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Abstract: In this research, we investigate the intriguing realm of pointwise bi-slant Riemannian submersions, a gener-5

alization of many previous submersions, such as anti-invariant, slant, semi-slant, pointwise slant, pointwise semi-slant,6

and bi-slant submersions, within the framework of almost product manifolds. After giving an original example, we7

delve into the submersion’s integrability conditions and geodesics. We explore the concept of φ−pluriharmonicity and8

φ− invariance within this context. The study sheds light on the profound interplay between pointwise bi-slant submer-9

sions’ fibers and their being either geodesic or mixed geodesic, offering valuable insights into these intriguing mappings’10

geometric properties.11

Key words: Riemannian submersion; pluriharmonicity; harmonic; pointwise slant distribution; geodesic; integrable.12

1. Introduction13

The theory of submanifolds has been shown to be quite useful in Differential Geometry. It generalizes the14

concept of curves and surfaces to higher dimensions, aids in representing configuration spaces of physical15

systems, allows for the representation of complex shapes and motion paths in an efficient, compact manner16

in robotics and computers, and so on. Overall, submanifolds provide a powerful and flexible framework for17

understanding complex geometries and their intrinsic properties. They offer a deeper insight into the structure18

of spaces, and crucially, they find applications across a wide range of disciplines, making them an essential19

concept in modern mathematics and its various applications.20

The importance of submanifolds prompted the Geometers to define and study specific submanifolds.21

One of the ways to obtain a submanifold is by working with submersions. The most well-known and studied22

map of this kind is the Riemannian Submersion. The notion of Riemannian submersion was introduced first23

by O’Neill [9]. Riemannian submersions have significant implications in physics, particularly in the study of24

gauge theories and field theories. In the context of fiber bundles, Riemannian submersions often arise when25

dealing with the projection of a higher-dimensional physical space onto a lower-dimensional base manifold.26

This projection preserves certain geometric and metric properties, making it a valuable tool in modeling and27
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understanding physical phenomena, such as gauge field theories and the geometry of spacetime in general1

relativity. Additionally, Riemannian submersions find applications in optimal control theory, providing insights2

into the dynamics and symmetries of physical systems.3

Later, Watson considered Riemannian submersions between almost Hermitian manifolds and called them4

almost Hermitian submersions [18] , where the submersion is a complex mapping. Consequently, the vertical5

and horizontal distributions are invariant with respect to the almost complex structure of the total manifold of6

the submersion. Another submersion, called an anti-invariant Riemannian submersion, was defined also in a7

complex context by Şahin [15]: in this case, the fibers are horizontal under the action of the almost complex8

structure, i.e. they are anti-invariant submanifolds of the total space. Outside of these specific cases, the notion9

of a Riemannian submersion has been considered in many other contexts, such as contact [2], complex [6, 17],10

almost product [13], and more. In all of these studies, submersions were defined based on the action of the11

structure of the manifold on the fibers.12

Recently, in the complex context, Sepet defined and studied pointwise bi-slant Riemannian submersion13

[14], while two of the current paper’s authors defined and studied bi-slant Riemannian submersion [11]. The14

current paper attempts to fill a gap in the literature by studying a corresponding notion of pointwise bi-slant15

Riemannian submersion in the almost product context, which is a generalization of many submersions defined16

before such as slant [16], pointwise slant [4], semi-slant [7], pointwise semi-slant [10], and conformal quasi bi-slant17

[8]. It is structured as follows. In Section 2, we establish the groundwork for acquiring a thorough comprehension18

of Riemannian submersion and almost product Riemannian manifolds within the field of Differential Geometry.19

Section 3 starts with the definition and an original example of a pointwise bi-slant Riemannian submersion20

in the almost product context. Following the customary focus on prior research, our inquiry examines the21

integrability of the fibers. We delve into the exploration of totally geodesic fibers within the context of a22

pointwise bi-slant Riemannian submersion. By investigating the properties of totally geodesic fibers, we aim to23

gain deeper insights into the geometric structures of the underlying submersion. The last part of our paper is24

devoted to the notion of φ−pluriharmonicity and φ− invariance, which are new approaches to investigate the25

mixed geodesics of the fibers and generalize the notion of harmonicity.26

2. Preliminaries27

In this section, we lay the foundation for a comprehensive understanding of Riemannian submersion and almost28

product Riemannian manifolds in differential geometry. The preliminary concepts presented here serve as29

essential building blocks to grasp the more advanced aspects of these topics. We will introduce key ideas related30

to differential geometry, Riemannian metrics, submersions, and some special types of Riemannian manifolds31

such as almost product Riemannian manifold and locally product Riemannian manifold. These fundamental32

concepts are crucial for comprehending the geometry and properties of Riemannian submersions and will pave33

the way for exploring their applications and implications.34

2.1. Riemannian submersions35

This section is devoted to the basics of Riemannian submersions.36

Let (M, g) and (N, ḡ) be Riemannian manifolds. A surjective mapping π : (M, g) → (N, ḡ) is called a37

