Clustering with density based initialization and Bhattacharyya based merging

Erdem KÖSE, Ali Köksal HOCAOĞLU*

Department of Electronics Engineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, Turkey

Received: 06.05.2021 • Accepted/Published Online: 26.07.2021 • Final Version: 2021

Abstract: Centroid based clustering approaches, such as k-means, are relatively fast but inaccurate for arbitrary shape clusters. Fuzzy c-means with Mahalanobis distance can accurately identify clusters if data set can be modelled by a mixture of Gaussian distributions. However, they require number of clusters apriori and a bad initialization can cause poor results. Density based clustering methods, such as DBSCAN, overcome these disadvantages. However, they may perform poorly when the dataset is imbalanced. This paper proposes a clustering method, named clustering with density initialization and Bhattacharyya based merging based on the fuzzy clustering. The initialization is carried out by density estimation with adaptive bandwidth using k-Nearest Orthant-Neighbor algorithm to avoid the effects of imbalanced clusters. The local peaks of the point clouds constructed by the k-Nearest Orthant-Neighbor algorithm are used as initial cluster centers for the fuzzy clustering. We use Bhattacharyya measure and Jensen inequality to find overlapped Gaussians and merge them to form a single cluster. We carried out experiments on a variety of datasets and show that the proposed algorithm has remarkable advantages especially for imbalanced and arbitrarily shaped data sets.

Key words: Infinite mixture models, density estimation, Jensen inequality, bandwidth selection, optimal number of clusters, arbitrarily shaped clusters

1. Introduction

Clustering is an unsupervised problem of finding natural groups. It is one of the most difficult tasks for pattern recognition and machine learning. Difficulty arises from the nature of clustering. A data set may or may not possess a clustering structure and clustering algorithms may impose a clustering structure. Determining the presence or the absence of a clustering structure in a dataset is usually easy in low-dimensional settings such as the three-dimensional features. But, this time, the data set may be very complex to obtain sensible groups. When the dimensionality increases, it will be more difficult to verify whether the dataset possesses a clustering structure and to evaluate the results of clustering algorithms. These complexities have led to different clustering algorithms with some restrictions on the shape of clusters such as spiral, hyper-ellipsoidal, etc.

One of the basic and also a popular clustering algorithm is the k-means algorithm \[1–3\]. It is a centroid-based clustering algorithm. The k-means algorithm determines k centroids and associates points to the nearest centroid. Bezdek et. al. [4] introduced Fuzzy C-means (FCM) algorithm to improve the basic k-means algorithm by using fuzzy measures to associate points to clusters. Gueorguieva et al. [5] proposed a new algorithm called Fuzzy C-means with Mahalanobis Distance (MFCM) to improve the conventional FCM algorithm by accurately identifying cluster shapes using Mahalanobis distance. Centroid-based methods generally require number of clusters as input. To determine the number of clusters in a data set for centroid-based methods, randomized
algorithms [6, 7] were introduced. Centroid based methods mostly have initialization problems, but they have the advantage of easily assigning a new point to one of existing clusters due to their parametric nature.

Compared to centroid-based clustering, density-based clustering attempts to identify dense clusters of points, which leads to learning clusters of arbitrary shape. Density based clustering (DBSCAN) [8, 9], ordering points to identify the clustering structure (optics) [10], density based cluster estimation (DENCLUE) [11, 12], Gaussian density distance (GDD) [13] and others [14–17] are the examples for density based clustering algorithms. Density based methods use Kernel density estimation (KDE) or k-nearest neighbor (kNN), and they solve some problems like estimating optimal cluster count, but they cause new problems like kernel bandwidth. The density based methods do not require a user input for the number of clusters. But, they require one to specify the bandwidth parameter.

There are also several geometric approaches for clustering using Delaunay triangulation [18–20], Voronoi diagrams [21] or fuzzy c-means based ones [22]. Although geometrical approaches are computationally intensive for high dimensions, they can easily find hyperellipsoidal shaped and imbalanced clusters.

Other methods that do not require the number of clusters as a user input are subtractive [23, 24], Kluster [25] and evidential [26]. It is also worth noting that comprehensive surveys of clustering algorithms are done by [27, 28]. The reader may refer to them for other types of clustering methods beyond the scope of this study. Also, there are researches on clustering datasets [29–33]. We will use some of them and real world GPS trajectory [34] to validate our proposed method.

