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Duple mondnet: duple deep learning based mobile net for motor neuron disease 1 

identification 2 

Abstract 3 

Background/aim: A motor neuron disease is a devastating neuron ailment that affect the 4 

motor neurons which regulates muscular voluntary actions. It is a rare disorder that 5 

gradually destroys portions of the neurological function. In general, Motor Neuron 6 

Disease (MND) appears as a result of the combination of natural, behavioural, genetic 7 

influences. However, early detection of motor neuron disease is a challenging task, 8 

manual identification is time consuming.  9 

Materials and methods: To overcome this issue a novel deep learning-based Duple 10 

feature extraction framework has been proposed for early detection of motor neuron 11 

disease. Diffusion tensor imaging tractography (DTI) images are initially analyzed for 12 

color and textural features by using dual feature extraction. Local binary pattern (LBP) -13 

based methods extract textural data from an image by examining nearby pixel values. A 14 

Color Information Feature is then added to the LBP-based feature during the classification 15 

phase for extracting color features. A flattened image is then fed into MobileNet for 16 

classifying normal and abnormal cases of MND based on its color, texture features.  17 

Results: As a result, proposed Deep-MONDNet is suitable because it achieves a 99.66% 18 

of detection rate and identify disease in its early stages.  19 

Conclusion: A Mobile Net model achieves an overall f1-score of 13.26%, 6.15%, 5.56%, 20 

and 5.96% over BPNN, CNN, SVM-RFE, and MLP, respectively. 21 

Key words: Motor neuron disease, gaussian adaptive bilateral filter, color information 22 

feature, local binary pattern, deep learning 23 

 24 
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1. Introduction 1 

The motor neuron disease (MND) is a group of debilitating neurodegenerative diseases 2 

harming neural units that govern voluntary movements of the muscles [1,2]. These 3 

diseases, which include Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis 4 

(PLS), and Progressive Muscular Atrophy (PMA), are characterized by the gradual 5 

degeneration of motor neurons, leading to muscle weakness, atrophy, and eventually 6 

paralysis [3,4]. Early diagnosis and effective management of MND are crucial for 7 

improving the quality of life for affected individuals, but this often presents a significant 8 

challenge due to the complexity and heterogeneity of these conditions [5,6].  9 

Deep learning has been an effective method for illness categorization and analysis of 10 

medical images over the past decade. Convolutional Neural Network (CNN) [7], and 11 

Recurrent Neural Network (RNN) in particular have demonstrated amazing ability in 12 

extracting key characteristics from clinical records, electrodiagnostic data, and clinical 13 

imagery [8]. These models aid in the early detection and accurate classification of motor 14 

neuron diseases by analysing various data sources, such as electromyography (EMG) 15 

signals, magnetic resonance imaging (MRI) scans [9], and patient clinical histories [10]. 16 

Leveraging deep learning for MND  classification not only holds the potential to 17 

streamline the diagnostic process but also to identify subtle patterns and biomarkers that 18 

might otherwise go unnoticed by human clinicians [11].  19 

One of the key advantages of deep learning [12] in motor neuron disease classification is 20 

its ability to learn from vast datasets. By training on diverse and extensive datasets 21 

containing information from patients with various disease stages and demographics, deep 22 

learning models generalize their knowledge, enhancing their diagnostic accuracy [13]. 23 

Additionally, deep learning is not limited to a single data type; it integrates information 24 
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from multiple sources, such as, genetic profiles, and clinical notes, to provide a 1 

comprehensive understanding of the disease. This multi-modal [14] approach holds 2 

promise for a more holistic assessment of motor neuron diseases [15]. The average 3 

lifespan of someone with MND is two to three years after diagnosis, though individual 4 

circumstances may change this. Many years may pass after a diagnosis for some people. 5 

The early stage of MND  and it is hardly possible to diagnosis. Artificial intelligence (AI) 6 

[16] has proliferated in recent years across all scientific disciplines. The early detection 7 

of MND  is now more accurate and precise thanks to the application of AI in medicine. 8 

However, early detection of MND is a challenging task and manual identification is time 9 

consuming. To overcome these challenges, a novel deep learning-based Duple-10 

MONDNet model has been proposed for identifying the healthy and patients affected by 11 

MND. By employing advanced deep learning models such as CNN, long short term 12 

memory (LSTM), You only look once (YOLO) [17], and so on contribute to detecting 13 

MND illnesses. The key contribution of the proposed Duple-MONDNet model be as 14 

follows.   15 

• Initially, the Diffusion tensor imaging tractography (DTI) images are put into 16 

the duple feature extraction phase for extracting the color and textural features 17 

of the images. 18 

• The LBP-based method extracts the textural data of an image by considering 19 

the neighbouring pixel values.  20 

• Then, CIF is added with the LBP-based feature for color feature extraction in 21 

the classification phase.  22 

• Afterward, the extracted color and texture features of images are flattered and 23 

given as the input to Mobile Net for classifying the MND.  24 



5 

 