Riemannian submersion [9] if38

i) π has maximal rank;39

ii) the restriction of the differential map π∗ on (kerπ∗)
⊥ is a linear isometry.40
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In this case, we recall the following observations and concepts;1

� For each q ∈ N , π−1(q) is a k -dimensional submanifold of M and called a fiber, where k = dim(M) −2

dim(N).3

� A vector field on M is called vertical (resp. horizontal) if it is always tangent (resp. orthogonal) to fibers.4

� We will denote by V and H the projections on the vertical distribution kerπ∗ and the horizontal5

distribution kerπ⊥
∗ , respectively.6

� The manifold (M, g) is called total manifold and the manifold (N, ḡ) is called base manifold of the7

submersion π : (M, g) → (N, ḡ).8

� A vector field X on M is called basic if X is horizontal and π -related to a vector field X∗ on N, i.e.,

π∗Xp = X∗π(p), ∀p ∈ M.

The last fact given above yields the following Lemma [9], which explains the preservation of brackets, inner9

products, and covariant derivatives;10

Lemma 2.1 Let π : (M, g) → (N, ḡ) be a Riemannian submersion between Riemannian manifolds. If X and11

Y are basic vector fields, then12

� g(X,Y ) = ḡ(X∗, Y∗) ◦ π ,13

� the horizontal part H[X,Y ] of [X,Y ] is a basic vector field corresponding to [X∗, Y∗],14

� the horizontal part H(∇M
X Y ) of ∇M

X Y is the basic vector field corresponding to ∇N
X∗

Y∗,15

� [U,X] is vertical for any vector field U of kerπ∗.16

The geometry of Riemannian submersions is characterized by O’Neill’s tensors T and A , defined as follows:17

TEG = V∇VEHG+H∇VEVG, (2.1)

18

AEG = V∇HEHG+H∇HEVG (2.2)

for any vector fields E and F on M, where ∇ is the Levi-Civita connection of g . One can see that a Riemannian19

submersion π has totally geodesic fibers if and only if T vanishes. On the other side, A acts on the horizontal20

distribution and measures the obstruction to the integrability of this distribution. Moreover, TE and AE are21

skew-symmetric operators on the tangent bundle of M reversing the vertical and the horizontal distributions.22

Now we give the properties of the tensor fields T and A .23

Let V,W be vertical and X,Y be horizontal vector fields on M , then we have24

TV W = TWV, (2.3)

25

AXY = −AY X =
1

2
V[X,Y ]. (2.4)
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On the other hand, from (2.1) and (2.2), we obtain1

∇V W = TV W + ∇̂V W, (2.5)

2

∇V X = TV X +H∇V X, (2.6)

3

∇XV = AXV + V∇XV, (2.7)

4

∇XY = H∇XY +AXY, (2.8)

where ∇̂V W = V∇V W . If X is basic5

H∇V X = AXV.

6

Remark 2.2 In this paper, we will assume all horizontal vector fields as basic vector fields.7

For more details, we refer to O’Neill’s paper [9] and the book [6].8

Let π be a C∞ -map from a Riemannian manifold (M, g) to a Riemannian manifold (N, g). The second

fundamental form of π is given by

(∇π∗) (X,Y ) = ∇π
Xπ∗Y − π∗ (∇XY ) for X,Y ∈ Γ(TM), (2.9)

where ∇π is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the9

metrics g and g , [5].10

If (∇π∗)(X,Y ) = 0 for any X,Y ∈ Γ(TM), π is called a totally geodesic map. In particular, if11

(∇π∗)(X,Y ) = 0, X, Y ∈ Γ(D) for any subset D of TM, π is called a D− totally geodesic map, [5].12

2.2. Almost product Riemannian and locally product Riemannian manifolds13

An m -dimensional manifold M is called almost product manifold if it is equipped with an almost product14

structure φ , which is a tensor field of type (1,1) satisfying15

φ2 = id, (φ ̸= ±id) , (2.10)

denoted by (M,φ). Also for E,G ∈ Γ(TM), if (M,φ) admits a Riemannian metric g satisfying16

g(φE,φG) = g(E,G), (2.11)

then M is said to be an almost product Riemannian manifold.17

Let ∇ be the Riemannian connection with respect to the metric g on M . Then M is called a locally product18

Riemannian manifold (briefly, l.p.R.) if φ is parallel with respect to the connection, i.e. [19]19

∇φ = 0. (2.12)
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3. Pointwise bi-slant submersions1