We focus on the density based algorithms as they are easy to initialize. However, they have the disadvantage that they cannot perform well when there are large differences in densities. To find better bandwidth for kernel density estimation, we are inspired from geometric approaches and propose k-nearest orthant-neighbor (k-NON) method. We form numerous subclusters and use Bhattacharyya measures to find overlapped ones and merge them to form a single cluster. The proposed algorithm is called clustering with density based initialization and Bhattacharyya based merging (CDIBM). It has an increased performance on Gaussian based data, and a decreased performance in thin-line clusters. However, this is not a big disadvantage because we mostly encounter Gaussian-shaped data as central limit theorem states that if independent random variables are added, normalized sum of them tends to form a normal distribution even if original random variables do not have a normal distribution, and any data can be modeled as a mixture of different signals in nature.

The rest of the paper is organized as follows. Section 2 consists the technical background of the proposed algorithm. In Section 3, we describe the proposed algorithm. In Section 4, we present the benchmark datasets and discuss the performance of the proposed algorithm. Section 5 concludes the paper.

2. Technical background

This section presents the building blocks of the proposed CDIBM algorithm, including the technical background information and the proposed k-NON method. In this section, we also discuss the reasons for utilizing these methods. The terminologies and notations presented in this chapter are used in the next section to define our clustering algorithm.

Let $X = \{x_0, x_1, ..., x_{N-1}\}$ be a set, which contains univariate, independent and identically distributed N samples from an unknown d-dimensional distribution. i^{th} sample from X is $x_i = \{x_{i,0}, x_{i,1}, ..., x_{i,d-1}\}$, where $0 \leq i < N$. We want to find optimal clusters in set X without prior knowledge about cluster count and
cluster shape. A summary of the clustering algorithms is given in the first section to find clusters for a given set X. They have different strengths and also drawbacks, but our aim is to build a hybrid clustering algorithm using their strengths and avoiding their drawbacks.

Fuzzy C-Means with Mahalanobis distance (MFCM) can provide the parameters of multivariate Gaussian distribution, μ_j and Σ_j, where μ_j is center and Σ_j is covariance matrix of the clusters to be identified. A major drawback for MFCM is that it requires prior knowledge about the number of clusters. We propose a hybrid approach based on both KDE and k-NN to initialize MFCM.

It is well known that the performance of KDE is mainly dependent on the bandwidth parameter of the kernel. Since a fixed bandwidth for all mixtures is usually not a valid assumption, adaptive KDE \cite{35, 36} is utilized when number of samples varies greatly for each mixture. The hybrid approach that we propose does not use a fixed bandwidth parameter and constructs bandwidth matrices based on local properties. We present this algorithm in the next sub-section.

The proposed CDIBM algorithm utilizes MFCM to determine subclusters, and it is discussed in Section 2.2. Bhattacharyya distance \cite{37} is used to obtain the amount of overlap among the sub-clusters with multivariate Gaussian distributions and Jensen inequality \cite{38} is used to find sub-clusters to construct arbitrarily shaped main clusters. The mathematical background for this cluster merging approach is provided in Section 2.3 and Section 2.4.

2.1. **Kernel density estimation**

Nonparametric density estimation methods are used for clustering with different approaches, but imbalanced and hyperellipsoid shaped data become a problem with fixed bandwidth \cite{39}. Zhu et. al. \cite{15} showed that fixed bandwidth for each point is a problem for varying densities. This indicates that one needs to use adaptive bandwidth for each point \cite{35, 36}. Adaptive bandwidth problem for KDE was studied by \cite{21, 40, 41} using geometric approaches, but when high dimensional data occur, these methods fail.

Our algorithm use neither KDE nor k-NN to find densities directly. Our proposed algorithm CDIBM is a hybrid approach using the both. An orthant in d-dimensions is intersection of d mutually orthogonal half-spaces. By independent selections of half-space signs, there are 2^d orthants in d-dimensional space. Our approach picks k points from each 2^d orthants from d dimensional space for central point x_i and constructs a bandwidth matrix H_i from this neighborhood. This method is called k-NON.

Our aim is to find k nearest neighbors from each orthant to construct a point cloud R_{x_i} as shown in Figure 1 around the central point x_i. The k-NON algorithm given in Algorithm (1) constructs these point clouds. We, then, calculate the bandwidth matrix H_i using R_{x_i} for each data point x_i.

We calculate a distance vector $y_i = [y_{i,n}]$, where $n \neq i$, from a reference point x_i to all other points in X as given in Equation (1). We also calculate orthant indices $z_i = [z_{i,n}]$, which gives orthant index of a point x_n relative to the reference point x_i as given in Equation (2), where the function $u(.)$ is the unit step function. We partition y_i with respect to z_i and construct neighborhood set R_{x_i} in Algorithm 1. In an algorithmic point of view, R_{x_i} is a vector array composed of indeces of the k-nearest orthant neighbours.

$$y_{i,n} = \|x_i - x_n\|$$ (1)

$$z_{i,n} = \sum_{m=0}^{d-1} 2^m u(x_{i,m} - x_{n,m})$$ (2)
Algorithm 1 can be explained as following. We sort y_i and get sorted index vector \tilde{n}. Starting from the nearest point to x_i, we determine which $x_{\tilde{n}(n)}$ point belongs to m^{th} orthant with the help of $z_i,\tilde{n}(n)$. We pick the first k nearest points to x_i for each orthant and save their indices to R_{x_i}.

