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Abstract:4

This paper introduces a noval approach for segmenting Chagas parasites on stained blood smear samples from5

mice during the acute phase of infection with Trypanosoma cruzi utilizing a U-Net-based deep learning model named6

Multi-Kernel Embedded Fusion UNet (MKEF-UNet). Our proposed model incorporates DenseNet-121 for feature7

extraction, a classifier module for predicting parasite information, and a segmentation decoder with multiscale feature8

fusion to generate precise segmentation results. Notably, the integration of the embedded vector module, multi-kernel9

convolutions with dilations, and advanced data augmentation techniques significantly enhance the model’s robustness10

and generalization capabilities. In extensive experiments on the Chagas dataset, MKEF-UNet achieves state-of-the-art11

performance, attaining an Intersection over Union (IoU) of 0.8683 and a Dice score of 0.9189 on the test set. The paper12

provides a detailed exposition of the model’s architecture, training methodology, and the employed loss functions. This13

research not only presents a novel segmentation approach but also underscores the model’s superiority in accuracy and14

robustness through the incorporation of advanced features. By introducing robust components and techniques, MKEF-15

UNet surpasses previous methods, showcasing its potential as a promising solution for the detection and segmentation16

of Chagas parasites in real-world scenarios.17
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1. Introduction19

Chagas disease, also known as American trypanosomiasis, is a significant health menace instigated by the20

protozoan Trypanosoma cruzi (T. cruzi) [1].This disease represents a substantial public health challenge,21

predominantly prevalent in Latin American nations, and affects millions of individuals worldwide WHO24.22

Epidemiological data suggests that Chagas disease impacts around 6 to 7 million individuals in Latin America,23

with an additional 300,000 cases identified in the United States and between 80,000 to 120,000 cases in Europe.24

In contrast, official records from Mexico report merely a few hundred cases annually. However, it is postulated25

that there are approximately 1.1 million individuals in Mexico infected with (T. cruzi), and a further 29.526

million are at potential risk of acquiring the disease [2]. The disease is typically transmitted via contact with27

the feces or urine of infected triatomine bugs [1], but can also be contracted through the oral consumption28
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of contaminated food, mother-to-child transmission, blood transfusion, organ transplantation, and laboratory1

accidents [3–5].2

Chagas disease consists of an acute and a chronic phase. The acute phase transpires within 6 to 83

weeks after infection and is marked by high levels of parasitemia in the bloodstream [6, 7]. The chronic phase,4

manifesting 5 to 15 years later, lasts for the infected individual’s lifetime and features intracellular parasites5

forming pseudo-nests in the heart and digestive muscles WHO24. Timely diagnosis is crucial, as Chagas disease6

can be cured if treatment is initiated during the acute phase. Microscopic examination of fresh blood or stained7

blood slides is considered quickest and most cost-effective method to diagnose Chagas disease during the acute8

phase [8–12]. However, laboratory diagnosis has some limitations: it requires trained microscopists to observe9

the parasites, which can lead to errors and heterogeneity, manual search and identification of parasites is time-10

consuming, delaying laboratory results and treatment initiation, and methods enhancing parasite search in11

microscopic images can be expensive and prohibitive for low-income settings [1, 13].12

To address the pressing need for accurate and efficient diagnosis of acute Chagas disease, machine learning13

(ML) algorithms offer a promising solution by automating the search and detection of parasites, thereby14

enhancing image analysis reproducibility [14, 15]. This approach has been successfully employed in related15

studies on parasitic infections, such as the detection of Plasmodium ssp., the causative agent of malaria, using16

machine learning techniques [16, 17]. Despite the significant threat posed by Chagas disease to populations17

in endemic areas, there is a noticeable lack of deep learning-based research focused on providing healthcare18

systems with efficient and automated methods for detecting or segmenting the (T. cruzi) parasite observed in19

blood sample images. Such advances would enable patients to receive timely medical treatment, mitigating20

the impact of this potentially life-threatening disease [18, 19]. notable strides in the field of classification, the21

segmentation task continues to pose significant challenges, with achieving high accuracy proving particularly22

elusive. This research addresses the persistent difficulty in obtaining precise segmentations for the detection of23

the (T. cruzi) parasite in blood sample images. Recognizing the critical need for accurate segmentation in this24

context, our primary objective is to advance the state-of-the-art by introducing an robust approach.25