In this section, we define and study pointwise bi-slant Riemannian submersion in almost product context.2

Definition 3.1 Let (M, g, φ) be an almost product Riemannian manifold and (N, ḡ) be a Riemannian manifold.3

A Riemannian submersion π : (M, g, φ) → (N, ḡ) is called a pointwise bi-slant Riemannian submersion if the4

vertical distribution kerπ∗ of φ decomposes into two orthogonal complementary (pointwise slant) distributions5

Dθ1 and Dθ2 .6

In this case, we have the decomposition7

kerπ∗ = Dθ1 ⊕Dθ2 , (3.1)

where Dθi is a pointwise slant distribution and the angle θi between φU and the space (Dθi)q , (∀q ∈ M) , which8

is independent of the choice of nonzero vector U ∈ Γ(Dθi)q , is called slant function of the pointwise bi-slant9

Riemannian submersion, for i = 1, 2 .10

Now, we give an example to prove the existence of the pointwise bi-slant Riemannian submersion concept.11

Example 3.2 Consider the standard Euclidean space R8 with the standard metric g . One can see that

φ1(x1, x2, ..., x8) = (−x3, x4,−x1, x2,−x7, x8,−x5, x6)

and

φ2(x1, x2, ..., x8) = (x2, x1, x4, x3, x6, x5, x8, x7)

are almost product Riemannian structures on R8 , where φ1φ2 = −φ2φ1 . We can define a new almost product

Riemannian structure such that

φ1,2 = fφ1 + gφ2,

where f and g defined by12

f : R8 − {−1} → R

f(x1, x2, ..., x8) = − x1√
(x1)2 + 1

13

g : R8 → R

g(x1, x2, ..., x8) =
1√

(x1)2 + 1
.

Therefore, (R8, φ1,2, g) is an almost product Riemannian manifold.14

Now, let π be a map between R8 and R4 defined by

π(x1, x2, ..., x8) =

(
x1 − x3√

2
,
x2 − x4√

2
,
x5 + x8√

2
,
−x6 + x7√

2

)
.

The following decomposition of kerπ∗

kerπ∗ = Dθ1 ⊕Dθ2 ,

5
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where1

Dθ1 = span

{
∂

∂x1
+

∂

∂x3
,

∂

∂x2
+

∂

∂x4

}
,

Dθ2 = span

{
∂

∂x5
− ∂

∂x8
,

∂

∂x6
+

∂

∂x7

}

shows that π is a pointwise bi-slant submersion with the slant functions

θ1 = cos−1(g), and θ2 = cos−1(−f).

Remark 3.3 The following table shows the importance of our work. It gives that pointwise bi-slant submersion2

is a generalization of some other submersions defined and studied before in the literature.3

Table 1. Subclasses of a pointwise bi-slant Riemannian submersion

dimDθ1 dimDθ2 Submersion Reference

̸= 0 (θ1 constant) 0 slant [16]

̸= 0 (θ1 function) 0 pointwise slant [4]

̸= 0 (θ1 = π
2 ) 0 anti invariant [15]

̸= 0 (θ1 = 0) ̸= 0 (θ2 constant) semi-slant [7]

̸= 0 (θ1 = 0) ̸= 0 (θ2 function) pointwise semi-slant [10]

̸= 0 (θ1 constant) ̸= 0 (θ2 constant) bi-slant [11]

Let π : (M, g, φ) → (N, ḡ) be a pointwise bi-slant submersion from an almost product Riemannian4

manifold M onto a Riemannian manifold N . Then, for any V ∈ Γ(kerπ∗), we may decompose φV into5

vertical and horizontal parts:6

φV = tV + nV, (3.2)

where tV ∈ Γ(kerπ∗) and nV ∈ Γ(kerπ∗
⊥). Similarly, for any ξ ∈ Γ(kerπ∗

⊥),7

φξ = Tξ +Nξ, (3.3)

where Tξ ∈ Γ(kerπ∗) and Nξ ∈ Γ(kerπ∗
⊥).8

Remark 3.4 The concept of pointwise bi-slant Riemannian submersion in the complex context was given first9

by Sepet, [14], which is a special case of the work of Sayar et al., [12]. In this case, while the canonical structure10

t is not symmetric, t2 shows up symmetric, which yields us to define such submersions. In our current work,11

t becomes symmetric and all the results appear different than the previous works done before.12

Moreover, the last two sections include the original results, which have not been given in the literature.13

Under these circumstances, we have the following identities for the canonical structures given above14

6
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Lemma 3.5 Let π be a pointwise bi-slant submersion from an almost product Riemannian manifold (M, g, φ)1

onto a Riemannian manifold (N, ḡ) . Then, we have2

X = t2X + TnX, (3.4)

0 = NnX + ntX, (3.5)

Y = N2Y + nTY, (3.6)