Algorithm 1: k-NON algorithm.

- **Input:** y_i, z_i, k (nearest neighbor count in each orthant)
- **Output:** R_{x_i}: indices of k nearest neighbor in each orthant for each i

```plaintext
1. $\tilde{n} \leftarrow \text{sortindex}(y_i, \text{ascend})$ // Sorted index vector
2. $l \leftarrow 0$
3. for $m \leftarrow 0$ to $2^d - 1$
4.     $\text{temp} \leftarrow 0$
5.     for $n \leftarrow 0$ to $N - 1$
6.         if $z_i,\tilde{n}(n) = m$ then
7.             $\text{temp}(l) \leftarrow \tilde{n}(n)$
8.             $l \leftarrow l + 1$
9.         end if
10.     end for
11.     if $l = k$ then break
12. end for
13. $R_{x_i}(m) \leftarrow \text{temp}$
```

Equation (3) gives bandwidth covariance matrix, where $|R_{x_i}|$ denotes the number of elements of R_{x_i}. After this, Gaussian KDE can be performed using Equation (4). A sample probability density function (PDF) result can be seen in Figure 2 for the dataset given in [32]. The function given in (4) is used for determining maximum density points locally among the dataset to obtain initial sub-cluster centers. Equation (5) gives
generalized set for \((4) \).

\[
H_i = \frac{1}{|R_{x_i}|} \sum_{x \in R_{x_i}} (x - x_i) (x - x_i)^T
\] \hspace{1cm} (3)

\[
f_{H_i} (x_i) = \frac{|R_{x_i}|}{\sqrt{N(2\pi)^{d/2}} \det (H_i)^{0.5}}
\] \hspace{1cm} (4)

\[
f_{H} = \{f_{H_0} (x_0), f_{H_1} (x_1), \ldots, f_{H_N - 1} (x_{N - 1})\}
\] \hspace{1cm} (5)

![Figure 2](link)

Figure 2. Probability density of an example independent-identically distributed Gaussian mixture.

2.2. Fuzzy c-means clustering with Mahalanobis distance

We use parameters from Section 2.1 to initialize Fuzzy C-Means algorithm to achieve accurate clusters. Our clustering metric for C-Means is Mahalanobis distance [5] in order to identify clusters modeled as Gaussian mixtures. The squared Mahalanobis distance \(Q_{i,j} \) from \(x_i \) to the cluster \(j \) when the cluster has a distribution of \(\mathcal{N}(\mu_j, \Sigma_j) \) is given in equation (6).

\[
Q_{i,j} = (x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)
\] \hspace{1cm} (6)

Equation (6) is not useful for membership calculation because of different covariance matrix volumes. For membership calculations, the cluster volumes are kept constant \(\rho > 0 \) and the modified covariance matrix \(\Sigma_{j\text{mod}} \) in equation (7) is used.

\[
\Sigma_{j\text{mod}} = \frac{\Sigma_j}{(\rho \det (\Sigma_j))^{1/d}}
\] \hspace{1cm} (7)
Thus, $\det(\Sigma^{mod}_j) = 1/\rho$ equation is obtained. The modified Mahalanobis distance $Q^{mod}_{i,j}$ given in equation (8) is used instead of equation (7).

$$Q^{mod}_{i,j} = (x_i - \mu_j)^T (\Sigma^{mod}_j)^{-1} (x_i - \mu_j)$$ \hspace{1cm} (8)

Membership of x_i to $\mathcal{N}(\mu_j, \Sigma^{mod}_j)$ is calculated using equation (9), where $m > 1$ is fuzzification parameter. If fuzziness parameter m in equation (9) decreases to 1, clustering will be crispier.

$$ r_{i,j} = \left(\sum_{t=0}^{M-1} \left(\frac{Q^{mod}_{i,t}}{Q^{mod}_{i,t}} \right)^\frac{1}{m-1} \right)^{-1} $$ \hspace{1cm} (9)

Cluster center μ_j and cluster covariance matrix Σ_j are calculated using equation (10) and (11), respectively.

$$ \mu_j = \frac{\sum_{i=0}^{N-1} r_{i,j} x_i}{\sum_{i=0}^{N-1} r_{i,j}} $$ \hspace{1cm} (10)

$$ \Sigma_j = \frac{\sum_{i=0}^{N-1} r_{i,j} (x_i - \mu_j)(x_i - \mu_j)^T}{\sum_{i=0}^{N-1} r_{i,j}} $$ \hspace{1cm} (11)