This study introduces a novel segmentation methodology, embodied in the Multi-Kernel Embedded Fusion26

UNet (MKEF-UNet), which not only presents a paradigm shift but also establishes its superiority in terms of27

accuracy and robustness. The incorporation of advanced features, such as the embedded vector module, multi-28

kernel convolutions with dilations, and strategic data augmentation techniques, contributes to MKEF-UNet’s29

remarkable performance.30

By surpassing the limitations of previous methods, MKEF-UNet emerges as a promising solution for the31

detection and segmentation of Chagas parasites in real-world scenarios. This research not only highlights the32

immediate implications for improved diagnostics but also sets the stage for enhanced methodologies in broader33

medical imaging applications.34

The rest of this paper is structured as follows: The previous works is in Section 2, Section 3 details the35

materials used and all machine learning, deep learning techniques and data pre-processing used in our study. In36

Section 4, we present the experimental work and results obtained with different models, highlighting the best37

model. Section 5 concludes the paper with a brief discussion of our findings.38

2. Previous Work39

Detecting Chagas parasites in blood sample images has been a subject of interest for researchers for over a40

decade, resulting in the development of numerous algorithms and techniques to accurately identify parasites41
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through classification. Initially, research focused on feature extraction and classical machine learning models.1

In recent years, deep learning techniques have emerged as a promising approach. In this section, we provide an2

overview of the evolution of these methods, highlighting their strengths and limitations, and offering context for3

our proposed solution. However, achieving accurate segmentation to indentify the (T. cruzi) parasite in blood4

sample images remains a challenging task with limited research, as we will outline in the upcoming summary.5

In 2013, Soberanis-Mukul et al. [20] proposed an computerized method for detecting Chagas disease using6

a combination of segmentation and classification techniques. The method involved pre-processing raw images7

to remove noise and unwanted features, followed by binary segmentation employing a Gaussian model, which8

calculated the likelihoods based on the Bayesian framework to identify clusters of pixels potentially representing9

a parasite. Subsequently,the partitioned images were subjected to categorization using a pre-configured K-10

Nearest Neighbors (KNN) classifier, as described in Peterson et al. [22]. This classifier was trained to achieve11

a binary classification, distinguishing between images containing the (T. cruzi) parasite and those without it.12

The algorithm, tested against a dataset of 120 images, achieved a sensitivity of 0.98 and a specificity of 0.85.13

However, the authors acknowledged the need for improvements in false negative and true positive rates and cited14

limitations such as a smaller training dataset and the requirement of a non-fixed threshold value for accurate15

parasite classification.16

In 2014, Soberanis-Mukul [21] conducted a study that compared three classifiers - SVM, AdaBoost,17

and ANN - to segment (T. cruzi) parasites. The study was divided into three stages - computing superpixels,18

optimal feature extraction, and classifier training employing ANN with error backpropagation, AdaBoost with19

perceptron ensemble, and SVM. The researchers utilized superpixels, which represent clusters of pixels within20

an image that represent continuous regions, to aid in neighborhood-aware feature extraction. During the21

experiment, the performance of the three classifiers was compared to that of established classifiers, namely the22

Gaussian and Bayes Classifiers. The results revealed that the Gaussian method exhibited the smallest mean23

square error of 0.18568, succeeded by the SVM with an error of 0.22635, and the ANN model with an error24

of 0.361. Consequently, the researchers concluded that the Gaussian classifier performed better than the other25

classifiers in detecting and segmenting (T. cruzi) parasites.26

In the 2015 study by Uc-Cetina et al. [23], the authors conducted a comparative analysis of two classifi-27

cation methodologies, namely AdaBoost and Support Vector Machine (SVM), with the objective of identifying28

the (T. cruzi) parasite in blood sample images. The researchers put forth a two-step algorithm, commencing29

with the learning of a binary AdaBoost classifier. The training was facilitated by the extraction of features30

utilizing Haar templates, specially tailored to the distinctive morphology of the (T. cruzi) parasite. Subse-31

quently, a post-processing stage was implemented, deploying an SVM classifier with the intent of eliminating32

false positives. The amalgamation of AdaBoost and SVM methodologies demonstrated superior performance33

when compared with the standalone SVM algorithm. The combined approach yielded a sensitivity metric of34