0 = tTY + TNY, (3.7)

where X ∈ Γ(kerπ∗) , Y ∈ Γ(kerπ∗
⊥) .3

Proof The proof follows from (2.10). 24

The following lemma gives similar results with the previous one in the case of almost product structure φ is5

parallel.6

Lemma 3.6 Let π be a pointwise bi-slant submersion from an locally product Riemannian (l.p.R.) manifold7

(M, g, φ) onto a Riemannian manifold (N, ḡ) . Then, we have8

∇̂XtY + TXnY = TTXY + t∇̂XY,

TXtY +AnY X = NTXY + n∇̂XY,

∇̂βTξ +AβNξ = TH∇βξ + tAβξ,

AβTξ +H∇βNξ = NH∇βξ + nAβξ,

∇̂βtX +AβnX = TAβX + t∇̂βX,

AβtX +H∇βnX = NAβX + n∇̂βX,

∇̂XTξ + TXNξ = TAξX + tTXξ,

TXTξ +ANξX = NAξX + nTXξ,

where X,Y ∈ Γ(kerπ∗) and β, ξ ∈ Γ(kerπ∗
⊥) .9

Proof The proof follows from (2.5) ∼ (2.8), (2.12), (3.2), and (3.3). 210

Remark 3.7 From now on, we will use the abbreviation l.p.R. for locally product Riemannian.11

If we consider the pointwise distributions Dθ1 and Dθ2 with the previous Lemma 3.6, we obtain the following12

results.13

Lemma 3.8 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian14

manifold (N, ḡ) . Then, for any V ∈ Γ(Dθi), i = 1, 2,15

� tV ∈ Γ(Dθi),16

� t2V = cos2 (θi)V,17

� ntU = −NnU,18

7
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� TnV = sin2 (θi)V,1

� g(tV, tV ) = cos2 (θi)g(V, V ),2

� g(nV, nV ) = sin2 (θi)g(V, V ).3

Now, we give a lemma, which is useful and used throughout our paper.4

Lemma 3.9 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian5

manifold (N, ḡ) . Then, g(∇XY,U) is equivalent to the followings6

− csc2 θj

[
g(X, TY ntU + TtY nU +AnY nU)

]
, (3.8)

7

sec2 θj

[
g(∇̂XtY, tU) + g(X, TtUnY + TY ntU)

]
, (3.9)

where X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ) , i ̸= j, i, j = 1, 2.8

Proof Let X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ), i ̸= j, i, j = 1, 2. By using (2.11) and (3.2), we obtain9

g(∇XY, U) = g(φ∇XY, tU) + g(φ∇XY, nU). (3.10)

The first expression on the right side of (3.10) with Lemma 3.8 gives10

g(φ∇XY, tU) = g(∇XY, t2U) + g(∇XY, ntU)

= cos2 θjg(∇XY,U) + g(TXY, ntU),

which yields with (3.10), (2.5), and the symmetry of the product structure φ

sin2 θjg(∇XY, U) = g(TXY, ntU) + g(TXtY, nU) + g(AnY X,nU)

shows (3.8).11

On the other side, the second expression on the right side of (3.10) with the symmetry of the product12

structure φ , (3.3), and Lemma 3.8 gives13

g(φ∇XY, nU) = g(∇XY,TnU) + g(∇XY,NnU)

= sin2 θjg(∇XY,U) + g(TXY,NnU),

which yields with (3.10), (3.2), (2.5), and the symmetry of the product structure φ

cos2 θjg(∇XY,U) = g(∇̂XtY, tU) + g(TXnY, tU) + g(TXY,NnU)

completes the proof. 214
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3.1. Integrability1

In the case of studying a submersion, a natural question would be integrability conditions. In this section, we2

work the integrability conditions for the pointwise slant distributions Dθi , i = 1, 2 and horizontal distribution3

kerπ⊥
∗ , respectively.4

5

The following theorem gives some conditions for the integrability of pointwise distributions Dθi .6

Theorem 3.10 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian7

manifold (N, ḡ) . Then, the following conditions are equivalent to each other8

i) the pointwise distribution Dθi is integrable,9

ii) g(TtXY − TtY X,nU) = g(AnY X −AnXY ),10

iii) g(tU, ∇̂XtY − ∇̂Y tX) = g(TY nX − TXnY, tU),11

where X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ) , i ̸= j, i, j = 1, 2.12

Proof Let X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ), i ̸= j, i, j = 1, 2. The pointwise slant distribution Dθi is integrable13

if and only if [X,Y ] ∈ Dθi , i.e. [X,Y ] ⊥ Dθj . The equation (3.8) yields14

g([X,Y ], U) = − csc2 θj(g(TtY nU,X)− g(TtXnU, Y ) + g(AnY nU,X)

