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Abstract: The objectives of this investigation were devoted to studying genetic variation in fifty 21 

Azerbaijan wheat accessions from 6 different botanical varieties using simple sequence repeat 22 

markers. On the basis of 7 SSR primers used in this work between wheat accessions studied 42 23 

different alleles were observed with an average of 6 alleles per locus. The ranging of polymorphism 24 
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information content from 0.428 to 0.772 revealed the existence of rich genetic diversity in 25 

Azerbaijan wheat accessions. The highest number of PIC values was calculated in Xgwm190, 26 

Xgwm337, and Xgwm261 SSR primers with an average of 0.561. The cluster analysis representing 27 

Nei genetic distance index among all samples divided the genotypes into 9 separate groups. The 28 

ninth cluster included 12 genotypes, accounting for 24% of all genotypes analyzed. Besides, this 29 

group including var. erythrospermum3 and var. erythroleucon9, could not be distinguished based 30 

on the 7 microsatellite markers, and it may be due to their sharing of a similar basis of genetic 31 

background. It was found that samples of var. milturum botanical varieties were located at enough 32 

genetic distance from other studied samples. The results of this work clearly indicated that the SSR 33 

analysis can be used as a power tool to estimate genotypic similarities, genetic diversity, and 34 

fingerprinting of Azerbaijan’s local wheat varieties. 35 

Keywords: Bread wheat, botanical variety, microsatellite markers, genetic diversity.  36 

 37 

1. Introduction  38 

Wheat (Triticum spp.) is one of the three most economically important plants in the world and 39 

at the same time its outstanding contribution role for human nutrition and forage supply is non-40 

substitutive (Shewry, 2009). Wheat is grown on 650,000 hectares in Azerbaijan, with a yield of 31.4 41 

centners per hectare and average productivity of 1.9 million tons. Azerbaijan is one of the origins 42 

of cereal crops and is rich in wheat and its wild relatives' biodiversity (Eldarov et al., 2015; 43 

Mehdiyeva et al., 2021). Some wheat species are particularly important for agriculture; over time, 44 

a range of local wheat varieties have been developed, and more recently, a number of forms 45 

associated with more intensive agricultural systems have been introduced. The collection, study, 46 

and preservation of agricultural crops and their wild ancestors provide the basis for future selective 47 

breeding (Akparov and Abbasov, 2019). It was discovered that the distribution of Aegilops species 48 

in Transcaucasia shows a noticeable decline as one moves from the Caspian Sea towards the Black 49 

Sea. Similarly, their presence diminishes when traveling from Nakhichevan (in Azerbaijan) to the 50 
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north, toward the Main Caucasian Range. This pattern highlights a significant decrease in the 51 

number and diversity of Aegilops species across these regions (Eldarov et al., 2015). 52 

Detailed information about the collection and the level of genetic diversity in plant germplasm, 53 

as well as determining of genetic relations of breeding materials is the basis of many breeding 54 

programs (Donini, 1998). Wheat as an important crop in the world and Azerbaijan with having 55 

different genotypes is used in many genetic programs. Thus, in order to use this crop and effectively, 56 

the comprehensive study of genetic diversity level and genetic relations of genotypes is inescapable 57 

(Mursalova et al., 2015). 58 

Molecular markers have a significant advantage over morphological markers in that they remain 59 

stable under various environmental conditions (Ammar et al., 2015). Molecular markers such as 60 

Restriction Fragment Length Polymorphism (RFLP), Amplified Fragment Length Polymorphism 61 

(AFLP), Random Amplified Polymorphic DNA (RAPD), and Simple Sequence Repeats (SSRs) are 62 

potential tools for assessing genetic diversity in plant materials (Dar, 2017). Many plant varieties, 63 

including PCR-based molecular markers in wheat investigation, especially microsatellite markers, 64 

are considered the most important genetic markers (Ma et al., 1996). SSR markers find high 65 

polymorphism as compared to other genetic markers by scattering in large numbers along all 66 

genomes (Russell et al., 1997).  The easy identification of analogue accessions from the view of the 67 

point of genetic distance is considered an indicator of their superior features (Archak, et al., 2003). 68 