100% and a specificity metric of 93.25%. This investigation underscores the effectiveness of machine learning35

methods in detecting Chagas parasites and the importance of considering shape, color, and texture features for36

accurate detection. While the AdaBoost method offers faster computation due to the integral images trick, the37

authors acknowledge the limitations of time-consuming image segmentation and emphasize the need for rapid38

processing in applications requiring swift scanning of numerous images.39

Pereira et al. [24], in 2019, introduced a deep learning algorithm for Chagas parasite classification,40

potentially the first of its kind in the literature. They employed a pre-trained MobileNetV2 model for feature41

extraction, succeeded by a meticulously adjusted single-neuron dense layer. The approach achieved 96.4%42
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accuracy, 95.4% precision, 97.6% sensitivity, and a 96.5% F1-score on the validation dataset. However, the1

test accuracy was only 72% due to overfitting and limited dataset size, as noted by the authors. This raises2

concerns regarding the model’s effectiveness in real-world applications.3

In 2020, Allan Ojeda-Pat et al. [25] introduced a deep learning technique for the automated identification4

of (T. cruzi) parasites in blood specimen images, aiming to accelerate the diagnosis of Chagas disease and5

provide an alternative to manual visual inspection. The authors deployed a convolutional neural network, built6

on U-Net architecture, and trained it using a range of loss functions to ensure reliable outcomes. The application7

of the Weighted Binary Cross-Entropy Loss function led to the highest F2 score and recall values, culminating8

in an F2 score of 80%, a recall of 87%, a precision of 63%, and a Dice score of 68%, thereby demonstrating9

the potential of deep learning approaches in enhancing diagnostic accuracy and efficiency.However, the study’s10

limitations include a highly imbalanced dataset, a simple U-Net architecture instead of more efficient and robust11

models, and a small test set, potentially affecting the model’s robustness.12

In 2021, Diogo Silva et al. [26] developed a machine learning approach using a random forest (RF)13

algorithm to detect and count (T. cruzi) trypomastigotes in micrographs taken by a 12-megapixel mobile device14

camera. They extracted morphometric, color, and texture features from 1,314 parasites and achieved a precision15

of 87.6%, a sensitivity of 90.5%, and an area under the ROC curve of 0.942. Despite its promising performance,16

there are limitations, such as reliance on lower-resolution images, a relatively small test dataset, and untested17

comparisons to deep learning approaches. Furthermore, the RF algorithm’s performance is influenced by mobile18

phone cameras limitations, such as object outline and image sharpness. Higher false-positive rates occurred in19

regions with leukocytes and higher cell density, and increased false-negative rates in regions with lower contrast20

and sharpness.21

The most recent work related to the segmentation task was published on 2022, by Allan Ojeda-Pat et22

al. [27]. The authors proposed an effective residual convolutional neural network, named Res2Unet, specifically23

engineered for the semantic segmentation of (T. cruzi) parasites in blood sample images. Drawing inspiration24

from Heun’s method for resolving ordinary differential equations, Res2Unet incorporates active contour loss25

and enhanced residual connections. The model was trained on 626 blood sample images and was subsequently26

evaluated on a test set of 207 images. It achieved a Dice coefficient score of 84%, a precision of 85%, and27

a recall of 82%, thereby outperforming prior methodologies. The authors compared Res2Unet performance28

using various loss functions against other models, such as U-Net and ResUnet. However, they acknowledged29

limitations in their study, including a limited number of positive training examples and a smaller test set, which30

raise concerns about the effectiveness of their approach in large-scale, real-world applications.31

Chagas parasite detection has progressed significantly, with methods transitioning from traditional ma-32

chine learning to advanced deep learning techniques. However, further advancements in accuracy, speed,33

and robustness are necessary for practical, large-scale applications. We propose a novel approach using34

DenseNet121 [28] as an Encoder for feature extraction, followed by a classifier to predict information such35

as the number of parasites and pixels associated with each class. A decoder-encompassing features fusion tech-36

nique also uses embedded vectors from the classifier module to efficiently segment the Chagas parasites. Our37

model has achieved state-of-the-art outcomes on the Chagas dataset, with an IOU of 0.8683 and a Dice score of38

0.9189 on the test set. This reflects improved accuracy and robustness, highlighting its potential as a promising39

solution for detecting and segmenting Chagas parasites in real-world scenarios.40
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Figure 1: Original microscopic image in the first row, followed by parasite and mask ROIs in the second row
and third row respectively.