−g(AnXnU, Y )),

which proves i) ⇔ ii). On the other side, (3.9) gives15

g([X,Y ], U) = sec2 θj(g(∇̂XtY, tU) + g(X,TtUnY )− g(∇̂Y tX, tU)

−g(Y, TtUnX)),

which helps to prove i) ⇔ iii), and completes the proof. 216

Remark 3.11 Since for any X,Y ∈ Γ(kerπ∗),17

[X,Y ] = ∇XY −∇Y X

= TXY + ∇̂XY − TY X − ∇̂Y X

= ∇̂XY − ∇̂Y X ⇒ [X,Y ] ∈ kerπ∗,

it is known that kerπ∗ is always integrable.

On the other side, for any ξ, β ∈ Γ(kerπ⊥
∗ ), the relation (2.4)

Aξβ = −Aβξ =
1

2
V[ξ, β]

gives that kerπ⊥
∗ is integrable if and only if it defines totally geodesic foliations on M.18

9
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Theorem 3.12 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian

manifold (N, ḡ) . Then, the horizontal distribution kerπ⊥
∗ is integrable and totally geodesic if and only if

T(AαTξ +H∇αNξ) + t(V∇αTξ +AαNξ) = 0,

where α, ξ ∈ Γ(kerπ⊥
∗ ).1

Proof Let α, ξ ∈ Γ(kerπ⊥
∗ ). The parallelism of the almost product structure φ, (2.6), (2.8), (3.2), and (3.3)2

give3

∇αξ = φ∇αφξ

= T(AαTξ +H∇αNξ) +N(AαTξ +H∇αNξ)

+t(V∇αTξ +AαNξ) + n(V∇αTξ +AαNξ),

which completes the proof. 24

3.2. Totally geodesics5

The concept of totally geodesic fibers is essential in understanding the geometric and topological properties6

of the submersions, providing insights into the relationship between the base space and the total space and7

revealing the presence of symmetries and isometries. This section is devoted for the geodesics of a pointwise8

bi-slant Riemannian submersion.9

10

The first result is for the geodesics of the vertical distribution kerπ∗.11

Theorem 3.13 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian12

manifold (N, ḡ) . Then, the following are equivalent to each other13

i) the vertical distribution kerπ∗ defines totally geodesic fibers,14

ii) for any X,Y ∈ Γ(kerπ∗),

N(TXtY +AnY X) + n(∇̂XtY + TXnY ) = 0,

iii) for any X,Y ∈ Γ(kerπ∗), ξ ∈ Γ(kerπ⊥
∗ ),15

ḡ((∇π∗)(X,Tξ), π∗(nY )) = ḡ((∇π∗)(X, tY ), π∗(Nξ)) + g(∇̂XtY,Tξ)

+ g(H∇XnY,Nξ).

Proof To show i) ⇔ ii), for any X,Y ∈ Γ(kerπ∗), we need to prove TXY = 0, i.e. ∇̂XY ∈ kerπ∗. By (2.5),16

(2.6), (2.12), (3.2), and (3.3), we obtain17

∇XY = φ∇XφY

= T(TXtY +AnY X) +N(TXtY +AnY X)

+t(∇̂XtY + TXnY ) + n(∇̂XtY + TXnY ).

10
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Since V∇XY = ∇̂XY ∈ kerπ∗, i.e. H∇XY = 0, considering the horizontal part of the last equation, we get i)1

⇔ ii).2

Now, another approach to show the vertical distribution kerπ∗ defines totally geodesic fibers is for any3

X,Y ∈ Γ(kerπ∗), and ξ ∈ Γ(kerπ⊥
∗ ), ∇̂XY ⊥ ξ, i.e. g(∇̂XY, ξ) = 0. Using (2.5), (2.6), (2.9), (3.2), and4

(3.3), we obtain5

g(∇̂XY, ξ) = g(∇XφY, φξ)

= g(∇̂XtY,Tξ) + g(H∇XtY,Nξ)− g(∇XTξ, nY )

+g(H∇XnY,Nξ)

= g(∇̂XtY,Tξ)− ḡ((∇π∗)(X, tY ), π∗(Nξ))

+ḡ((∇π∗)(X,Tξ), π∗(nY )) + g(H∇XnY,Nξ),

which shows i) ⇔ iii), completes the proof. 26

By Remark 3.11 and Theorem 3.13, we give the following result.7

Corollary 3.14 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian

manifold (N, ḡ) . Then, M is a locally product

Mkerπ∗ ×Mkerπ⊥
∗

if and only if Theorem 3.12 and one of the conditions in Theorem 3.13 are satisfied, where Mkerπ∗ and Mkerπ⊥
∗