2.3. Bhattacharyya distance

Bhattacharyya measure [37] is a well known method for determining divergence or overlap between two different multivariate Gaussian distributions. We use it to identify clusters to be merged. The Bhattacharyya distance between the distributions f_j and $f_\tilde{j}$ are given in equation (12) [37].

$$ D_{j,\tilde{j}} = -\ln \left(BC(f_j, f_\tilde{j}) \right) = -\ln \left(\int_{-\infty}^{\infty} \sqrt{f_j(x)f_\tilde{j}(x)} dx \right) $$ \hspace{1cm} (12)

For multivariate normal distributions, to measure overlap between cluster i and cluster j with distributions $\mathcal{N}(\mu_i, \Sigma_i)$ and $\mathcal{N}(\mu_j, \Sigma_j)$, equation (12) results in equation(13).

$$ D_{j,i} = \frac{D_{B_{Mah}}}{2} + \frac{D_{B_{det}}}{2} $$ \hspace{1cm} (13)

where $D_{B_{Mah}}$ and $D_{B_{det}}$ are (14) and (15), respectively.

$$ D_{B_{Mah}} = (\mu_j - \mu_i)^T \left(\frac{\Sigma_j + \Sigma_i}{2} \right)^{-1} (\mu_j - \mu_i) $$ \hspace{1cm} (14)

$$ D_{B_{det}} = \ln \left(\frac{\det \left(\frac{\Sigma_j + \Sigma_i}{2} \right)}{\det(\Sigma_j) \det(\Sigma_i)} \right) $$ \hspace{1cm} (15)
2.4. Jensen inequality for chi-squared distributions

If we assume we have point cloud from a distribution $\mathcal{N}(\mu_j, \Sigma_j)$, but we want the points from most probable quantiles, we must use inequalities like Chebyshev’s. In multidimensional Gaussian case, distance from points X to the distribution $\mathcal{N}(\mu_j, \Sigma_j)$, forms Mahalanobis distance random variable $Q_{i,j}$.

$$Q_{i,j} = (x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)$$ (16)

Sum of d standard normal random variables has chi-square distribution with d degrees of freedom [42]. So, random variable $Q_{i,j}$ will be chi-squared distributed from definition. Jensen’s inequality for chi-squared distributions respecting to Lipschitz functions of Gaussian variables [38] is given in equation (17),

$$Pr[Q_{i,j} > d(1 + t)] \leq \exp\left(-\frac{dt^2}{2}\right)$$ (17)

We can modify equation (17) as equation (18)

$$Pr[Q_{i,j} < d(1 + t)] \geq 1 - \exp\left(-\frac{dt^2}{2}\right)$$ (18)

where $\alpha = 1 - \exp\left(-\frac{dt^2}{2}\right)$ is quantile portion we desired, where $0 < \alpha < 1$. We can extract t via equation (19).

$$t = \sqrt{-2\ln(1 - \alpha)/d}$$ (19)

After finding t, we can find the threshold Mahalanobis distance $d(1+t)$, which shows α portion of region lies in $Q_{i,j}$ random variable, where $0 < \alpha < 1$.

3. Algorithm

This section introduces our method in algorithmic perspective using the methods previously explained. The flowchart of the algorithm is shown in Figure 3. The algorithm starts with estimating bandwidth for each point in a dataset using the k-NON. It uses these bandwidths to estimate KDE. Then, it finds subclusters using the maximum density point in R_{x_i} groups. These subclusters are used to initialize fuzzy c-means with Mahalanobis distance to find more accurate Gaussian subclusters $\mathcal{N}(\mu_j, \Sigma_j)$. Finally, we use Bhattacharyya measure [37] and Jensen inequality to find overlapped Gaussians and merge them to form a single cluster.

3.1. Initialization with adaptive KDE

We find density estimate f_H using Eq. (4) for each x_i. Initially, a label unprocessed (value 0) is assigned for each x_i. Then, we find center$_{pdf}$ and neigh$_{pdf}$ for each unprocessed x_i and corresponding neighborhood R_{x_i}. If center$_{pdf}$ is smaller than all neigh$_{pdf}$ for x_i, then x_i cannot be a candidate as a cluster center, and, therefore, it is labeled as not a candidate (value -1). If center$_{pdf}$ is bigger than all neigh$_{pdf}$ for x_i, then x_i is as labeled as subcluster center (value 1), and the neighboring points are labeled as not a candidate in order not to evaluate them as a candidate as a cluster center.
Figure 3. Algorithm flowchart of the proposed algorithm.