3. Methodology1

In this study, we propose a novel deep-learning model, MKEF-UNet, for segmentation tasks. This section2

describes the methodology used in the research, including dataset preparation, model architecture, and training3

process.4

3.1. Database and Dataset Preparation5

The process of preparing stained blood smear samples from mice during the acute phase of infection with T.6

cruzi was conducted in the Zoonoses Laboratory at the Centro de Investigaciones Regionales (CIR) in Mexico.7

Images of these samples were acquired using a Nikon Eclipse E600 optical microscope equipped with a camera8

offering a resolution of 75 dpi and dimensions of 2560 × 1920 pixels. Subsequently, 1,983 regions of interest9

5
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(ROIs) were extracted from the original images to establish the final image database, with a resolution of1

512 × 512 pixels for each ROI, using the Python language. Within this database, 940 ROIs were identified as2

parasites, while 1,043 ROIs were classified as non-parasites (refer to Fig. 1 for visualization of the samples).3

The provided dataset encompasses images in their original state before undergoing any data augmentation4

techniques. Data augmentation was implemented in real-time during the training phase. The dataset is5

categorized into three distinct groups: the training set consists of 1183 images, while both the validation6

and test sets contain 400 images each.7

To train and evaluate the model, we process the input images and their corresponding masks. Input8

image-mask pairs were resized to a fixed dimension of 256 x 256 pixels. Additionally, we convert the mask9

data into numerical information by computing the number of Chagas and pixels associated with each class and10

normalizing it within the 0 to 1 range. The mask data is also converted into a one-hot encoding format to be11

used for loss computation.12

3.2. Data Augmentation13

Data augmentation is a powerful technique employed to amplify the number of images in the training dataset.14

This is accomplished by utilizing various image modifications like flipping (both horizontally and vertically),15

rotation, zooming, cropping, and translation to the original images. Additional augmentation techniques16

encompass sharpening, blurring, color space transformations, and region deletion.These techniques serve to17

diversify the dataset, thereby mitigating overfitting and enhancing the efficiency of the segmentation model.18

In our approach, data augmentation is not only a foundational step but also a critical component19

throughout the training process. We begin by applying traditional image modifications to the original images,20

such as rotation (limited to 35 degrees), horizontal and vertical flipping, and coarse dropout. These initial21

augmentations are designed to diversify the dataset and prepare it for more effective learning. Examples of22

these augmented images are depicted in Figure 223

Subsequently, we further enhance the training process by generating an augmented version of the original24

image through additional horizontal and vertical flips. This results in pairs of images—each consisting of the25

originally augmented image and its further flipped counterpart. We process these pairs of images simultaneously26

with our model. This dual-input approach allows the model to learn from both the original image (which has27

already undergone initial augmentations) and its further altered version, thereby enabling a more comprehensive28

and effective learning experience.29

A crucial aspect of our methodology is the application of inverse transformations to the predictions30

made on these further augmented images. Once the model predicts on these images, we apply an inverse31

transformation to realign these predictions with the orientation of the original images. This step is integral to32

our dual-loss computation technique, which calculates loss based on both the original and inversely transformed33

augmented images. This strategy significantly refines the model’s parameters, enhancing its ability to generalize34

across various image orientations and styles.35

3.3. Hyperparameters36

In the course of our experiment, we carefully adjusted a range of hyperparameters to optimize our models for37

image segmentation task.The parameters, applied to the model, included an starting learning rate of 1e-4 and38

the Adam optimizer, known for its effectiveness in handling sparse gradients in complex scenarios. We also39

selected a modest batch size of 2 and set the training duration for 50 epochs. The Rectified Linear Unit (ReLU)40
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(a) Original Image (b) Rotated Image (c) Horizontal Flip (d) Vertical Flip (e) Coarse Dropout

Figure 2: Augmented images with rotation, horizontal flip vertically flipped and coarse dropout.

was chosen as the activation function, given its demonstrated success in deep learning contexts.Additionally,1

we implemented the ReduceLROnPlateau learning rate scheduler with a patience of 5 epochs to dynamically2

adjust the learning rate based on the monitored validation loss.3

3.4. Model Architecture4

The MKEF-UNet model, as shown in Figure 3, is an end-to-end deep learning model, a U-Net architecture, for5