8

are integral manifolds of the distributions kerπ∗ , kerπ∗
⊥ , respectively.9

The following result is another point of view on Theorem 3.12 and Theorem 3.13.10

Theorem 3.15 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian11

manifold (N, ḡ) . Then, π is a totally geodesic map if and only if Theorem 3.12 and at least one of the conditions12

in Theorem 3.13 are satisfied, where Mkerπ∗ and Mkerπ⊥
∗

are integral manifolds of the distributions kerπ∗ ,13

kerπ∗
⊥ , respectively.14

Our subsequent interest is the geodesics of the components of the fibers, in other words the geodesics of15

the pointwise slant distributions Dθi , i = 1, 2.16

Theorem 3.16 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian17

manifold (N, ḡ) . Then, the followings are equivalent to each other18

i) the pointwise slant distribution Dθi defines totally geodesic fibers on the vertical distiribution kerπ∗ ,19

(i = 1, 2) ,20

ii) g(X,TY ntU + TtY nU +AnY nU) = 0,21

iii) g(∇̂XtY, tU) + g(X, TtUnY + TY ntU) = 0,22

iv) g(∇̂XtY, tU) + ḡ((∇π∗)(X, tU), π∗(nY )) = ḡ((∇π∗)(X,φY ), π∗(nU)),23

11
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where X,Y ∈ Γ(Dθi), U ∈ Γ(Dθj ), i ̸= j, i, j = 1, 2.1

Proof The relation i) ⇔ ii) and i) ⇔ iii) follow from (3.8) and (3.9), respectively.2

For the relation i) ⇔ iv), let X,Y ∈ Γ(Dθi), U ∈ Γ(Dθj ), i ̸= j, i, j = 1, 2. By using (2.5), (2.6), (2.9), (2.11),3

and (2.12), we obtain4

g(∇̂XY,U) = g(∇XtY, tU) + g(∇XtY, nU)

+g(∇XnY, tU) + g(∇XnY, nU)

= g(∇̂XtY, tU) + ḡ((∇π∗)(X, tU), π∗(nY ))

−ḡ((∇π∗)(X,φY ), π∗(nU)),

which gives i) ⇔ iv), and completes the proof. 25

As a result of Theorem 3.16, we give the following corollary.6

Corollary 3.17 Let π be a pointwise bi-slant submersion from an l.p.R. manifold (M, g, φ) onto a Riemannian

manifold (N, ḡ) . Then, the fibers are a locally product

MDθ1 ×MDθ2

if and only if one of the conditions in Theorem 3.16 is satisfied for each pointwise distribution Dθ1 and Dθ2 ,7

where MDθ1 and MDθ2 are integral manifolds of the distributions Dθ1 , Dθ2 , respectively.8

3.3. φ−pluriharmonicity of π9

The intriguing concept of pluriharmonicity plays a crucial role in understanding the behavior of functions over10

higher-dimensional domains and has significant applications in various branches of mathematics and physics.11

In this section, we investigate the φ−pluriharmonicity of a pointwise bi-slant submersion π .12

First we give the following definition.13

Definition 3.18 [3] Let π be a pointwise bi-slant Riemannian submersion from an l.p.R. manifold (M,φ, g)14

onto a Riemannian manifold (N, ḡ) .15

π is called16

� Dθi − φ−pluriharmonic if for any X,Y ∈ Γ(Dθi), i = 1, 2,17

� (Dθi −Dθj )− φ−pluriharmonic if for any X ∈ Γ(Dθi), Y ∈ Γ(Dθj ), i, j = 1, 2, i ̸= j,18

� (kerπ∗ − kerπ⊥
∗ )− φ−pluriharmonic if for any X ∈ Γ(kerπ∗) , Y ∈ Γ(kerπ⊥

∗ ),19

(∇π∗)(X,Y ) + (∇π∗)(φX,φY ) = 0. (3.11)

The following theorem gives a result in the case of π is Dθi − φ−pluriharmonic.20

Theorem 3.19 Let π be a Dθi − φ−pluriharmonic pointwise bi-slant Riemannian submersion from an l.p.R.21

manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the submersion π is a nDθi−geodesic map if22

12
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and only if1

N(cos2(θi)TtXY + TtXntY ) + TXY +AnY tX +AnXtY

+n(− sin(2θi)tX(θi)Y +AntY tX + cos2(θi)∇̂tXY ) = 0,

where X,Y ∈ Γ(Dθi), i ̸= j, i, j = 1, 2.2

Proof Assumption gives, for any X,Y ∈ Γ(Dθi), i ̸= j, i, j = 1, 2,

(∇π∗)(X,Y ) + (∇π∗)(φX,φY ) = 0.

