
Turk J Math

() : –

© TÜBİTAK
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Abstract: Spherical product surfaces are obtained with the help of a special product by considering two curves in4

n−dimensional space. One of their special cases is rotational surface. The reason why the present study is significant5

that the spherical product is used to construct hypersurfaces. (n−1)−curves are needed during this construction. Firstly,6

the spherical product hypersurfaces are defined in E4 , Gaussian and mean curvature are yielded and then conditions7

being flat or minimal are examined. Moreover, superquadrics, which are associated with spherical product, are handled8

for the first time in hypersurface form and give some examples. Finally, spherical product hypersurfaces are generalized9

to n−dimensional Euclidean space and contribute to literature.10

Key words: Hypersurface, spherical product, superquadrics.11

1. Introduction12

In differential geometry, using the sum of the curves, many times using the product of the functions, some13

surfaces can be created. These are translation and factorable surfaces [3, 7]. In addition, the surfaces can also14

be created with the help of a product called spherical product. The concept of spherical product comes from15

the definition of rotational embedding (see, [12]). Using this product on the curves α (x) = (f1(x), f2(x)) and16

β (y) = (g1(y), g2(y)) , the parameterization17

α (x)⊗ β (y) = (f1(x), f2(x)g1(y), f2(x)g2(y)) (1.1)

is specified and this corresponds to a spherical product surface in 3−dimensional Euclidean space [5]. Such18

a surface was also evaluated in Euclidean 4−space E4 and remarkable results were obtained [6]. Among the19

special cases of this, the most familiar are the rotational surfaces and the superquadrics. These two concepts20

have a wide coverage in geometry with their visual examples [8, 11].21

In (1.1), by taking β (y) = (cos y, sin y), the surfaces of revolution are encountered. Some of them22

are ruled, developable, helicoidal, canal, tube surfaces and catenoid, also have many applications in different23

disciplines [1, 4, 13].24
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Especially, the other form, a superquadric is handled by spherical product of superellipses or superhyper-1

bols whose simple forms we know from analytical geometry. Created surface is superellipsoid, superhyperboloid2

with one piece or hyperboloid with two pieces or toroid [11].3

Moreover, in geometry, surfaces can also be considered under the category of hypersurfaces. The concept4

of hypersurfaces are known as (n− 1)−surface in n−dimensional Euclidean space and defined by the following5

set:6

M = {x ∈ U ⊂ En : φ(x) = c, c is constant and U is open set} . (1.2)

Many related studies can be founded in [2, 9, 10].7

In the present study, the spherical product is considered for the first time on hypersurfaces. Firstly, in8

section 2, basic concepts about hypersurfaces are given. In section 3, spherical product hypersurfaces are defined9

with the help of 3−curves in 4−dimensional Euclidean space and demonstrated to be regular. The mean and10

Gaussian curvatures are yielded. The necessary and sufficient condition for the hypersurface to be flat is that11

one of the curves forming the hypersurface is a straight line. The condition being minimal is analyzed. In12

section 4, superquadrics in hypersurface form are defined in E4, some examples are given and the projections13

to E3 are plotted. Finally, in section 5, the spherical product hypersurface are generalized and the related14

parameterization is presented in n−dimensional Euclidean space En.15

2. Preliminaries16

In the present section, we mention some general expressions for hypersurfaces in E4.17

Let r = (r1, r2, r3, r4) , s = (s1, s2, s3, s4) and t = (t1, t2, t3, t4) be the vector fields in Euclidean 4−space,18

the inner product ⟨r, s⟩ and the vector product r × s× t is given by19

⟨r, s⟩ = r1s1 + r2s2 + r3s3 + r4s4, (2.1)

and20

r × s× t =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
r1 r2 r3 r4
s1 s2 s3 s4
t1 t2 t3 t4

∣∣∣∣∣∣∣∣ , (2.2)

respectively.21

Let M : F (x, y, z) be a hypersurface in E4, then M is expressed as22

F : E3 → E4

(x, y, z) → F (x, y, z)

F (x, y, z) = (F1 (x, y, z) , F2 (x, y, z) , F3 (x, y, z) , F4 (x, y, z)) (2.3)

and the unit normal vector field of M is calculated by23

η =
Fx × Fy × Fz

∥Fx × Fy × Fz∥
. (2.4)

The first fundamental form of M is given with the help of the coefficients24

e = ⟨Fx, Fx⟩ , f = ⟨Fx, Fy⟩ , a = ⟨Fx, Fz⟩ ,

g = ⟨Fy, Fy⟩ , b = ⟨Fy, Fz⟩ , c = ⟨Fz, Fz⟩ , (2.5)

2
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and the second fundamental form of M is written by the coefficients1

l = ⟨Fxx, η⟩ , m = ⟨Fxy, η⟩ , p = ⟨Fxz, η⟩ ,

n = ⟨Fyy, η⟩ , t = ⟨Fyz, η⟩ , v = ⟨Fzz, η⟩ , (2.6)

(see, [9]).2

Suppose I and II are the matrices corresponding to the 1st and 2nd fundamental form. Then, the shape3

operator matrix can be obtained by4

S = (I)−1II. (2.7)