Chagas parasite segmentation. The architecture consists of an encoder, a classifier, multi-kernel convolutions6

with dilations, multiscale feature fusion, and a segmentation decoder. The architecture is designed to capture7

both global and local contextual information from input images and produce highly accurate segmentation8

results.9

3.4.1. Encoder10

The encoder is based on DenseNet-121, a well-established backbone for feature extraction. The encoder has11

four output levels, each with a reduced feature channel count. We apply pointwise convolution to reduce the12

feature channels of the encoder to 96, which notably diminishes the number of parameters and accelerates the13

training process.14

3.4.2. Classifier and Embedded Vector Module15

The embedded vector module, as shown in Figure 4, predicts the number of Chagas parasites and their embedded16

vector. It is designed with two parallel fully connected layers with ReLU activation functions, followed by linear17

layers for the final output. The primary function of this module is to process the features derived from the18

encoder. It generates embedded vectors, which are then fed into the decoder blocks. This process significantly19

enhances the segmentation results, providing a more accurate and detailed representation of the parasites in20

the image.21

The operation of the classifier module begins with an adaptive average pooling operation, mathematically22

7
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Figure 3: MKEF-UNet Model.

expressed as:1

fave(X) =
1

N

N∑
i=1

xi (1)

where X is the input feature map, N is the total number of elements in the pooling window, and xi represents2

the i-th element within this window. Following the pooling operation, the pooled feature map is processed3

through fully connected layers as shown in equation 2. The operation of a fully connected layer is mathematically4

expressed as:5

yjk(z) = f

 nH∑
i=1

Wjkzi +Wj0

 (2)

where W is the weights matrix, z is the input(pooled feature map), Wj0 is the bias term, nH represents6

the total number of input features from the previous layer H to the current fully connected layer and f is a7

non-linear function, such as ReLU. This operation is applied to the output from the classifier module.8

3.4.3. Multi-Kernel Convolutions with Dilations Module9

This module, as shown in Figure 5, is employed to process the features extracted by the encoder at different10

scales. It employs dilation, a technique that increases the receptive field of the convolution layers, thus enabling11

8
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Figure 4: Classifier and Embedded Vector Module.

the model to incorporate a larger context without necessitating an increase in the number of parameters. This1

approach ensures computational efficiency while maintaining a comprehensive representation of the input data.2

Moreover, the module is characterized by its use of multiple dilated convolutional layers with diverse3

kernel sizes, specifically 1, 3, 7, and 11. This strategic design choice allows the model to capture a wide range of4

spatial information, thereby enhancing its ability to detect and classify features of varying sizes and complexities.5

In addition to these design elements, the module incorporates channel and spatial attention mechanisms.6

These mechanisms are designed to emphasize important features, allowing the model to assign varying levels7

of importance to different features. This selective focus on the most pertinent features significantly enhance8

the model’s performance, equipping it with the capability to make more accurate and robust predictions. The9

mathematical expression for the dilated convolution operation in this module can be represented as:10

fk(x) =

D∑
d=1

W d
k (x), k > 1 (3)

where k is the kernel size, d is the dilation rate, and D is the maximum dilation rate.11

3.4.4. Segmentation Decoder12

The decoder module combines the multi-kernel dilated convolution features with the embedded classifier output13

to produce the final segmentation mask. It consists of three decoder blocks, each with upsampling layers,14

residual blocks, and element-wise addition of the embedded vector for the predicted number of Chagas instances.15

The decoder blocks receive input from the multi-kernel dilated convolution layers and progressively refine the16

segmentation output.17

3.4.5. Multiscale Feature Fusion Module18

This module, as shown in Figure 6, is responsible for fusing features from different scales in the decoder. It uses19

upsampling, concatenation, and convolutional layers to combine the features and generates a final multiscale20

9
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Figure 5: Multi-Kernel Diluation Module.

feature map for segmentation. Channel and spatial attention mechanisms are employed to further enhance the1

fusion process. The multiscale feature fusion can be mathematically expressed by equation 4 and 5:2

Fconcat = Concatenate(U(f1), U(f2), . . . , U(fn)) (4)

3

yfusion = Conv(Fconcat) (5)

where fi represents the feature map at scale i , U is the upsampling operation, Conv represents the convolution4

operation, and yfusion is the output of the multiscale features fusion module.5

3.4.6. Segmentation Output Module6

The final segmentation output is generated using a 1x1 convolutional layer applied to the multiscale feature7

map. This layer produces a single-channel output representing the likelihood of every pixel belonging to the8