• Finally, the Mobile Net is employed for classifying the normal and abnormal 1 

cases of MND.    2 

The research's last phase was organized as follows. The relevant studies are summarized 3 

in detail in Section 2, the proposed Duple-MONDNet for detecting motor neuron disorder 4 

is explained in detail in Section 3, and the experimental findings and comments are 5 

presented in Section 4. The essay is concluded in Section 5, which goes through additional 6 

research. 7 

2. Literature Survey    8 

In the past, numerous researchers have used digital image processing and classification 9 

techniques to publish studies recognizing both normal and abnormal cases of MND. 10 

Diverse literature works have been written about recent developments in deep learning 11 

and machine learning techniques. 12 

In 2019 Agosta, F et al., [18] developed a significant cohort of people with MND and 13 

the prognostic effect of multimodal brain MRI on survival. Multivariable Medical and 14 

mental features were used to build the Royston-Parmar survival model. The integrated 15 

clinical and MRI model with specific front-temporal grey matter densities and mobility 16 

vector MRI parameters achieves an AUC of 0.89. 17 

In 2019 Lauraitis, A et al., [19] suggested proposed smartphone app for automated 18 

decision aid for cognitive task-based assessment of motor diseases of the neuron system. 19 

A back-propagation neural network (BPNN) classifier is utilized for examine the data 20 

and provide result. The rate of success in identifying early, prodromal symptoms of 21 

motor illnesses is 86.4%. The proposed method shows the low reliability rate than other 22 

models. 23 
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In 2019 Hassanpour, A et al., [20] propose a multi-class motor imaging 1 

electroencephalogram signal classification end-to-end deep neural network. Deep Belief 2 

Networks (DBN) and Stacked Sparse Autoencoder (SSAE), two Generative Deep 3 

Learning (GDL) frameworks, are used in an e2e fashion. Additionally, the effectiveness 4 

of the suggested methodology is assessed both with and without the CS and NR phases. 5 

For the Deep Belief Networks (DBN) frameworks, the suggested method attained 6 

reliability are 91.54% and 90.21%, accordingly. 7 

In 2020 Ramakrishnan, J et al., [21] designed a cross power spectral density-based 8 

wheelchair control system for the detection of motor neuron disease. The CNN model is 9 

employed for the detection of MND using the eye movement of the people. Qualified 10 

users in the evaluation achieved a total reliability of 93.51% and still the suggested 11 

method obtained the less accurate rate than other existing methods. 12 

In 2020 Zhang, K et al., [22] designed a hybrid neural network to enhance the detection 13 

of motor imagery signals. Enhance the ability to classify motor functions, the generative 14 

adversarial network has been presented. A short-time Fourier transform (STFT) is used 15 

to convert the time sequence data into spectrogram visuals. The hybrid network deep 16 

convolutional generative adversarial network (DCGAN) fared better than previous 17 

categorization and achieve reliability with average kappa scores of 0.564 and 0.677 from 18 

dataset. The obtained accuracy level is still not enough. 19 

In 2021 Greco, A et al., [23] suggest utilizing only blood data to identify and classify 20 

patients with participation of both higher and lesser motor neuron. For categorizing each 21 

patient into the ALS or Lower motor neuron (LMN) disease classes, a support vector 22 

machine with recursive feature elimination (SVM-RFE) was implemented. The 23 
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experiment yield 94% of accuracy rate for the classification and the outcome shows less 1 

rate than other approaches. 2 

In 2021 Subasi, A et al., [24] suggest a powerful combination of the Multiscale Principal 3 

Component Analysis (MSPCA), and ensembles learning-based algorithms for the 4 

classification of the MND. Employing ECG signals, a wavelet transform (WT) based on 5 

the Daubechies method is used to produce the noise reduction. The stated ensemble 6 

learning method produces accuracy values of 98.69% and 94.83% respectively. 7 

In 2022 Sekar, G et al., [25] proposed a neural machine learning model to recognize 8 

motor neuron illness and forecast its effects on health. Based on historical data and 9 

current knowledge, the machine learning system forecasts the effects of motor neuron 10 

illness. Using the above symptoms, it may be concluded that there is 93.28% bulbar 11 

palsy, 91.44% tendon erosion, and 93.22% polytopic paralysis. The experiment attains 12 

low level of reliability rate. 13 

In 2022 Bede, P et al., [26] presented Motor neuron illness phenotypic classification of 14 

each patient using radiological disease load variations. Applying the 15 

Multilayer Perceptron (MLP) rate of classification for amyotrophic lateral sclerosis was 16 

achieved 93.7%, while poor accurate diagnosis was found for primary lateral sclerosis 17 