The investigation of the genetic diversity of wheat crops with SSR markers was the subject of 69 

numerous studies (Iqbal et al., 2009; Eivazi et al., 2008, Elshafei et al., 2008, Schuster et al., 2009). 70 

SSR markers have been used very successfully in the study of genetic diversity of seed gene bank 71 

collections of improved wheat germplasm (Börner et al., 2000, Huang et al., 2002) and in the 72 

investigation of wild relationships (Li et al., 2000, Hammer et al., 2000) as well as in genetic 73 

mapping, Quantitative Trait Locus (QTL) association, population genetics, marker-assisted 74 

selection, and evolutionary studies. Thus, studying the genetic diversity and population structure of 75 

germplasm collections might help with preservation and genetic improvement strategies. 76 
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The objective of this study was to estimate relationship levels among bread wheat varieties of 77 

Azerbaijan origin, identification of accessions and detection of marker efficiency on the basis of 78 

SSR markers.  79 

2. Materials and Methods 80 

2.1.Plant materials  81 

50 accessions of bread wheat used in the investigation were taken from the collection belonging 82 

to the National Genbank of the Genetic Resources Institute of Azerbaijan National Academy of 83 

Sciences and their names are listed in Table 1. 84 

2.2.DNA extraction 85 

Genomic DNA was extracted from young leaves with the method suggested by Varadarajan 86 

and Prakash (1991). DNA quality and quantity were determined by NanoDrop 2000 (Thermo 87 

Scientific) and samples were diluted to a final concentration of 50 ng/μL.  88 

2.3.PCR analysis 89 

In this study, 7 SSR primers were chosen from literature records based on their ability to reveal 90 

high levels of polymorphism. Each 20 µL PCR reaction was carried out using 50 ng of template 91 

DNA in 20 µL of total reaction volume containing 2 µL of genomic DNA, 2.5 µL of PCR buffer 92 

(10 X) containing MgCl2 (15 mM), 1.5 µL of 10 mM dNTPs, 0.2 µL of Taq DNA polymerase (3 93 

U/ µL) and 1.5 µL of each primer (10 µM). Amplification was performed using a T 100TM 94 

Thermocycler (Bio-Rad) according to the following program: 5 min at 94 °C predenaturation, then 95 

35 cycles of 1 min at 94 °C, 2 min at 50 °C and 5 min at 72 °C and final extension at 72 °C for 10 96 

min. The amplification fragments were separated by 96 capillary Fragment Analyzer systems of 97 

Advanced Analytical Company. 98 

2.4.Statistical analysis 99 

Each band amplified by each primer was scored as present (1) or absent (0) for the fifty 100 

genotypes, and the data were entered into a binary matrix as discrete variables.   101 
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For each SSR marker, the number of observed alleles was recorded. To measure the 102 

informativeness of the SSR markers to differentiate between wheat genotypes, polymorphism 103 

information content (PIC), probability identity (PI), effective multiplex ratio (EMR), marker index 104 

(MI), discrimination power (D) and resolving power (RP) were calculated. PIC was calculated 105 

according to the formula PIC = Ʃ [2Pi|1-Pi|], where pi is the frequency of allele for each locus 106 

(Mohammadi 2009). EMR is obtained from the equation EMR= np×β, where np is the number of 107 

total polymorphic bands and β is the ratio of the number of polymorphic bands to the total number 108 

of bands (Powell et al. 1996). MI is estimated from equation MI = EMR × PIC (Saghai et al. 1984); 109 

PI = Σpi4 + ΣΣ(2PiPj)2 (Paetkau 1995) and D = 1 – PIC, where Pi and Pj represent the frequency of 110 

alleles i and j, respectively. RP was calculated using the formula RP=ΣIb, where Ib is band 111 

informativeness and Ib= 1- [2 × (0.5 - p)], where p is the proportion of genotypes containing the 112 

band (Prevost and Wilkinson 1999). A genetic similarity matrix was constructed and Nei’s genetic 113 

distance (1983) was calculated for each pair of all accessions using the PowerMarker (Liu and Muse 114 