Chagas parasite class.9

In summary, the model leverages a DenseNet-121 encoder, a classifier module, multi-kernel dilated convo-10

lutions with attention mechanisms, a segmentation decoder, and multiscale feature fusion to effectively segment11

Chagas parasites in the input image. The architecture is designed to capture multiscale information, fuse fea-12

tures from different levels, and incorporate classification information for improved segmentation performance.13

3.5. Training Procedure14

This sub section describes the system configurations, training and loss functions used in the research.15

10
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Algorithm 1 MKEF-UNet for Chagas Parasite Segmentation

Require: Image (input image for Chagas parasite segmentation)
Ensure: Segmentation Mask (binary mask indicating Chagas parasites) , NumOfChagasInstances
1: Procedure MKEF-UNet(Image)
2: Initialize Model Components:
3: Encoder(DenseNet-121)
4: Classifier with Embedded Vector Module
5: MultiKernelDilatedConv Module
6: Decoder Blocks
7: Multiscale Feature Fusion Layer
8: Segmentation Output Layer
9:

10: Encoder Forward Pass:
11: FeatureMaps ← DenseNet121 Encoder(Image)
12:

13: Classifier Embedded Module Forward Pass:
14: NumOfChagasInstances, EmbeddedVectors ← ClassifierEmbeddedModule(FeatureMaps[-1])
15:

16: MultiKernelDilatedConv Forward Pass:
17: EnhancedFeatureMaps ← MultiKernelDilatedConv(FeatureMaps)
18:

19: Decoder Blocks Forward Pass:
20: Initialize DecodedFeatures as empty list
21: for each level in EnhancedFeatureMaps do
22: DecodedFeature ← DecoderBlock(level, EmbeddedVectors)
23: DecodedFeatures.append(DecodedFeature)
24: end for
25:

26: Multiscale Feature Fusion:
27: FusedFeatures ← MultiscaleFeatureFusion(DecodedFeatures)
28:

29: Segmentation Output Generation:
30: SegmentationMask ← Convolution(FusedFeatures, kernel size=1)
31:

32: return SegmentationMask , NumOfChagasInstances
33: End Procedure

11
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3.5.1. System Configuration and Dependencies1

The experiments were conducted on a Windows 11 system equipped with an Intel Xeon processor running at2

2.4 GHz, 8 GB RAM, 1 TB HDD, CUDA-enabled Nvidia GPU. The software environment consisted of Python,3

with Pytorch libraries as the backend. For GPU acceleration, CUDA and cuDNN dependencies were installed.4

3.5.2. Model Training and Loss Functions5

The training phase was executed over 50 epochs, leveraging the Adam optimizer for efficient learning. The6

training process was further optimized by dynamically adjusting the learning rate based on the validation loss,7

facilitated by the ReduceLROnPlateau learning rate scheduler. Three loss functions were employed to optimize8

the model’s performance: (1) IoU Loss to compute the similarity between the ground truth and predicted masks;9

(2) Active Contour Loss to ensure smooth and accurate segmentation boundaries; and (3) Cross-Entropy Loss10

to classify the number of Chagas instances. During the training process, the model takes input images and11

produces segmentation masks and the number of Chagas instances. To enhance the model’s robustness, data12

augmentation techniques are applied to the same images, which involve horizontal and vertical flips. The13

transformed images are then passed through the model to generate another set of predictions. The final loss is14

computed for both the original and transformed image predictions which are then used to refine the parameters15

of the model.16

Moreover, after each epoch, the model’s effectiveness was evaluated on the validation set using the IoU17

score. If the validation IoU score improved compared to the previous best score, the current model weights were18

saved. This ensured the retention of the model parameters that yielded the highest validation IoU, boosting the19

model’s effectiveness on unseen data. This approach also provided a set of weights that can be used for other20

related tasks, enhancing the model’s utility.21

12
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4. Experimental Results and Discussion1

4.1. Evaluation Metrics2

In this section, we discuss the evaluation metrics used to assess the performance of the proposed Chagas3

segmentation model. We will discuss their mathematical formulations and highlight key properties. The4

following evaluation metrics are employed in this study:5

4.1.1. Weighted Cross-Entropy Loss6

Weighted Cross-Entropy loss [29] is a modification of the standard Cross-Entropy loss, which assigns different7

weights to each class, addressing the issue of class imbalance in the dataset. The loss function is defined as:8