43.8%. The experimental provides the low level of success rate for the classification of 18 

illness.  19 

In 2023 Toh, C et al., [27] suggest spinal and brain MRI measurements in a single region 20 

for the direct neurodegeneration in motor neuron illness. A collection of 75 MND 21 

patients and 13 normal controls possessed MRI. Utilizing Free Surfer, volumetric T1-22 

weighted images were used to quantify the precentral gyral width. The experiment 23 

achieves 95% of success rate, but the reliability level is not enough for the detection. 24 
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According to the studies described above, the MND has detected utilizing several kinds 1 

of techniques. To determine and categorize disease, researchers employed approaches 2 

like preliminary processing images, and categorizing diseases using some training 3 

models. The techniques utilized are provide low reliability rate than advance deep 4 

learning approaches. To overcome this a novel Duple MONDNet is proposed for the 5 

early detection of MND. 6 

3. Proposed Method  7 

In this research paper, a novel deep learning-based Duple-MONDNet model has been 8 

proposed for identifying the healthy and patients affected by MND. Initially, the fruit 9 

images are fed into the dual-feature extraction phase for extracting the color and textural 10 

features of the images. The LBP-based operator extracts the textural data of an image by 11 

considering the neighbouring pixel values. Then, CIF is added with the LBP-based 12 

feature for color feature extraction in the classification phase. Afterward, the extracted 13 

color and texture features of images are flattered and given as the input to Mobile Net 14 

for classifying the normal and abnormal cases. Finally, the Mobile Net is employed for 15 

classifying early stages of MND. Figure 1 depicts the proposed Duple-MONDNet.     16 

3.1. Dataset Description 17 

In this section, the gathered dataset and the data augmentation process are evaluated to 18 

enhance the images in the dataset and detect MND. The images are collected from Pranav 19 

Diagnostics Centre in Nagercoil, Tamil Nadu. The dataset comprises 78 normal cases and 20 

52 abnormal images. To enhance the dataset, the collected images underwent 21 

augmentation. The study's experimental setup was conducted using Spyder, an Anaconda 22 

navigator, running on a PC equipped with Windows 10 OS. The PC featured an Intel i5 23 

core processor with a clock speed of 2.10 GHz and a 16GB RAM system. Additionally, 24 
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the performance of the proposed model was evaluated with several other deep learning 1 

models. 2 

Table 1 displays the distribution of disease classes in the dataset before and after 3 

augmentation. Initially, the dataset consisted of 130 total images sourced from our self-4 

prepared dataset, with 78 representing normal brain scans and 52 representing abnormal 5 

brain scans. Following augmentation, the dataset experienced significant expansion, with 6 

the total number of images increasing to 3120 for the self-prepared dataset. Notably, the 7 

augmentation process substantially increased the number of normal images to 1872 from 8 

the self-prepared dataset, while the number of abnormal images similarly rose to 1248 9 

from the self-prepared dataset. As a result, the augmented dataset now comprises a total 10 

of 3250 images, providing a larger and more balanced dataset for training and analysis 11 

purposes. 12 

3.2. Gaussian adaptive bilateral (GAB) filter  13 

The GAB filter is used at the pre-processing stage to reduce the distortion in the input 14 

images. The principle of bilateral filtering is combined with adaptive parameter 15 

adjustments in the Gaussian Adaptive Bilateral Filter, which effectively denoises 16 

medical images. It is crucial for the identification of motor illnesses by deep learning 17 

since efficient data maintaining is required for reliable diagnosis and evaluation. The 18 

method proposed significantly enhance the quality of images. The bilateral filter and 19 

input image 𝐼𝑝 and guidance 𝐺𝑑 are different, as shown in equation (1): 20 

    𝑓(𝑣) = ∑ (𝑊 𝐺𝑑
𝑣,𝑢

)𝑢 (𝐺𝑑)𝐼𝑢                                                                                              (1)                                                                                                    21 

Where 𝐼𝑢 represent the source image and 𝑊 𝐺𝑑
𝑣,𝑢

 is demonstrated in below equation (2).  22 

     𝑊 𝐺𝑑
𝑣,𝑢

=
1

𝑁𝑜𝑟𝑓
exp [− ‖

𝑣−𝑢

−𝜎𝑧
2‖

2

]                                                                                         (2)                                                                                 23 
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From the above equation (2)  𝑁𝑜𝑟𝑓 denotes the normalizing factor. In equation (2) 1 

Gaussian spatial filter is depicted by exp [− ‖
𝑣−𝑢

−𝜎𝑧
2‖

2

], the GAB kernel is expressed in 2 

equation (3). 3 

      ℌ𝑣,𝑢
𝑔𝑎𝑏(𝐼, 𝐺−) =

1

𝑁𝑜𝑟𝑓
exp  [− ‖

𝑣−𝑢

−𝜎𝑧
2‖

2

]𝑒𝑥𝑝 [− ‖
𝐼𝑣−𝐺𝑑

−

−𝜎𝑠
2 ‖

2

]                                           (3)                                              4 

Where,  −𝜎𝑧
2   represent the difference in intensities. 𝐺𝑑

−  obtained from equations (1) 5 

and (3) and 𝑒𝑥𝑝 [− ‖
𝐼𝑣−𝐺𝑑

−

−𝜎𝑠
2 ‖

2

] is the range kernel.  6 

      𝑓(𝑣) = ∑ (𝑊 𝑔𝑎𝑏𝑓
𝑣,𝑢

)𝑣 [𝐼𝑝, 𝐺𝑑
−]𝐼𝑢                                                                                   (4)                                                                                  7 