2005). An unweighted pair group method with arithmetic mean (UPGMA) cluster analysis was 115 

performed to develop a dendrogram. 116 

 117 

3. Results and Discussion 118 

In order to investigate the genetic diversity of the bread wheat accessions originating from the 119 

Azerbaijan Republic at the DNA level, 12 various microsatellite primers were used. In our research 120 

between selected primers, some primers produced no distinct bands on a smeary background and 121 

some of them resulted in very faint bands upon a highly smeared background. As a consequence, 7 122 

informative SSR primers were selected due to their ability to produce polymorphic and 123 

unambiguous markers between studied wheat accessions. By using the SSR primers observed alleles 124 

in the wheat botanical variety are shown in Table 2. For each microsatellite loci calculated some 125 

parameters like the number of alleles, polymorphism information content (PIC), probability identity 126 

(PI), effective multiplex ratio (EMR), marker index (MI), discrimination power (D) and resolving 127 
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power (RP) are given in table 3. The number of alleles per SSR locus is one of the most important 128 

parameters describing polymorphism, in our study the average number of alleles for each locus was 129 

6. Elshafei et al. (2019) in the study of genetic diversity of bread wheat accession using 33 SSR 130 

primers have reported 1.36 alleles per each locus. At the same time in previous studies, different 131 

results were obtained. In the research works of Khavarinejad and Karimov (2012), the average 132 

number of alleles per locus was calculated at 8.44 and 3.4 respectively.  133 

As a result of this research among studied bread wheat from 6 botanical varieties in accordance 134 

with Xgwm437, Xgwm261, Xgwm577, and Xgwm190 primers, the maximum number of alleles 135 

were 4, 5, 4, and 4, respectively, which were obtained in var. graecum. By the Xgwm46 primer, the 136 

maximum number of obseallelesllele had been achieved in var. milturum, var. ferrugineum and 137 

var.erythroleucon with 4 alleles. The maximum number of observed alleles by Xgwm389 primers 138 

was three which was determined in var. erythrospermum, var. lutescens and ear.erythroleucon. At 139 

the same time, the maximum number of alleles obtained through Xgwm337 was 5 in both of var. 140 

milturum and var. erythroleucon botanical varieties. The current results are proof of the existence 141 

of rich genetic diversity in Azerbaijan bread wheat. 142 

The number of alleles detected by a primer ranged from 4 to 7 among the bread wheat. During 143 

the investigation rare alleles were found between the studied bread wheat. As criteria, rare allele can 144 

be used to provide a reliable identification of genotypes, as well as to protection of breeder’s right 145 

in breeding programmes. In our research could be found the rare allele through Xgwm261 in 146 

Standard Aran, by using Xgwm190 in var. lutescens, var. erythroleucon and Standard Aran again, 147 

through Xgwm46 in var. graecum, through Xgwm389 in var. milturumand finally through 148 

Xgwm337 in Standard Aran again.  149 

Figure 1. Illustrates a capillary electropherogram of DNA amplification by using the Xgwm-150 

190 SSR marker in some bread wheat botanical varieties.    151 

Figure 1. An example of capillary electrophoregram obtained by Fragment Analyzer machine 152 

with primer Xgwm-190; the numbers indicate bread wheat accessions as listed in Table 1.  153 
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The observed polymorphism information content range in all of the used primers in this research 154 

was variable between 0.428 – 0.672 (Table 2). The results showed among the 7 used microsatellite 155 

primers in this research, primers Xgwm190, Xgwm337, Xgwm261 and Xgwm46 with PIC values 156 

of 0.672, 0.606, 0.605, and 0.579, respectively, had most PIC between studied wheat botanical 157 

varieties, the highest PIC value detected the generic distance between samples better than others, so 158 

they can be used as markers to distinguish genetic diversity. In contrast, the Xgwm577 primer with 159 

a PIC value of 0.428 showed less PIC.    160 

The probability of Identity (PI) is defined as the probability with which 2 random genotypes 161 

display the same SSR profile. The calculated PI value for each locus across all genotypes varied 162 

from 0.335 for Xgwm577 to 0.14 in Xgwm190. At the same time, the locus with a low PI value 163 

showed a high level of other parameters including Marker Index (MI), Effective Multiplex Ratio 164 