The initialization algorithm, Algorithm 2, returns the number of points labeled as subcluster center as the number of subclusters and returns these points as the center of subclusters. At this stage, covariance matrices for each subcluster is set to identity-matrix. These results are used to initialize MFCM.

Algorithm 2: Initialization.

```
Input: X, k: nearest neighbor count in each orthant
Output: μ, Σ, M: initial estimate for the number of sub-clusters
1 [f_H, R] ← kernelPDF(X, k) // Equation (4)
2 cnd ← 0, N // All X elements are unprocessed
3 j ← 0
4 for i ← 0 to N − 1 do
5   if cnd(i) = 0 then
6     center_pdf ← f_H(i) // Single PDF value
7     neigh_pdf ← f_H(Rx_i) // PDF value vector
8     if center_pdf bigger than each of neigh_pdf then
9       cnd(i) ← 1 // Candidate is a center
10      cnd(Rx_i) ← −1 // Candidate cannot be a center
11     μ_j ← x_i
12     Σ_j ← I_d // I_d is d × d identity matrix
13     j ← j + 1
14   else if center_pdf smaller than one of neigh_pdf then
15     cnd(i) ← −1 // Candidate cannot be a center
16   end if
17 end if
18 M ← j // Number of subclusters
```

3.2. Gaussian Sub-clusters with Fuzzy C-Means

We estimate N(μ_j, Σ_j) for each sub-clusters using MFCM in Section 2.2 with initial values from Section 3.1.

3.3. Bhattacharyya linkage

We find Bhattacharyya distance for each sub-cluster pair j and ˜j to determine if they are overlapped. If the distance is larger than a threshold Q_limit, then the two sub-clusters are assumed to be not overlapped.
Otherwise, the distance below the threshold is seen as an evidence of an overlap and the subclusters \(j \) and \(\tilde{j} \) are labeled as overlapped by setting the related elements of the evidence matrix to true: \(E_{j,\tilde{j}} = \text{true} \), and \(E_{\tilde{j},j} = \text{true} \) (see Algorithm 3 for an algorithmic view). This matrix is later used to perform merging not only the subclusters \(j \) and \(\tilde{j} \), but also all clusters overlapped by any of these clusters directly or indirectly. For example, if \(E_{i,j} = \text{true} \), \(E_{i,k} = \text{true} \) and \(E_{k,m} = \text{true} \), then the subclusters \(i \), \(j \), \(k \) and \(m \) are merged resulting in a single cluster and if this is the \(l^{th} \) linked sub-cluster, then the \(l^{th} \) linked subcluster index vector \(\text{LSC}_l \) is set to \(\{i, j, k, m\} \) to indicate that these subclusters are merged.

Algorithm 3: Bhattacharyya linkage.

Input: \(D \) from (13), \(\alpha \) from (19)

Output: \(\text{LSC} \) (Array of linked sub-cluster index vectors)

1. \(Q_{\text{limit}} \leftarrow d \left(1 + \sqrt{\frac{-2 \log(1 - \alpha)}{d}} \right) \)
2. \(E \leftarrow I_{M,M} \) // Threshold matrix, initially identity
3. for \(j \leftarrow 0 \) to \(M - 2 \) do
4. for \(\tilde{j} \leftarrow j + 1 \) to \(M - 1 \) do
5. \(E_{j,\tilde{j}} \leftarrow u \left(Q_{\text{limit}} - D_{j,\tilde{j}} \right) \) // \(u \): Unit-step function
6. \(E_{\tilde{j},j} \leftarrow E_{j,\tilde{j}} \)
7. end for
8. end for
9. \([\text{row}_{\text{ind}}, \text{col}_{\text{ind}}] \leftarrow \text{find}(E = 1) \) // Corresponding indices of 1s
10. \(\text{LSC} \leftarrow \text{unique}([\text{row}_{\text{ind}}, \text{col}_{\text{ind}}]) \) // Unique couples remains
11. \(N_{\text{LSC}} \leftarrow |\text{LSC}| \) // Number of vectors in \(\text{LSC} \)
12. \(\text{Concatenate}_{\text{en}} \leftarrow \text{true}; \ \text{Break}_{\text{en}} \leftarrow \text{false} \)
13. while \(\text{Concatenate}_{\text{en}} = \text{true} \) do
14. for \(l \leftarrow (N_{\text{LSC}} - 1) \) to 0, step:-1 do
15. for \(\tilde{l} \leftarrow (l - 1) \) to 0, step:-1 do
16. \(N_{l,\tilde{l}} \leftarrow |\text{LSC}_l| + |\text{LSC}_{\tilde{l}}| \) // Sum of element counts
17. \(\text{Union}_{\text{tmp}} \leftarrow \text{LSC}_l \cup \text{LSC}_{\tilde{l}} \)
18. if \(|\text{Union}_{\text{tmp}}| \neq (N_l + N_{\tilde{l}}) \) then
19. \(\text{LSC}_l \leftarrow \text{Union}_{\text{tmp}} \)
20. Remove \(\tilde{l}^{th} \) vector from \(\text{LSC} \)
21. \(\text{Break}_{\text{en}} \leftarrow \text{true} \)
22. break
23. end if
24. end for
25. if \(\text{Break}_{\text{en}} = \text{true} \) then
26. \(\text{Break}_{\text{en}} \leftarrow \text{false} \)
27. break
28. end for
29. if \(N_{\text{LSC}} = |\text{LSC}| \) then \(\text{Concatenate}_{\text{en}} \leftarrow \text{false} \)
30. end while
3.4. Final clustering