The final output  𝑓(𝑣) of the GAB filter is expressed in equation (4). The noise-free 8 

images are used as input to the CT fusion to extract the key characteristics for 9 

categorizing the DTI into normal and abnormal cases of MND. 10 

3.3. Proposed DUPLE MONDNet 11 

A Deep MONDNet is proposed for detecting MND at its earliest stages using DTI 12 

images from the gathered datasets. CIF and LBP were used for color and texture feature 13 

extraction, and Mobile Net was used for classifying normal and abnormal cases of MND. 14 

3.3.1. Color Information Feature (CIF) Block 15 

The CIF block is a specialized component in deep learning models designed for disease 16 

detection in medical images, particularly those where color information plays a critical 17 

role. This block is engineered to efficiently extract relevant color-related features from 18 

the input images, enhancing the model's ability to discriminate between healthy and 19 

diseased tissues or structures. By utilizing, the CIF block is designed to capture intricate 20 

color patterns and variations within the medical images. It typically consists of a series 21 

of convolutional layers, each with learnable filters that convolve over the input image's 22 
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color channels (e.g., RGB or other color representations). These filters are designed to 1 

detect specific color gradients, textures, or patterns indicative of disease-related 2 

characteristics. The output of these convolutional layers is then processed to generate 3 

color-related features.  4 

In addition to its convolutional layers, the CIF block may also incorporate advanced 5 

techniques like attention mechanisms or feature fusion. These enhancements enable the 6 

model to prioritize certain color-related features or integrate them with other relevant 7 

information extracted from the image, further improving diagnostic accuracy. 8 

The CIF block stores details about color, including pixel value, contrast, and color 9 

dispersion. A color image must initially be divided into many image chunks as the first 10 

stage. Figure 2 depicts the RGB conversion in CIF block. 11 

The CIF block is a specialized component in deep learning models that is specifically 12 

designed for disease detection in medical images. The CIF block is efficiently extract 13 

and process color-related features from the input images. This enhances the model’s 14 

ability to discriminate between healthy and diseased tissues and thereby improving 15 

disease detection. The CIF block captures intricate color patterns and variations within 16 

the medical images, which is crucial in identifying disease-related characteristics. An 17 

input image undergoes a transformation where its intricate color patterns are extracted 18 

and segregated into distinct channels - red, green, and blue. Each channel is then 19 

subjected to min and max quantizers identification, that aids in increasing the features 20 

essential for accurate disease detection. The CIF block captures intricate color patterns 21 

and variations within the medical images. These patterns often correspond to disease-22 

related characteristics. By identifying these patterns, the CIF block detect signs of 23 

disease that are missed by other methods. The CIF block is robust to variations in lighting 24 
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and color due to its focus on relative color information. This makes it more reliable in 1 

different imaging conditions. By prioritizing certain color-related features and 2 

integrating them with other relevant information extracted from the image, the CIF block 3 

is improving diagnostic accuracy. This is particularly important in medical imaging, 4 

where accurate diagnosis can significantly impact patient outcomes. The CIF block 5 

processes images in chunks, and it is more computationally efficient. This is crucial in 6 

medical imaging, where large volumes of data need to be processed quickly.  The CIF 7 

block enhances the precision of disease detection in medical images by efficiently 8 

extracting and processing color-related features. This not only improves the model’s 9 

ability to distinguish between healthy and diseased tissues but also captures intricate 10 

color patterns and variations within the images, which are often indicative of disease 11 

manifestations.  12 

The color reduction method for the color quantizers was carried out after getting the 13 

balanced-tree. Each color quantizer, such as the min and max quantizer, receives a single 14 

value representation as a result of the color reduction process. Let 𝑇𝑚𝑖𝑛 =15 

{𝑠1̂, 𝑠2̂, … , �̂�𝑘𝑚𝑖𝑛
} and 𝑇𝑚𝑎𝑥 = {𝑠1̂, 𝑠2̂, … , �̂�𝑘𝑚𝑎𝑥

}  be the set of input images from the 16 

minimum and maximum quantizer respectively. Here, 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are the dimension 17 

of the minimum and maximum color. The 𝑠min(𝑢, 𝑣) and 𝑠𝑚𝑎𝑥(𝑢, 𝑣)   are the minimum 18 

and maximum quantizer on image block (u, v). The color extraction method for the 19 

minimum quantizer shown in equation (5). 20 

𝜉{𝑠𝑚𝑖𝑛} = �̂�𝑐                                                                                                                      (5)                                                                                                                   21 

Where c =  {1, 2, … , 𝑠𝑚𝑖𝑛} and 𝜉{. } demonstrates the color extracted process of the input 22 

images. The color extracted process of the max quantizer is denoted in equation (6).  23 