LwCE(y, ŷ) = −
N∑
i=1

wi[yi log ŷi + (1− yi) log(1− ŷi)] (6)

where wi denotes the weight assigned to the i-th class, yi represents the true label, and pi is the predicted9

probability for that class.10

4.1.2. Jaccard Loss11

Jaccard loss [30], also referred to as Intersection over Union (IoU) loss, quantifies the similarity between two12

sets. It is defined as the proportion of the intersection to the union of the two sets:13

LJ(A,B) = 1− |A ∩B|
|A ∪B| (7)

In the context of segmentation, A and B are the ground truth and predicted segmentation masks, respectively.14

4.1.3. Dice Loss15

Dice loss [31], also known as the Sørensen-Dice coefficient, is another measure of set similarity. It is defined16

as the harmonic mean of precision and recall, or equivalently, as twice the product of intersection and union17

divided by the sum of their sizes:18

LD(A,B) = 1− 2|A ∩B|
|A|+ |B| (8)

Similar to Jaccard loss, A and B represent ground truth and predicted segmentation masks, respectively.19

4.1.4. Focal Loss20

Focal loss [32] is a modification of Cross-Entropy loss designed to address the issue of class imbalance during21

training. By reducing the loss contribution from straightforward examples and concentrating on challenging22

examples, Focal loss enhances the learning of the minority class. The loss function is defined as:23

LF (y, ŷ) = −
N∑
i=1

[yi(1− ŷi)
γ log ŷi + (1− yi)(ŷi)

γ log(1− ŷi)] (9)

where yi indicates the true class label of the ith example, with yi = 1 for the positive class and yi = 0 for24

the negative class. The parameter γ is a focusing parameter that scales the loss contribution of each example.25
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The modulating factors (1 − ŷi)
γ for the positive class and (ŷi)

γ for the negative class serve to decrease the1

loss from easy examples (those predicted with high confidence) and increase it for hard examples, effectively2

emphasizing the learning on misclassified instances by the model.3

4.1.5. Active Contour Loss4

Active Contour Loss is a loss function designed for segmentation tasks that encourages smooth and coherent5

segmentation boundaries. It is inspired by the active contour model in image processing and combines region-6

based and boundary-based information. The loss function can be defined as:7

LACL = λLregion + (1− λ)Lboundary, (10)

where λ is a weighting parameter, Lregion is a region-based term that measures the similarity between the8

predicted segmentation mask and the ground truth, and Lboundary is a boundary-based term that promotes the9

smoothness of the segmentation boundaries.10

4.2. Experimental Results for the Model11

In this study, we evaluate the effectiveness of our proposed model, we compared it withseveral existing models,12

including UNet, Res2Unet, ResUnet, Gaussian Method, and SVM. The comparison is based on key metrics like13

the Dice Score, F1 Score, Precision, and Recall, crucial for assessing the accuracy and reliability of segmentation14

models in identifying the T. cruzi parasite.15

Our proposed model, MKEF-UNet, achieved a Dice Score of 0.9189, an F1 Score of 0.9253, a Precision16

of 0.9063, and a Recall of 0.9453, outperforming the other models by a significant margin, as it can be observed17

in Table 1.18

From this table we can see that the Res2Unet and UNet models developed by Ojeda-Pat et al. [25, 27]19

showed relatively lower performance metrics. The Res2Unet model achieved a Dice Score of 0.84, an F1 Score20

of 0.83, a Precision of 0.85, and a Recall of 0.82, while the UNet model scored a Dice Score of 0.6825, an F121

Score of 0.7311, a Precision of 0.6304, and a Recall of 0.8702. These comparisons underscore the advanced22

capabilities of our MKEF-UNet model.23

ResUnet model, a variant of the UNet architecture, achieved a Dice Score of 0.82, an F1 Score of 0.820,24

a Precision of 0.84, and a Recall of 0.80. Despite its better performance compared to the Gaussian and SVM25

methods, it was still outperformed by MKEF-UNet demonstrate its effectiveness in accurately segmenting the26

T. cruzi parasite.27

The Gaussian Method and the SVM model showed significant limitations. The Gaussian Method achieved28

a Dice Score of 0.22 and an F1 Score of 0.223, indicating poor precision and accuracy in segmentation. The SVM29

model yielded even lower scores, with a Dice Score of 0.13 and an F1 Score of 0.130, suggesting its inadequacy30

for complex segmentation tasks like T. cruzi.31

Furthermore, we trained our model for 50 epochs and monitored its performance on the training and32

validation sets using the Dice coefficient score and Jaccard score. Figures 7 show the learning curves for the33