Definition 2.1 Let M be a hypersurface given by (2.3) in E4 . Then, the mean curvature and the Gaussian5

curvature of M is defined by6

H =
tr (S)

3
(2.8)

and7

K =
det(II)

det(I)
= det(S) (2.9)

respectively [2, 9].8

3. Spherical product hypersurfaces in 4−dimensional Euclidean space9

Definition 3.1 Let fi, gi, hi (i = 1, 2) be smooth functions and α, β, γ : I ⊂ R → E2 be regular curves in10

E2 given by α (x) = (f1(x), f2(x)) , β (y) = (g1(y), g2(y)) , γ (z) = (h1(z), h2(z)) . Spherical product of these11

curves (α (x)⊗ β (y)⊗ γ(z)) defines a 3−surface and is called spherical product hypersurface in E4.12

Hence, for the parameterization of this, we write13

F (x, y, z) = α (x)⊗ β (y)⊗ γ(z) =

[
f1(x)
f2(x)

]
⊗
[

g1(y)
g2(y)

]
⊗

[
h1(z)
h2(z)

]

=

[
f1(x)
f2(x)

]
⊗

 g1(y)
g2(y)h1(z)
g2(y)h2(z)

 .

It follows that14

F (x, y, z) = (f1(x), f2(x)g1(y), f2(x)g2(y)h1(z), f2(x)g2(y)h2(z)) . (3.1)

It is clear that the spherical product β (y)⊗ γ(z) is congruent to spherical product surface in E3 as15

G (y, z) = (g1(y), g2(y)h1(z), g2(y)h2(z)) . (3.2)

Example 3.2 Choosing the curves α (x) = (f1(x), x) , β (y) = (cos y, sin y) and γ (z) = (cos z, sin z) , the

spherical product hypersurface

M : F (x, y, z) = (f1(x), x cos y, x sin y cos z, x sin y sin z)

3
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corresponds to a rotational hypersurface in Euclidean 4−space E4.1

Let M be a spherical product hypersurface given by (3.1) in E4. Then, the vectors2

Fx =
∂F (x, y, z)

∂x
= (f ′

1, f
′
2g1, f

′
2g2h1, f

′
2g2h2) ,

Fy =
∂F (x, y, z)

∂y
= (0, f2g

′
1, f2g

′
2h1, f2g

′
2h2) , (3.3)

Fz =
∂F (x, y, z)

∂z
= (0, 0, f2g2h

′
1, f2g2h

′
2) ,

span the tangent space T (M).3

The normal vector field is obtained by the vector product of Fx, Fy, and Fz as4

η =
f2
2 g2

W

(
f ′
2

(
g1g

′
2 − g′1g2

) (
h1h

′
2 − h′

1h2

)
,−f ′

1g
′
2

(
h1h

′
2 − h′

1h2

)
, f ′

1g
′
1h

′
2,−f ′

1g
′
1h

′
1

)
. (3.4)

Here, W = ∥Fx × Fy × Fz∥ and obtained as

W 2 = f4
2 g

2
2

[
(h1h

′
2 − h′

1h2)
2
(
f ′2
2 (g1g

′
2 − g′1g2)

2
+ f ′2

1 g′22

)
+ f ′2

1 g′21
(
h′2
1 + h′2

2

)]
.

The matrix I corresponding the 1st fundamental form is5

I =

 e f a
f g b
a b c

 , (3.5)

where the coefficients are calculated as6

e = f ′2
1 + f ′2

2

[
g21 + g22

(
h2
1 + h2

2

)]
= f ′2

1 + f ′2
2 ∥G (y, z)∥2 ,

f = f ′
2f2

[
g′1g1 + g′2g2

(
h2
1 + h2

2

)]
= f ′

2f2 ⟨G (y, z) , Gy (y, z)⟩ ,

a = f ′
2f2g

2
2 (h

′
1h1 + h′

2h2) = f ′
2f2 ⟨G (y, z) , Gz (y, z)⟩ ,

g = f2
2

[
g′21 + g′22

(
h2
1 + h2

2

)]
= f2

2 ∥Gy (y, z)∥2 , (3.6)

b = f2
2 g

′
2g2 (h

′
1h1 + h′

2h2) = f2
2 ⟨Gy (y, z) , Gz (y, z)⟩ ,

c = f2
2 g

2
2

(
h′2
1 + h′2

2

)
= f2

2 ∥Gz (y, z)∥2 .

It can be seen from the equations (3.5) and (3.6) that det I = W 2 . Since this expression is positive definite, M7

is regular.8

The second partial derivatives are9

Fxx = (f ′′
1 , f

′′
2 g1, f

′′
2 g2h1, f

′′
2 g2h2) ,

Fxy = (0, f ′
2g

′
1, f

′
2g

′
2h1, f

′
2g

′
2h2) ,

Fxz = (0, 0, f ′
2g2h

′
1, f

′
2g2h

′
2) ,

Fyy = (0, f2g
′′
1 , f2g

′′
2h1, f2g

′′
2h2) , (3.7)

Fyz = (0, 0, f2g
′
2h

′
1, f2g

′
2h

′
2) ,

Fzz = (0, 0, f2g2h
′′
1 , f2g2h

′′
2) .