𝜉{𝑠𝑚𝑎𝑥} = �̂�𝑑                                                                                                                         (6)                                                                                                                              24 
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Where c =  {1, 2, … , 𝑠𝑚𝑎𝑥}, the above equation demonstrates the nearest pair among the 1 

maximum quantizer. The feature extraction phase for the 𝐶𝐼𝐹𝑚𝑖𝑛 and 𝐶𝐼𝐹𝑚𝑎𝑥  are derived 2 

by utilizing equations (7) and (8). 3 

𝐶𝐼𝐹𝑚𝑖𝑛(𝑎) = 𝜒[𝜉(𝑠𝑚𝑖𝑛(𝑢, 𝑣)} = �̂�𝑐|ℐ = 1,2, … ,
𝔩

ℓ
; 𝒥 = 1,2, … ,

𝒩

𝔎
]                                 (7)                                            4 

𝐶𝐼𝐹𝑚𝑎𝑥(𝑎) = 𝜒[𝜉(𝑠𝑚𝑎𝑥(𝑢, 𝑣)} = �̂�𝑑|𝒥 = 1,2, … ,
𝔩

ℓ
; 𝒥 = 1,2, … ,

𝒩

𝔎
]                               (8)                                                             5 

The above equation 𝜒(. ) shows the probability factor of min and max quantizer. Here, 6 

𝑐 = 1,2, … , 𝑠𝑚𝑖𝑛 and 𝑑 = 1,2, … , 𝑠𝑚𝑎𝑥  are identical width of the color extracted feature. 7 

The processing of several quantizers, such as the minimum and maximum quantizers 8 

from a color image, lead to the creation of a CIF block. It comprises a set of 1𝑥1 9 

pointwise convolutions (PWConv), a channel shuffling operation, a set of 3x3 depth-10 

wise separable convolutions (DWConv), and finally a channel reordering action. The 11 

feature map's result could be demonstrated in a manner is expressed in equation (9). 12 

𝑠𝑓(ℒ, 𝔎) = (𝑄 × 𝑁)(ℒ, 𝔎) = ∑ ∑ 𝑄(𝒶, 𝒷)𝒷𝒶 𝒬(ℒ − 𝒶, 𝔎 − 𝒷)                                              (9)                                                                13 

Where (ℒ, 𝔎) shows the input and kernel of the currently accessed phase and 𝑠𝑓 14 

represents the characteristic image. The extracted features of CIF block are fused with 15 

LBP block for the feature extraction in the classification phase. 16 

3.3.2. Local Binary Pattern (LBP) Block 17 

LBP is a texture descriptor frequently used in conjunction with deep learning techniques 18 

for various computer vision tasks. LBP primary role in deep learning is as a feature 19 

extraction method. When working with deep neural networks, particularly CNN, LBP is 20 

applied as a preprocessing step to capture essential texture information from images. By 21 

extracting LBP-based features, the network focus on learning more complex and 22 

discriminative features during training.  23 
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By extracting LBP features from unlabelled or partially labelled data and using them as 1 

input for a deep learning model, it's possible to perform unsupervised or semi-supervised 2 

feature learning, which is especially beneficial in medical imaging or other domains with 3 

scarce annotated data. LBP plays a valuable part in deep learning by providing a texture-4 

based feature extraction method that enhance the capabilities of deep neural networks in 5 

various computer vision applications, especially when data is limited or when capturing 6 

local texture information is critical for accurate predictions. The process starts with a 7 

grayscale brain scan image. Grayscale images are used to simplify the image while 8 

retaining essential information. Color images are converted to grayscale where each 9 

pixel corresponds to the intensity of light that it represents. Local Binary Pattern (LBP) 10 

is a very efficient texture operator which labels the pixels of an image by thresholding 11 

the neighborhood of each pixel and considers the result as a binary number. It’s robust 12 

against monotonic gray-scale changes and has shown excellent results in detecting 13 

MND. The LBP operation transforms the grayscale image into a texture map. This map 14 

emphasizes the different textures present in the image, which correspond to different 15 

tissue types in the brain. The texture map makes certain features more distinguishable 16 

than the original grayscale image. This method is useful in medical imaging to extract 17 

specific features from the images for further analyzing brain diseases. The enhanced 18 

contrast image provided by LBP-based feature extraction is aid in identifying areas of 19 

interest that might be less noticeable in the original grayscale image. 20 

Diagrammatic representations of the LBP-based feature extraction shown in Figure 3. 21 

The textural characteristics of the images are typically captured by image processing 22 

systems using an LBP and its variants. For depict retrieval, the visual representation of 23 

the LBP pattern serves as an attribute classifier. Before LBP is calculated, a color image 24 
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is first converted to grayscale. By evaluating the contents of the central pixel with those 1 

of its peers, the LBP generates its code by taking into account the characteristics of the 2 

surrounding pixels.  The Local Ternary Pattern is a variant of the LBP function, generates 3 

three distinct areas in the grey values of the primary pixel and adjacent pixels. The LBP 4 

based feature extraction phase of the input image  𝐼 of size 𝑀 ×  𝑁 in RGB color space 5 

is initial transformed into the inter-band-average depiction in equation (10), 6 

𝑃(𝑥, 𝑦) =
1

3
[𝑅𝑓(𝑥, 𝑦) + 𝐺𝑓(𝔰, 𝔴 ) + 𝐵𝑓(𝔰, 𝔴)]                                                                (10)                                                                               7 

where 𝑥 =  1,2, … , 𝑀 𝑎𝑛𝑑 𝑦 =  1,2, … , 𝑁. The factor (𝔰, 𝔴) represents the pixel 8 

location of an image. Although R, G, B, signifies the red, green, blue color space. For 9 

the image 𝑧𝑖 , the qth convolutional layer’s characteristic map be illustrated as 𝑐𝑜𝑛𝑣𝑖𝑧𝑖 =10 