Dice coefficient score and Jaccard score, respectively. The results indicated that our model performed well34

on both the training and validation sets, with the Dice coefficient score and Jaccard score improving as the35

training progressed. The training and validation loss values were also monitored during the training, and the36

active contour loss decreased consistently over the 50 epochs, as shown in Figure 7. As we can observe, this37

model performed very well without facing any overfitting problem.38
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Table 2 presents six columns with various different images, with the first three columns displaying1

accurate segmentation of both the Ground Truth and the proposed model, while the other three columns2

exhibit incomplete segmentation of the object of interest, despite successful segmentation of the parasite.3

Table 1: Comparison of Our Model with Previous Works on T. cruzi

Reference Model Dice Score F1 Score Precision Recall
Our Proposed Model MKEF-UNet 0.9189 0.9253 0.9063 0.9453
Ojeda-Pat et al.[27] Res2Unet 0.84 0.83 0.85 0.82
Ojeda-Pat et al.[27] ResUnet 0.82 0.820 0.84 0.80
Ojeda-Pat et al.[25] UNet 0.682 0.7311 0.6304 0.8702
Ojeda-Pat et al.[27] Gaussian Method 0.22 0.223 0.13 0.80
Ojeda-Pat et al.[27] SVM 0.13 0.130 0.07 0.94

Figure 7: In the first row we show Dice coefficient scores for training and validation followed by IoU loss
functions for the proposed model in 50 epochs experiment. The second row shows the model learning curve
through the active contour loss and the cross entropy loss.

Ablation Study of MKEF-UNet: In our ablation study of the MKEF-UNet model, we strategically4

removed key components to assess their individual contributions to the model’s performance in segmenting5

the T. cruzi parasite. The removal of the Classifier with Embedded Vector Module resulted in a decrease in6

the Dice Score from 0.9189 to 0.8987, highlighting its significant role in feature refinement and performance7

enhancement. Similarly, the exclusion of the MultiKernelDilatedConv Module led to a reduction in the Dice8
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Score to 0.8928, indicating its importance in feature integration across scales. Intriguingly, the ablation of the1

Multiscale Feature Fusion Layer showed a minimal impact, with the Dice Score marginally decreasing to 0.9162.2

This suggests that while this layer contributes to the model’s performance, its role is not as critical as the other3

components in our segmentation task. These insights underline the importance of the Classifier with Embedded4

Vector and MultiKernelDilatedConv modules in the MKEF-UNet architecture.5

Table 2: Comparison of images, ground truth, perfect predictions and missing predictions

Image Ground Truth Accurate Predictions Image Ground Truth Missing Prediction

+ img/8f.pdf
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5. Conclusion1

In this research, we have presented a novel approach, MKEF-UNet, for the segmentation of Chagas parasites2

using a U-Net based deep learning model. Our model incorporates DenseNet121 for feature extraction, a3

classifier module for predicting parasite information, and a segmentation decoder with multiscale feature4

fusion to generate accurate segmentation results. The introduction of the embedded vector module, multi-5

kernel convolutions with dilations, and comparing the similarity of the model’s prediction on the original and6

transformed image pair have significantly improved the model’s robustness and generalization capabilities.7

The proposed model has achieved state-of-the-art performance on the Chagas dataset, with an IOU of8

0.8683 and a Dice score of 0.9189 on the test set. These results indicate an improvement in accuracy and9

robustness compared to previous methods, highlighting the potential of our approach as a promising solution10

for detecting and segmenting Chagas parasites in real-world scenarios.11

Future work could focus on exploring other advanced feature extraction techniques, refining the classifier12

module for more precise parasite information prediction, and optimizing the segmentation decoder for better13

performance. Additionally, the model’s robustness could be further tested by applying it to datasets with varying14

image quality, resolution, and staining techniques, which are common challenges in real-world diagnostic settings.15

This would give a thorough comprehensive understanding of the model’s operational efficiency and its readiness16

for deployment in clinical environments. Furthermore, the model could be adapted for the segmentation of17

other biomedical images, thus expanding its applicability in the field of medical image analysis.18
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