 €L},
As ={(2,0,2) | 1<z <p, 1<z2<r, x €L, z€L},
A ={(z,9,0) | 1<z <p, 1<y <gq, v €Ly, y € ZLg}.

The number of vertices of all zero-divisor sets can be calculated as |4;| = (p—1), |A2| = (¢—1), |A3]| = (r—1),
A4l =(g—1)(r—=1), |A5| = (p—1)(r — 1), and |Ag| = (p — 1)(¢ — 1). Moreover, the degree of each vertex in

these zero-divisor sets can be determined as

|A2|+|A3‘+|A4|, U€A1
|A1|+|A3‘+|A5|, u € Ag
|141|‘i‘|142“f'|146|7 u€A3

d, = .
|A1|, UEA4
|A2|, u e A5
|A3|, u e AG

According to these subsets, we calculate the forgotten index of the graph I'(Z, x Z, x Z,) as follows:

15
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= |A1|(| 42| + |As| + |Aal)” + [A2| (|41 | + | 43| + |45])°
+ 1 As| (JA1] + [Aa| + |Ag])” + | Aal | A1 + |45 ]| Asf* + | Ag|| A5
=(p-D((g-Dr-D+(@g-1)+(-1)°
+ (g - D)((p r—1+<p—1>+<r—1>)3
+r=D((p-Dg-)+p-1)+(¢-1)°
+(g=Dr-Dp -1+ -1 -1)(q-1)°
+(p—1)(g—1)(r—1)°
=(p-D@-1)Fr-1)|p-1°+(¢g— 1)+ (r—1)?

(pg —1)3 (qgr —1)* (pr —1)3
To-De-0 T @-Dr-0  G-Dr-D)

O
Example 3.4 For zero-divisor graph of Zs X Zs X Zy3, we have p = 3, q = 5 and r = 13. Then,

FT(T(Z3 x Zs x Z13)) = 792,448, and the following are the set of zero-divisors of this ring. The zero-divisor

graph of this ring can be seen in Figure 6:
Ay ={(1,0,0),(2,0,0)},

A2 *{ O 1 0) (032,0) 3a0)7(03430)}a

(0
As ={(0,0,1),(0,0,2),(0,0,3),(0,0,4),(0,0,5), (0,0,6), (0,0,7), (0,0,8), (0,0,9),
0,0,10),(0,0,11),(0,0,12)},
= {(0,1,1),(0,1,2),(0,1,3),(0,1,4),(0,1,5),(0,1,6),(0,1,7),(0,1,8),(0,1,9),
0,1,10),(0,1,11),(0,1,12),(0,2,1),(0,2,2), (0,2, 3),(0,2,4), (0,2,5), (0,2,6),
0,2,7),(0,2,8),(0,2,9),(0,2,10),(0,2,11),(0,2,12), (0, 3,1), (0, 3,2), (0, 3,3),

(
0,4, 1) (0’4,2)7(0 ) (O 4, 4) (0,4, 5),(0,4,6)7(07477)a(07478)a(0’479)a
0,4,10),(0,4,11), (0,4, 12)},

(1,

(
(O
(
(
o,
(
(0,3,4),(0,3,5),(0,3,6), (0,3,7), (0,3,8), (0,3,9), (0,3, 10), (0,3, 11), (0, 3, 12),
(
(O )

={(1,0,1),(1,0,2),(1,0,3),(1,0,4), (1,0,5),(1,0,6), (1,0,7),(1,0,8), (1,0,9),
(1,0,10), (1,0,11),(1,0,12),(2,0,1),(2,0,2),(2,0,3), (2,0,4), (2,0,5), (2,0,6),
(2,0,7),(2,0,8),(2,0,9),(2,0,10),(2,0,11), (2,0,12)},

(1,

={(1,1,0),(1,2,0),(1,3,0),(1,4,0),(2,1,0), (2,2,0), (2,3,0), (2,4,0)}.
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By the above arguments, we give the following corollary.
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Figure 6. The graph I'(Z3 x Zs X Z13)

Corollary 3.5 Let I'(Z, x Zy), T'(Zp X Zg X L), T(Zypyg), and I'(Zpqr) be zero-divisor graphs where p, ¢, and

r are distinct prime numbers. Then the followings hold:
(i) FT(F(ZP x Zq)) = FT(F(ZPQ));

(ii) FT((Zy X Zg % L)) = FT(T(Zpgr)) -
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