[𝑐𝑜𝑛𝑣𝑖1 𝑧𝑖, 𝑐𝑜𝑛𝑣𝑖2 𝑧𝑖 , … , 𝑐𝑜𝑛𝑣𝑖𝑓𝑧𝑖], Where f is the quantity of filters in the qth layer of 11 

proposed model. For each pixel (u, v) in 𝑐𝑜𝑛𝑣𝑖1 𝑧𝑖, the LBP block is computed in below 12 

equation (11). 13 

𝐿𝐵𝑃𝑠,𝑟(𝑢, 𝑣) = ∑ 𝜚(𝑡𝑣
𝑠
𝛼=1 − 𝑡𝑢) × 2𝑛−1                                                                         (11)                                                                                           14 

From the above equation, 𝑢 ≥ 0; 𝑡𝑣 𝑎𝑛𝑑 𝑡𝑢 (𝛼 = ⋯ 𝑝) denote the intensity values of the 15 

pixel (𝑢, 𝑣) and p is the neighbour pixel. To express the information about the texture of 16 

the image, the occurrences of various binary patterns are gathered into a histogram.  17 

Let 𝐵
ℎ𝑧𝑖

𝑞𝑓 be the texture of histogram extracted feature from ℎ𝑧𝑖

𝑞𝑓
 . For the image 𝑧𝑖, all 18 

texture histogram is shown in equation (12) 19 

𝐵(𝑧𝑖) = {𝐵ℎ𝑧𝑖
1 . 𝐵ℎ𝑧𝑖

2 , … . . , 𝐵
ℎ𝑧𝑖

𝑄 }                                                                                         (12)                                                                                    20 

From the above equation 𝐵(𝑧𝑖) be the convolution layer in the fine-tuned model. So 21 

𝐵(𝑧𝑖
𝑅𝐺𝐵) 𝑎𝑛𝑑  𝐵(𝑧𝑖

𝑔𝑟𝑎𝑦 𝑠𝑐𝑎𝑙𝑒
) are the color texture histograms from the models. The grey 22 
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level value of the pixel (𝑡𝑣, 𝑡𝑢) in the grey scale factor of the adjacent pixels, where c(x) 1 

is denoted in equation (13).  2 

𝑠(𝑥) = {
1 𝔦𝔣 𝔵 ≥ 0
0 𝔦𝔣 𝔵 ≥ 0

                                                                                                                (13)                                                                                                3 

In deep learning for motor neuron disease classification, the fusion of color and texture 4 

features from DTI images be achieved using advanced neural network framework and 5 

techniques. The fusion of color and texture features in medical imaging, such as DTI 6 

scans, be the valuable approach for motor neuron disease classification. This fusion 7 

strategy enhances the sensitivity and specificity of classification models, allowing for 8 

more accurate and robust diagnoses of motor neuron diseases. Deep learning techniques, 9 

such as Duple-MONDNet, employed effectively to integrate color and texture 10 

information from DTI scans and improve the overall performance of disease 11 

classification systems. By combining color and texture information in a deep learning 12 

model, it becomes more adept at discriminating subtle pathological patterns, leading to 13 

more precise and reliable diagnoses of motor neuron diseases from DTI scans. 14 

 15 

3.3.3. Mobile Net  16 

Mobile Net is made up of convolutional structures with depth-wise separable 17 

convolutions that are more computationally efficient than regular convolutions. The 18 

network starts with a series of standard convolutional layers to capture low-level 19 

features, followed by depth wise separable convolutions that efficiently extract spatial 20 

information while reducing computational load. Depth wise separable convolutions are 21 

followed by pointwise convolutions that combine features from different channels. Batch 22 

standardization and ReLU layer are applied to enhance network training and stability. 23 
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MobileNet typically ends with a global average pooling layer and a fully connected 1 

SoftMax layer for categorization.   2 

Following each convolution process, the batch normalization procedure and the ReLU 3 

activation feature are employed to achieve automatic data distribution correction. Deep 4 

and separable convolution networks speed up Mobile Net training and significantly 5 

reduce cost. The standard convolution structure ere denoted in equation (14). 6 

ℜ𝑟 = ∑ 𝜔𝑘,𝑙𝑘 ∙ Ι𝑘                                                                                                            (14)                                                                                                         7 

From the above equation 𝑘 𝑎𝑛𝑑 𝑙 are the input and outcome phase. 𝜔𝑘,𝑙 is the kernel, Ι𝑘 8 

shows the given data and feature attribute, which utilizing the style of minimum padding. 9 