Each point is assigned to the nearest subcluster using Mahalanobis distance. Then, we obtain the final clusters by merging the sub-clusters indicated by the linked subcluster index vector LSC_l, where $l = 1, 2, ..., |\text{LSC}|$. Algorithm 4 gives an algorithmic view for this step.

Algorithm 4: Final clustering.

Input: X, μ, Σ, ρ, LSC

Output: $\text{Cluster}_{\text{new}}$

1. for $j \leftarrow 0$ to $M - 1$
 2. $\Sigma_{j}^{\text{mod}} = \Sigma_j / \left((\rho \det (\Sigma_j))^{1/d}\right)$
 3. for $i \leftarrow 0$ to $N - 1$ do $Q_{i,j}^{\text{mod}} = (x_i - \mu_j)^T \left(\Sigma_j^{\text{mod}}\right)^{-1} (x_i - \mu_j)$
 4. end for
5. for $i \leftarrow 0$ to $N - 1$ do $\text{Cluster}_{\text{out}}(i) \leftarrow \arg\min_j (Q_{i,j}^{\text{mod}})$
6. if $\text{LSC}_l \neq \emptyset$ then
7. $N_{\text{union}} \leftarrow |\text{LSC}_l|$ // Number of elements in LSC_l
8. for $l \leftarrow 0$ to $N_{\text{union}} - 1$ do
9. for $i \leftarrow 0$ to $N - 1$ do
10. if $\text{Cluster}_{\text{out}}(i) \in \text{LSC}_l$ then $\text{Cluster}_{\text{new}}(i) \leftarrow l$
11. end for
12. end for
13. end if

4. Performance

We used five different algorithms and nine different synthetic datasets to validate the proposed algorithm. Figure 4 provides a quick overview of the results. Datasets used to validate the proposed algorithm are, in the order in which they are given in Figure 4, a) Two circles [31], b) Two half-circles [29], c) Three spiral [31], d) Gaussian mixture [32, 43], e) Imbalanced, [32, 43], f) Overlapped Gaussian mixture, g) Hepta [33], h) Atom [33] and i) Chainlink [33] We used adjusted rand index (ARI) and normalized mutual information (NMI) [44] for performance evaluation and comparison with other algorithms in Table 1 and 2, respectively because ARI has no assumption on the cluster structure, and NMI can easily measure random label assignments [45].

The proposed algorithm has two parameters to affect its performance: k, the number of neighbors for the k-NON algorithm, and α, the Jensen inequality parameter. Figure 5 shows the effects of the parameters k and α for all of the test dataset. Both NMI and ARI are between 0.7 and 0.95 for these parameter ranges. Based on this analysis, we use $k = 6$ and $\alpha = 0.3$ in the rest of the experiments.

The algorithms used for the comparison are spectral [46, 47], Average-linkage agglomerative [48], DBSCAN [8], OPTICS [10] and GDD [13]. Compared algorithms are used via Scikit-learn [45]. Parameters of algorithms used in the experiments are given in Table 3, 4 and 5 to optimize their performance for each individual dataset.

Table 1, 2 and Figure 4 show that the proposed algorithm fails only for dataset (c) because the Gaussianity assumption for the subclusters is not met for this dataset. This is a known and only drawback for the proposed algorithm in terms of cluster shape. The proposed algorithm is successful on the rest of the datasets with an average ARI of 0.952 and average NMI of 0.954. If the datasets given the worst performances are ignored for
each algorithm, the best performance for both minimum and average ARI and NMI metrics is provided by the proposed algorithm. The averages for ARI and NMI become 0.988 and 0.985, respectively for the proposed algorithm, while the figures are 0.986 and 0.981 for DBSCAN, which gives the most competitive performance. When evaluating these results, it must be taken into account that a fixed parameter set is used for the proposed algorithm, while the parameters are optimized individually for the rest of the algorithms for each dataset. This

Figure 4. Obtained clusters from synthetic datasets for different algorithms. Colors represent different clusters, black means noise for DBSCAN and OPTICS.
Figure 5. Sweep of α and k parameters and corresponding ARI and NMI results for CDIBM.