By using (2.5), (2.6), (2.9), (2.10), (2.12), (3.2), (3.3), and Lemma 3.8, we have3

0 = −π∗(TXY +AnY tX +AnXtY ) + ((∇π∗)(nX, nY ))

−π∗(φ(∇tXt2Y +∇tXntY ))

⇒ ((∇π∗)(nX, nY )) = π∗

(
TXY +AnY tX +AnXtY − sin(2θi)tX(θi)nY

+cos2(θi)NTtXY + cos2(θi)n∇̂tXY +NTtXntY + nAntY tX

)
,

which completes the proof. 24

We recall the definition of mixed geodesic; given two distributions D1 and D2 defined on the fibers of a5

Riemannian submersion π, the fibers are called (D1 −D2)− mixed geodesic if TD1D2 = 0.6

(Dθ1 −Dθ2)− φ−pluriharmonicity of the pointwise bi-slant submersion gives the following result.7

Theorem 3.20 Let π be a (Dθ1 −Dθ2) − φ−pluriharmonic pointwise bi-slant Riemannian submersion from8

an l.p.R. manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the followings are equivalent to each9

other10

i) the fibers are (Dθ1 −Dθ2)−mixed geodesic,11

ii) ∇N
π∗(φX)π∗(φU) = π∗(TtXtU +AnU tX +AnXtU +H∇nXnU),12

iii)

∇N
π∗(φX)π∗(φU) = π∗

(
n
(
− sin(2θ2)tX(θ2)U + cos2(θ2)∇̂tXU + TtXntU

)
+N

(
cos2(θ2)TtXU +AntU tX

)
+ TtXtU +AnU tX

)
,

where X ∈ Γ(Dθ1) and U ∈ Γ(Dθ2).13

Proof The (Dθ1 −Dθ2)− φ−pluriharmonicity yields, for any X ∈ Γ(Dθ1), U ∈ Γ(Dθ2),

(∇π∗)(X,U) + (∇π∗)(φX,φU) = 0,

13
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which gives with (2.9), (3.2), and (3.3)1

−π∗(∇XU) − π∗(∇tXtU)− π∗(∇tXnU)− π∗(∇nXtU)

+∇N
π∗(φX)π∗(φU)− π∗(∇nXnU) = 0. (3.12)

By using (2.5) ∼ (2.8), we prove the relation i) ⇔ ii).2

To show i) ⇔ iii), we consider the second term in (3.12), which can be expressed with the help of (2.12), (3.2),3

(3.3), and Lemma 3.8 as4

−π∗(∇tXtU) = −π∗(φ(∇tXt2U) +∇tXntU)

= −π∗(φ(∇tX(cos2(θ2)U) +∇tXntU)) (3.13)

= −π∗(φ(− sin(2θ2)tX(θ2)U + cos2(θ2)TtXU + cos2(θ2)∇̂tXU)

+φ(TtXntU +AntU tX)).

Thus, if we consider (3.12) and (3.13) together, we prove the relation i) ⇔ iii), which completes the proof. 25

The last result is in the case of (kerπ∗−kerπ⊥
∗ )−φ−pluriharmonicity of a pointwise bi-slant submersion.6

Theorem 3.21 Let π be a (kerπ∗−kerπ⊥
∗ )−φ−pluriharmonic pointwise bi-slant Riemannian submersion from

an l.p.R. manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibers are (kerπ∗−kerπ⊥
∗ )−mixed

geodesic if and only if

∇N
π∗(φX)π∗(φξ) = π∗(TtXTξ +ANξtX +AnXTξ +H∇nXNξ),

where X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥
∗ ).7

Proof Since the submersion π is (kerπ∗−kerπ⊥
∗ )−φ−pluriharmonic, for any X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥

∗ ),

we have
(∇π∗)(X, ξ) + (∇π∗)(φX,φξ) = 0.

By using (2.5) ∼ (2.8), (2.9), (3.2), and (3.3), we obtain8

π∗(∇Xξ) = π∗(∇tXTξ) + π∗(∇tXNξ) + π∗(∇nXTξ) + π∗(∇nXNξ)

−∇N
π∗(φX)π∗(φξ),

which completes the theorem. 29

Remark 3.22 The notion of a pluriharmonic map is a generalization of the idea of a harmonic map. Here it10

helps us to understand when the fibers are either geodesic or mixed geodesic. This is a new approach that makes11

our section important.12

3.4. φ− invariant and totally geodesics13

In this section, we find some conditions for a pointwise bi-slant submersion to be the φ− invariant of the14

distributions on the total space.15

We give the following concept, which helps to provide new conditions for some other concepts studied16

before.17

14
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Definition 3.23 [3] Let π be an pointwise bi-slant Riemannian submersion from an l.p.R. manifold (M,φ, g)1

onto a Riemannian manifold (N, ḡ) .2

Then, π is called3

� Dθi − φ− invariant if for any X,Y ∈ Γ(Dθi),4

� (Dθi −Dθj )− φ− invariant if for any X ∈ Γ(Dθi), Y ∈ Γ(Dθj ), i, j = 1, 2, i ̸= j,5