If the dimension of the given input data Ι𝑘 is Η𝑖𝑝
× H𝑖𝑝

, the das has 𝑙 kernel and 𝑘 channel 10 

phase before the feature map access. The computing cost of the standard convolutional 11 

layer be shown in equation (15). 12 

ℒ𝑟 = Η𝑜/𝑝
× Η𝑜/𝑝

× 𝑘 × 𝑙 × Η𝑖𝑝
× Η𝑖𝑝

                                                                               (15)                                                                                    13 

The depth-wise convolutional phase be demonstrated in equation (16). Where ℘1,𝑘 14 

represent the kernels, Ι𝑘 denotes the input data.  15 

𝜒𝑘 = ∑ ℘1,𝑘 ∙ Ι𝑘                                                                                                                   (16)                                                                                                   16 

In depth-wise convolution, 𝑘 filters with 𝑙 channels and a Η𝑜/𝑝
× Η𝑜/𝑝

 length is 17 

provided. It is important for having 𝑙 filters during the point-wise iteration with 1 × 1 18 

dimensions using 𝑘 channels. The extensive separable convolution structure's 19 

computational cost is calculated utilizing equation (17). 20 

ℱ𝜈 = Η𝑜/𝑝
× Η𝑜/𝑝

× 𝑘 × Η𝑖𝑝
× Η𝑖𝑝

+ 𝑘 × 𝑙 × Η𝑖𝑝
× Η𝑖𝑝

                                                       (17)                                                     21 

Evaluating the above equation of computational cost with the standard convolutional 22 

method, the cost of the proposed approach be reduced by 
1

𝑙
+

1

Η2
𝑜/𝑝

. Now, the color 23 
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extracted features are fed into MobileNet for the classification of MND cases. 1 

Architecture of Proposed MobileNet shown in Figure. 4 2 

By using deep and separable convolutional structures, the Mobile Net allows for rapid 3 

training and reduced calculations. Finally, the MobileNet is employed for classifying the 4 

normal and abnormal cases. 5 

4. Results and Discussion 6 

The MND disease is categorized by utilizing the gathered dataset. The below Figure 5 7 

shows the experimental outcome of the proposed Duple MONDNet model utilizing the 8 

gathered dataset. The input images (column 1) are pre-processed using GAB filter 9 

(column 2) to reduce the distortion and improve the quality of the input images. 10 

Concurrently, these pre-processed images are supplied into color conversion block 11 

(column 3) for color feature extraction. The CIF is fuse with LBP block (column 4) for 12 

color and texture feature extraction of images in the classification phase. The minimum 13 

and maximum value of the RGB conversion images and the extracted features are shown 14 

in column (5) & (6), respectively.    Finally, the MobileNet is employed for classifying 15 

the normal and abnormal cases of MND (column 7).   16 

4.1. Performance Analysis 17 

The results of the investigations demonstrate the specific characteristics, such as 18 

precision, sensitivity, specificity, accuracy, recall, and F1 score, of the MND 19 

recognition. Basic variables like True Positive (𝑇𝑢𝑃𝑣
+), True Negative (𝑇𝑢𝑁𝑣

+), False 20 

Positive (𝑓𝑙𝑃𝑣
+

), and False Negative (𝑓𝑙𝑁𝑣
+) is used to provide the discussed evaluation 21 

metrics. Accuracy in motor disease classification quantifies the percentage of correctly 22 

classified instances, providing a straightforward measure of overall model performance. 23 

Using the following equation (18), the accuracy was evaluated. 24 
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𝐴 =
𝑇𝑢𝑃𝑣

++𝑇𝑢𝑁𝑣
+

𝑇𝑢𝑃𝑣
++𝑇𝑢𝑁𝑣

++𝑓𝑙𝑃𝑣
++𝑓𝑙𝑁𝑣

+ × 100                                                                                   (18)                                                                                      1 

Precision in deep learning for motor disease classification is a crucial performance 2 

metric that measures the accuracy of positive predictions among all predicted positive 3 

cases.  4 

𝑃 =
𝑇𝑢𝑃𝑣

+

𝑇𝑢𝑃𝑣
++ 𝑓𝑙𝑃𝑣

+                                                                                                                     (19)                                                                                                        5 

𝑅𝑒 =
𝑇𝑢𝑃𝑣

+

𝑇𝑢𝑃𝑣
++𝑓𝑙𝑃𝑣

+                                                                                                                 (20)                                                                                                               6 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑃𝑟𝑒𝑅𝑒𝑐