(EMR), Discrimination Power (D), and Resolving Power (RP). The MI values ranged between 2 165 

and 4.7. The maximum MI (4.7) was observed for the Xgwm190 locus. The primers that showed 166 

higher polymorphism had higher EMR values. This feature varied from 4 to 7 with a mean value of 167 

6. The estimates of RP ranged from 1.08 to 2 with an average of 1.53 per locus.  168 

The moderate values of PIC for the SSR primers could be attributed to the diverse nature of the 169 

wheat accessions and also the highly informative SSR markers used in this study. As a result of the 170 

investigation, the average PIC value was identified 0.561. 171 

The study of genetic diversity in bread wheat accessions through microsatellite markers was 172 

carried out by different researchers in many parts of the world.  173 

In previous studies, Arora et al. (2014) reported the number of observed alleles ranged from 2 174 

to 5 and the PIC value with an average of 0.584 in 319 Indian bread wheat accessions by using 16 175 

microsatellite markers. The high level of PIC value with an average of 0.83 was reported by 176 

Sardouie-Nasab et al. (2013) in assessing the genetic diversity of promising wheat (Triticum 177 

aestivum L.) lines using microsatellite markers. In another study, the number of the allele was 178 

determined between 7-11 and the PIC value with an average of 0.79 (Ateş et al., 2012). 179 
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In our research, the obtained PIC value showed a higher level of genetic diversity exists within 180 

bread-wheat accessions. Thus, the SSR primers Xgwm190, Xgwm337, Xgwm261, and Xgwm46 181 

could be used as informative and most appropriate markers for the assessment of genetic diversity 182 

as well as identification of bread wheat accessions.   183 

     A dissimilarity matrix was used to determine the level of relatedness among the Azerbaijan 184 

bread wheat studied. Cluster analysis for all samples was performed according to Nei’s genetic 185 

distance following the UPGMA method. It allowed to classify all the genotypes into nine main 186 

clusters (Figure 2). 187 

Sample No.3 from var. ferrugineum and samples No. 2 and 6 from var. lutescens botanical 188 

varieties are placed in the first group.  189 

Among the samples in this group, the samples var. ferrugineum3 and var. lutescens2 as well as 190 

the samples var. ferrugineum3 and var. lutescens6 appeared very close genetically, with a genetic 191 

distance index of 0.125 and 0.173, respectively. Samples No.7 from var. milturumand and No. 2 192 

from var. ferrugineum is separated from other bread wheat accessions and located in a second 193 

different cluster. This result shows the genetic distance between these two genotypes and other 194 

studied accessions. The value of the genetic distance index for these samples was 0.15.  195 

Following the second cluster also the third and fourth clusters have been consisted of two 196 

samples. It was found that in the third cluster, both sample No.2 and No.3 was representative of var. 197 

milturum botanical variety. Calculated Nei's genetic distance index between these two accessions 198 

was 0.15. Sample No.4 from var. milturum and No.5 from var. erythrospermum botanical variety 199 

with a genetic distance index of 0.125 has resided in the fourth group.       200 

The fifth cluster included only three samples from var. graecum. In this group, the lowest 201 

genetic distance index was studied between Var.Graecum2 and Var.Graecum4. 202 

The sixth group consisted of 9 genotypes, which made up 18% of all examined bread wheat 203 

accessions. In the current cluster, the representative of var. erythroleucon (samples No.1, 2, 3 and 204 