Table 1. Adjusted Rand Index results for reference algorithms and datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Spectral</th>
<th>Agglom.</th>
<th>DBSCAN</th>
<th>OPTICS</th>
<th>GDD</th>
<th>CDIBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.000</td>
<td>0.997</td>
<td>1.000</td>
<td>1.000</td>
<td>0.996</td>
<td>1.000</td>
</tr>
<tr>
<td>(b)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.997</td>
<td>1.000</td>
</tr>
<tr>
<td>(c)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.997</td>
<td>0.670</td>
</tr>
<tr>
<td>(d)</td>
<td>0.979</td>
<td>0.183</td>
<td>0.944</td>
<td>0.670</td>
<td>0.796</td>
<td>0.979</td>
</tr>
<tr>
<td>(e)</td>
<td>0.446</td>
<td>0.612</td>
<td>0.999</td>
<td>0.993</td>
<td>0.983</td>
<td>1.000</td>
</tr>
<tr>
<td>(f)</td>
<td>0.941</td>
<td>0.926</td>
<td>0.877</td>
<td>0.711</td>
<td>0.559</td>
<td>0.924</td>
</tr>
<tr>
<td>(g)</td>
<td>0.465</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>(h)</td>
<td>1.000</td>
<td>1.000</td>
<td>0.941</td>
<td>1.000</td>
<td>0.917</td>
<td>1.000</td>
</tr>
<tr>
<td>(i)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Min.</td>
<td>0.446</td>
<td>0.183</td>
<td>0.877</td>
<td>0.670</td>
<td>0.559</td>
<td>0.670</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.870</td>
<td>0.857</td>
<td>0.973</td>
<td>0.930</td>
<td>0.916</td>
<td>0.952</td>
</tr>
</tbody>
</table>

is an advantage of the proposed algorithm, and it doesn’t require fine tuning the parameters for each dataset to achieve this performance.

We also investigated the performance of our algorithm on the real world GPS trajectory [34] dataset, and the results are given in Table 6. The best performance is provided by the GDD algorithm in terms of both NMI and ARI. The proposed algorithm is among the best ones.

Density initialization and cluster formation are the two parts of the proposed algorithm having the most of the computational cost. Density initialization requires calculating the determinant of the matrix H, and it is done N times for all X. This has a complexity of $O(N^2d^{2.373})$ [49]. We use Fuzzy C-Means with Mahalanobis Distance, which is very similar to Expectation Maximization for Gaussian Mixture Models, with a complexity of $O(N^2MN_{\text{iter}})$ for N_{iter} number of iterations [27]. The computational cost of the rest of the algorithm is proportional to either M or N, and, therefore, they are negligible. In total, the cost of the proposed algorithm is $O[N^2(d^{2.373} + MN_{\text{iter}})]$.

12
Table 2. Normalized Mutual Information results for reference algorithms and datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Spectral</th>
<th>Agglom.</th>
<th>DBSCAN</th>
<th>OPTICS</th>
<th>GDD</th>
<th>CDIBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.000</td>
<td>0.993</td>
<td>1.000</td>
<td>1.000</td>
<td>0.989</td>
<td>1.000</td>
</tr>
<tr>
<td>(b)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.992</td>
<td>1.000</td>
</tr>
<tr>
<td>(c)</td>
<td>1.000</td>
<td>1.000</td>
<td>0.949</td>
<td>0.883</td>
<td>0.916</td>
<td>0.982</td>
</tr>
<tr>
<td>(d)</td>
<td>0.984</td>
<td>0.571</td>
<td>0.997</td>
<td>0.969</td>
<td>0.944</td>
<td>1.000</td>
</tr>
<tr>
<td>(e)</td>
<td>0.689</td>
<td>0.809</td>
<td>0.898</td>
<td>0.862</td>
<td>0.671</td>
<td>0.901</td>
</tr>
<tr>
<td>(f)</td>
<td>0.915</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>(g)</td>
<td>0.744</td>
<td>0.862</td>
<td>0.732</td>
<td>0.671</td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>1.000</td>
<td>1.000</td>
<td>0.902</td>
<td>1.000</td>
<td>0.842</td>
<td>1.000</td>
</tr>
<tr>
<td>(i)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Min.</td>
<td>0.689</td>
<td>0.571</td>
<td>0.862</td>
<td>0.732</td>
<td>0.671</td>
<td>0.707</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.925</td>
<td>0.919</td>
<td>0.967</td>
<td>0.953</td>
<td>0.928</td>
<td>0.954</td>
</tr>
</tbody>
</table>