� (kerπ∗ − kerπ⊥
∗ )− φ− invariant if for any X ∈ Γ(kerπ∗) , Y ∈ Γ(kerπ⊥

∗ ),6

(∇π∗)(X,Y ) = (∇π∗)(φX,φY ). (3.14)

Now, we give a result of π being Dθi − φ− invariant, i, j = 1, 2, i ̸= j.7

Theorem 3.24 Let π be a Dθi − φ− invariant pointwise bi-slant Riemannian submersion from an l.p.R.

manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibers are Dθi−geodesic if and only if

∇N
π∗(φX)π∗(φY ) = π∗(TtXtY +AnY tX +AnXtY +H∇nXnY ),

where X,Y ∈ Γ(Dθi), i = 1, 2, i ̸= j.8

Proof The φ− invariance of the submersion π yields, for any X,Y ∈ Γ(Dθi), i = 1, 2, i ̸= j,

(∇π∗)(X,Y ) = (∇π∗)(φX,φY ),

with the help of (2.5) ∼ (2.8), (2.9), (3.2), and (3.3), we see9

−π∗(∇XY ) = −π∗(∇tXtY )− π∗(∇tXnY )− π∗(∇nXtY )− π∗(∇nXnY )

= −π∗(TtXtY +AnY tX +AnXtY +H∇nXnY ) +∇N
π∗(φX)π∗(φY )

and completes the proof. 210

Next result gives a relation between (Dθ1 −Dθ2)− φ− invariance and (Dθ1 −Dθ2)−mixed geodesics of11

a pointwise bi-slant submersion.12

Theorem 3.25 Let π be a (Dθ1−Dθ2)−φ− invariant pointwise bi-slant Riemannian submersion from an l.p.R.

manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibers are (Dθ1 −Dθ2)−mixed geodesics if

and only if

(∇π∗)(nX, nU) = π∗(TtXtU +AnU tX +AnXtU),

where X ∈ Γ(Dθ1) and U ∈ Γ(Dθ2).13

Proof The (Dθ1 −Dθ2)− φ− invariance of the submersion π gives

(∇π∗)(X,U) = (∇π∗)(φX,φU),

from which we obtain with (2.5) ∼ (2.7), (2.9), (3.2), and (3.3)

−π∗(∇XU) = −π∗(TtXtU +AnU tX +AnXtU) + (∇π∗)(X,U).

15
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This completes the proof. 21

The last result for φ− invariance is a relation between (kerπ∗−kerπ⊥
∗ )−φ− invariance and (kerπ∗−kerπ⊥

∗ )−mixed2

geodesics.3

Theorem 3.26 Let π be a (kerπ∗ − kerπ⊥
∗ ) − φ− invariant pointwise bi-slant Riemannian submersion from

an l.p.R. manifold (M,φ, g) onto a Riemannian manifold (N, ḡ) . Then, the fibres are (kerπ∗−kerπ⊥
∗ )−mixed

geodesics if and only if

(∇π∗)(nX,Nξ) = π∗(TtXTξ +ANξtX +AnXTξ),

where X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥
∗ ).4

Proof Since π is a (kerπ∗ − kerπ⊥
∗ ) − φ− invariant pointwise bi-slant Riemannian submersion, for any

X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥
∗ ), we have

(∇π∗)(X, ξ) = (∇π∗)(φX,φξ).

By using (2.5) ∼ (2.7), (3.2), and (3.3), we have

−π∗(∇Xξ) = (∇π∗)(nX,Nξ)− π∗(TtXTξ +ANξtX +AnXTξ),

which completes the proof. 25

Remark 3.27 In this last section, we give another new approach for the mixed geodesics of the fibers by6

considering the notion of φ− invariance.7

4. Conclusion8

In this study, we have investigated the properties of a pointwise bi-slant Riemannian submersion originating9

from an almost product Riemannian manifold. Our analysis focused on the integrability and geodesic conditions10

of the fibers, shedding light on the intricate interplay between these structures. Additionally, we introduced11

a novel concept of φ−pluriharmonicity and explored its implications in the context of the submersion. This12

new notion brings forth intriguing possibilities for understanding the behavior of the submersion in a broader13

context. Furthermore, we examined the φ− invariance of the submersion, which allows us to identify particular14

symmetries and transformations that leave the submersion unchanged. Our findings contribute to understanding15

pointwise bi-slant Riemannian submersions and extend the knowledge of Riemannian geometry. This work opens16

up new avenues for research and may have implications in various applications across mathematics and physics.17
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