7) was more than the other botanical varieties representative. Also samples No.4 and 6 from var. 205 
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erythrospermum, samples No.5 and 6 from var. milturum and only one sample No.1 from var. 206 

lutescens are located in this group. One of the most interesting results of this group was founding 207 

identical samples var. erythroleucon1 and var. lutescens1 at all loci tested and were then 208 

undistinguishable in our study. At the same time, the furthest genetic distance index (0.2) was 209 

determined between var. erythrospermum4 and var. erythrospermum6.  210 

The seventh cluster consisted of only two var. graecum6 and var. ferrugineum4.  211 

The eighth cluster consisted of a, b, c, and d subgroups. The samples var. erythrospermum2, 212 

var. erythroleucon5, var. lutescens8, var. ferrugineum5, var. ferrugineum7, var. erythroleucon6 and 213 

var. graecum5 is located in the “a” subgroup. Within this subgroup between var. ferrugineum5 and 214 

far. graecum5 samples obtained the furthest genetic distance index (0.15). The samples var. 215 

lutescens3, var. lutescens4, var. erythrospermum1 and var. erythroleucon4 were resided in the “b” 216 

subgroup. The nearest genetic distance was studied between var.lutescens3 and var. lutescens4,  and 217 

the furthest genetic distance index was obtained between var. lutescens 3 and  var. erythroleucon4, 218 

with genetic distance index of 0.05 and 0.1, respectively. The “c” subgroup included only one 219 

sample sampled from var. erythrospermum8 and therefore this sample belongs to a separate 220 

subgroup which indicates the genetic distance of this sample from the other investigated genotypes 221 

of the eighth cluster. Samples No.5 and 7 from var. lutescens and sample No.6 from var. 222 

ferrugineum has located in the “d” subgroup. In the current subgroup, the highest genetic distance 223 

was found between var. lutescens7 and var. ferrugineum6 with 0.125 value of genetic distance.  224 

In comparison, the 9th cluster contained 12 genotypes which made up 24% of all examined 225 

genotypes. In the current cluster 3 accessions No. 3, 7, and 9 from var. erythrospermum, three 226 

samples No.1, 7 and 8 from var. graecum, two accessions No.8 and 9 from var. erythroleucon, at 227 

the same time from each botanical variety namely var. milturum and var. ferrugineum only one 228 

accession (No.1), also Standard Aran1 and Standard Aran2 were the main members of this cluster. 229 

Besides, this group including var. erythrospermums3 and var. erythroleucon9, could not be 230 
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distinguished based on the 7 microsatellite markers, and it may be due to their sharing of a similar 231 

basis of genetic background. 232 

In order to determine the distance among the Azerbaijan wheat botanical varieties under study, 233 

a UPGMA dendrogram (Figure 3) was constructed based on Nei’s genetic distance (1983). As 234 

observed, the botanical varieties of wheat such var. milturum and var. graecum were the most 235 

divergent from the other Azerbaijan botanical varieties studied. In fact, the samples from var. 236 

milturum and var. graecum showed the highest difference. Moreover, var. ferrugineum, var. 237 

lutescens, var. erythrospermum and var. erythroleucon displayed the highest genetic similarity. 238 

4. Conclusions 239 

Thus, the results showed significant variation in microsatellite DNA polymorphisms among 240 

wheat varieties. This study using microsatellite markers revealed considerable genetic diversity 241 

among 50 Azerbaijan wheat varieties at the DNA level and identified diverse genotypes for use in 242 

breeding programs for wheat improvement. These results suggest that the SSR markers are valuable 243 

tools for identification and diversity analysis in wheat genotypes.  244 

Conflicts of Interest: “The authors declare no conflict of interest.” 245 
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Table 1 354 