𝑃𝑟𝑒+𝑅𝑒𝑐
                                                                                                  (21)                                                                                                 7 

where 𝑇𝑢𝑃𝑣
+ and 𝑇𝑢𝑁𝑣

+ shows true positives and negatives of input images, 8 

𝑓𝑙𝑃𝑣
+and 𝑓𝑙𝑁𝑣

+depicts the false positives and negatives of the MND images.  9 

The effectiveness of the proposed Duple MONDNet by classifying early stages of MND, 10 

including normal and abnormal cases are shown in Table.2. The proposed Duple 11 

MONDNet has yield 99.66% accuracy rate. Additionally, the proposed Duple 12 

MONDNet achieves an F1 score of 98.44% respectively. 13 

The value for accuracy is displayed on the vertical axis of the Figure 6 reliability curve, 14 

while the quantity of phases is plotted on the horizontal axis.  The epoch and deficit scale 15 

in Figure 7 shows that the data loss of Duple MONDNet minimizes when the epochs are 16 

elevated. 17 

The proposed Duple MONDNet classifies early stages of MND using gathered DTI 18 

images. To attain the best testing accuracy, this research estimated the number of training 19 

epochs sufficient. Depending on the 100 number of epochs, the proposed Duple 20 

MONDNet attained 99.66% testing accuracy with a low percentage of errors. 21 

4.2. Comparative analysis 22 
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Each neural network's effectiveness was assessed to verify that the Duple MONDNet 1 

findings had higher accuracy. Res Net, Alex Net, and Google Net, four neural network 2 

classifiers in the proposed Duple MONDNet, were assessed for performance. The 3 

quality was estimated by a number of measures, including accuracy, specificity, and 4 

recall, which are superior to those employed by conventional DL networks 5 

Table.3 illustrates the contrast by comparing the maximal capacity for categorization 6 

over many common DL connections. However, the conventional DL networks failed to 7 

produce stronger fallouts than the proposed Duple MONDNet. The proposed Mobile Net 8 

raises the overall f1-Score by 2.59%, 3.51%, and 4.14% respectively.  9 

To assess the effectiveness of various strategies, Table 4 provides the experimental 10 

result of test images from the gathered dataset. A measure of performance for evaluating 11 

prior models was the efficiency of categorization. Comparing the Mobile Net to back-12 

propagation neural network (BPNN), Convolutional Neural Network (CNN), Support 13 

vector machine with recursive feature elimination (SVM-RFE), and Multi-Layer 14 

Perceptron (MLP) typically results in the f1-score range of 13.26%, 6.15%, 5.56%, and 15 

5.96% respectively. 16 

However, the older networks did not result in superior fallouts than the proposed Duple 17 

MONDNet.  To distinguish between normal and abnormal cases the indicated Duple 18 

MONDNet estimated results seem to be quite reliable.  19 

5. Conclusion 20 

In this research paper, a novel deep learning-based Duple feature extraction for early 21 

detection of MND. DTI images are initially analyzed for color and textural features by 22 

using dual feature extraction. LBP-based methods extract textural data from an image by 23 

examining nearby pixel values. CIF block is then added to the LBP-based feature during 24 
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the classification phase for extracting color features. A flattened image is then fed into 1 

MobileNet is a classifier that uses the color and texture features of the image to 2 

categorize normal and abnormal MND cases. MND cases was detected with an average 3 

classification accuracy of 99.66%. A Mobile Net achieves an overall f1-score of 13.26%, 4 

6.15%, 5.56%, and 5.96% over BPNN, CNN, SVM-RFE, and MLP.  In the future, the 5 

proposed model is extended with advance deep learning techniques, or an advanced color 6 

extraction model is implemented for improving the diagnosis rate. 7 
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 1 

Figure 1 schematic illustration of proposed Duple-MONDNet 2 

 3 

Figure 2 Schematic RGB representation of the min and max quantizers identification 4 

 5 

Figure 3 Diagrammatic representations of the LBP-based feature extraction 6 
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 1 

Figure 4 Architecture of Proposed MobileNet 2 

 3 

Figure 5. Experimental outcomes of the proposed Duple MONDNet  4 
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 1 

Figure. 6 Accuracy curve of the proposed Duple MOND Net 2 

 3 

Figure. 7 Loss curve of the proposed Duple MOND Net 4 

 5 

 6 

 7 

 8 
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Table 1. Dataset description of the proposed model 1 

 

Disease 

classes 

Before augmentation After augmentation  

Total 

images 

Self-prepared dataset Self-prepared dataset 

Normal 78 1872 1950 

Abnormal 52 1248 1300 

Total 130 3120 3250 

 2 

Table 2. Evaluation outcomes of the proposed Duple MONDNet 3 

 4 

Table 3. Comparison with several traditional networks 5 

Networks Accuracy Precision Recall Specificity F1 score 

Res Net [28] 97.35 97.27 96.36 95.44 97.07 

Alex Net [29] 96.17 95.98 97.30 97.453 96.15 

Google Net 

[30] 

95.18 94.34 95.63 95.11 95.52 

Mobile Net 98.99 98.19 97.21 97.82 98.74 

 6 

 7 

 8 

Classes Accuracy Precision Recall Specificity F1 score 

Normal 99.64 98.09 98.33 97.55 98.67 

Abnormal 99.68 97.14 97.69 96.66 98.22 
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Table4.  Accuracy contrast between existing methods and proposed Duple MONDNet 1 

Author Methods Accuracy 

Lauraitis, A et al., [19] BPNN 86.4% 

Ramakrishnan, J et al., [21] CNN 93.51% 

Greco, A et al., [23] SVM-RFE 94% 

Bede, P et al., [26] MLP 93.7% 

Proposed model Duple MONDNet 99.66% 

 2 