Table 3. Compared algorithms’ parameters in general.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral</td>
<td>Cluster count, eigen_solver=”arpack”, affinity=”nearest_neighbors”</td>
</tr>
<tr>
<td>Agglomerative</td>
<td>Cluster count, linkage=”average”, affinity=”cityblock”</td>
</tr>
<tr>
<td>GDD</td>
<td>No input parameters</td>
</tr>
<tr>
<td>CDIBM</td>
<td>α=0.3, k=6, FCM_iteration=10, m=1.1</td>
</tr>
</tbody>
</table>

Table 4. Dataset specific parameters for DBSCAN algorithm.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>min_samples</td>
<td>(a) 0.3</td>
</tr>
<tr>
<td></td>
<td>(b) 0.3</td>
</tr>
<tr>
<td></td>
<td>(c) 0.3</td>
</tr>
<tr>
<td></td>
<td>(d) 0.1</td>
</tr>
<tr>
<td></td>
<td>(e) 0.3</td>
</tr>
<tr>
<td></td>
<td>(f) 0.2</td>
</tr>
<tr>
<td></td>
<td>(g) 0.5</td>
</tr>
<tr>
<td></td>
<td>(h) 0.15</td>
</tr>
<tr>
<td></td>
<td>(i) 0.3</td>
</tr>
<tr>
<td></td>
<td>Real world 0.0003</td>
</tr>
<tr>
<td>eps</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Table 5. Dataset specific parameters for OPTICS algorithm.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_samples</td>
<td>(a) 0.25</td>
</tr>
<tr>
<td></td>
<td>(b) 0.25</td>
</tr>
<tr>
<td></td>
<td>(c) 0.25</td>
</tr>
<tr>
<td></td>
<td>(d) 0.1</td>
</tr>
<tr>
<td></td>
<td>(e) 0.25</td>
</tr>
<tr>
<td></td>
<td>(f) 0.035</td>
</tr>
<tr>
<td></td>
<td>(g) 0.25</td>
</tr>
<tr>
<td></td>
<td>(h) 0.25</td>
</tr>
<tr>
<td></td>
<td>(i) 0.25</td>
</tr>
<tr>
<td></td>
<td>Real world 0.0005</td>
</tr>
<tr>
<td>xi</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>min_cluster_size</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

Table 6. NMI and ARI performance metrics of algorithms for real world dataset.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Spectral</th>
<th>Agglom.</th>
<th>DBSCAN</th>
<th>OPTICS</th>
<th>GDD</th>
<th>CDIBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI</td>
<td>0.149</td>
<td>0.027</td>
<td>0.107</td>
<td>0.005</td>
<td>0.280</td>
<td>0.115</td>
</tr>
<tr>
<td>NMI</td>
<td>0.572</td>
<td>0.390</td>
<td>0.523</td>
<td>0.519</td>
<td>0.644</td>
<td>0.557</td>
</tr>
</tbody>
</table>
Table 7. Computational complexities of used algorithms.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Spectral</th>
<th>Agglom.</th>
<th>DBSCAN</th>
<th>OPTICS</th>
<th>GDD</th>
<th>CDIBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>$O(N^3)$</td>
<td>$O(N^2 \log(N))$</td>
<td>$O(N \log(N))$</td>
<td>$O(N \log(N))$</td>
<td>$O(N^2)$</td>
<td>$O(N^2(d^{2.373} + MN_{iter}))$</td>
</tr>
</tbody>
</table>

We compared the complexities in Table 7. The proposed algorithm depends on the dimension exponentially, but it brings a new perspective and may lead to new studies to decrease its computational complexity.

5. Conclusion

The proposed algorithm uses a centroid based method and it is initialized with a kernel density estimation. Bhattacharyya measure is used to determine subclusters to be merged. We use Jensen inequality to find optimal clusters. The proposed algorithm has remarkable advantages especially for imbalanced and arbitrary shaped data and doesn’t require one to pre-specify the number of clusters. It fails only for very thin shaped clusters. It outperforms OPTICS and GDD on syntetic data, and it shows a similar performance with DBSCAN. The computational complexity of the proposed algorithm is mostly affected by the kernel density initialization algorithm. A computationally efficient initialization algorithm can be integrated as future work.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Erdem Köse gave the idea and did the experiments. Erdem Köse and Ali Köksal Hocaoğlu interpreted the results and wrote the paper.

References

[34] Cruz MO, Macedo H, Guimaraes A. Grouping similar trajectories for carpooling purposes. In: 2015 Brazilian Conference on Intelligent Systems (BRACIS); Natal, Brazil; 2015. pp. 234-239. doi: 10.1109/BRACIS.2015.36