The name of bread wheat accessions originating of Azerbaijan 355 

 356 
 357 

№ Accessions № Accessions 

1 Var. Graecum 1 26 Var. Erythrospermum 4 

2 Var. Graecum 2 27 Var. Erythrospermum 5 

3 Var. Graecum 3 28 Var. Erythrospermum 6 

4 Var. Graecum 4 29 Var. Erythrospermum 7 

5 Var.Graecum 5 30 Var. Erythrospermum 8 

6 Var.Graecum 6 31 Var. Erythrospermum 9 

7 Var. Graecum 7 32 Var. Lutescens 1 

8 Var. Graecum 8 33 Var. Lutescens 2 

9 Var. Milturum 1 34 Var. Lutescens 3 

10 Var. Milturum 2 35 Var. Lutescens 4 

11 Var. Milturum 3 36 Var. Lutescens 5 

12 Var. Milturum 4 37 Var. Lutescens 6 

13 Var. Miturum 5 38 Var. Lutescens 7 

14 Var. Milturum 6 39 Var. Lutescens 8 

15 Var. Milturum 7 40 Var. Erythroleucon 1 

16 Var. Ferrugineum 1 41 Var. Erythroleucon 2 

17 Var. Ferrugineum 2 42 Var. Erythroleucon 3 

18 Var. Ferrugineum 3 43 Var. Erythroleucon 4 

19 Var. Ferrugineum 4 44 Var. Erythroleucon 5 

20 Var. Ferrugineum 5 45 Var. Erythroleucon 6 

21 Var. Ferrugineum 6 46 Var. Erythroleucon 7 

22 Var. Ferrugineum 7 47 Var. Erythroleucon 8 

23 Var. Erythrospermum 1 48 Var. Erythroleucon 9 

24 Var. Erythrospermum 2 49 Standart Aran 1 

25 Var. Erythrospermum 3 50 Standart Aran 2 
 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 
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 367 

 368 

Table 2 369 

 370 
The number of observed alleles by microsatellite markers in studied bread wheat varieties 371 

 372 

 373 
Botanical variety  Xgwm437 Xgwm261 Xgwm577 Xgwm190 Xgwm46 Xgwm389 Xgwm337 

Var. Graecum 4 5 4 4 1 2 2 

Var. Milturum 2 3 3 3 4 1 5 

Var. Ferrugineum 3 3 2 1 4 2 3 

Var. Erythrospermum 3 2 3 3 3 3 4 

Var. Lutescens 2 3 2 1 3 3 4 

Var. Erythroleucon 2 2 2 1 4 3 5 

Standard Aran 2 1 2 1 2 1 1 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 
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 389 

 390 

Table 3 391 

 392 
Genetic parameters calculated based on SSR markers in investigated bread wheat 393 

 394 

 395 
RP D MI EMR PI PIC Number of 

allele 

Locus 

1.32 0.75 3.73 7 0.245 0.533 7 Xgwm437 

2 0.77 3.03 5 0.234 0.605 5 Xgwm261 

1.08 0.64 2.57 6 0.355 0.428 6 Xgwm577 

1.92 0.86 4.7 7 0.14 0.672 7 Xgwm190 

1.52 0.79 3.47 6 0.206 0.579 6 Xgwm46 

1.28 0.72 2 4 0.281 0.502 4 Xgwm389 

1.6 0.82 4.24 7 0.18 0.606 7 Xgwm337 

1.53 0.76 3.39 6 0.234 0.561 6 Average 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 
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 410 

 411 

 412 

 413 

Fig. 1. An example of capillary electropherogram obtained by Fragment Analyzer machine 414 

with primer Xgwm-190; the numbers indicate bread wheat accessions as listed in Table 1.  415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 



  19 

 

 427 

 428 

 429 

 430 
 431 

 432 

Fig. 2. Dendrogram showing the genetic relationship among Azerbaijan bread wheat 433 

accessions. The scale is based on Nei’s genetic distance index 434 

 435 
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 441 

 442 

 443 

 444 
 445 

Fig. 3. Dendrogram showing the genetic distance between studied bread wheat botanical 446 

varieties on the basis of allele diversity of microsatellite loci   447 

 448 

 449 