4
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From now on, we will use the following abbreviations1

A(x) = f ′′
1 f

′
2 − f ′′

2 f
′
1,

B(y) = g1g
′
2 − g′1g2,

C(y) = g′1g
′′
2 − g′′1 g

′
2, (3.8)

D(z) = h1h
′
2 − h′

1h2,

E(z) = h′′
1h

′
2 − h′

1h
′′
2 .

By the use of (3.7), (3.4) and (2.6), we can write the matrix II corresponding the 2nd fundamental form as2

II =

 l 0 0
0 n 0
0 0 v

 , (3.9)

where l, n, and v are given by3

l =
f2
2 g2
W

A(x)B(y)D(z),

n =
f ′
1f

3
2 g2

W
C(y)D(z), (3.10)

v =
f ′
1g

′
1f

3
2 g

2
2

W
E(z).

Theorem 3.3 Let M be a spherical product hypersurface in Euclidean 4−space E4. Then, the Gaussian4

curvature of M is presented by5

K =
f ′2
1 f8

2 g
4
2g

′
1A(x)B(y)C(y)D2(z)E(z)

W 3
, (3.11)

where the functions A(x), B(y), C(y), D(z), and E(z) are specified by (3.8).6

Proof With the help of the equalities (3.5), (3.6), (3.9), (3.10) with (2.9), we get the desired result. 27

Theorem 3.4 Let M be a spherical product hypersurface in Euclidean 4−space E4. Then, M has zero8

Gaussian curvature (flat) if and only if one of the curves forming the hypersurface is a straight line.9

Proof Let M be a spherical product hypersurface given by (3.1). If M is flat (K = 0), then by using the10

equation (3.11), we obtain that at least one of the following equalies satisfy:11

A(x) = 0,

B(y) = 0,

C(y) = 0,

D(z) = 0,

E(z) = 0.

5
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This means that the curve α(x) or β(y) or γ(z) is congruent to a straight line. In addition, the converse2

statement is trivial.3

Theorem 3.5 Let M be a spherical product hypersurface in Euclidean 4−space E4. Then, the mean curvature4

of M is presented by5

H =
f5
2 g2

3W 3


D(z)

 f2A(x)B(y)
(
∥Gy∥2 ∥Gz∥2 − ⟨Gy , Gz⟩2

)
+f ′

1C(y)
(
f ′2
1 ∥Gz∥2 + f ′2

2

(
∥G∥2 ∥Gz∥2 − ⟨G,Gz⟩2

)) 
+g2f ′

1g
′
1E(z)

(
f ′2
1 ∥Gy∥2 + f ′2

2

(
∥G∥2 ∥Gy∥2 − ⟨G,Gy⟩2

))
 , (3.12)

where A(x), B(y), C(y), D(z), E(z) are indicated in (3.8) and G = G(y, z) is a 3D−spherical product surface6

parameterization specified as (3.2).7

Proof Let M be a spherical product hypersurface given by (3.1) in E4. By the use of (2.7), (3.5), and (3.9),8

we get9

tr (S) = l

(
gc− b2

W 2

)
+ n

(
ec− a2

W 2

)
+ v

(
eg − f2

W 2

)
. (3.13)

Also, substituting the 1st and 2nd fundamental form coefficients (3.6), (3.10) into (3.13) and using (2.8), we10

yield the mean curvature of M as (3.12) and complete the proof. 211

Corollary 3.6 Let M be a spherical product hypersurface given by (3.1). With the help of (3.12), the following12

cases occurs:13

(a) If the curve γ(z) is a straight line passing through the origin, then M has zero mean curvature14

(minimal).15

(b) If α(x), β(y) and γ(z) are straight lines, then M has zero mean curvature (minimal).16

4. Superquadrics in Hypersurface Form17

The concept of superellipse is associated with the definition of Lame curve that is represented by18 (
x1

a1

)m

+

(
x2

a2

)m

= 1. (4.1)

Lame curves which are studied by Loria, 1910 and named by Gabriel Lame have nine types. While the number19

m increases, the curve gets closer to rectangularity. Superellipses are the special case of these curves and given20

by21 (
x1

a1

) 2
ϵ

+

(
x2

a2

) 2
ϵ

= 1. (4.2)

Also, the parametric form is represented by22

α(x) = (a1 cos
ε x, a2 sin

ϵ x) . (4.3)

6
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It is clear that the case ϵ = 1 is the simpliest form known from analitical geometry. In addition to superellipses,1

superhiperbola has a similar definition.2

Using the spherical product of these types of curves we encounter with superellipsoid, superhyperboloid3

and supertoroid which are generally called superquadrics. Now, we define superquadrics with the form of4

hypersurfaces in 4−dimensional Euclidean space.5

Definition 4.1 Let α, β, γ be the superellipses or the superhyperbolas in E2. The spherical product of these6

curves (α⊗ β ⊗ γ ) defines a 3−surface called superquadrics in hypersurface form in E4.7

Example 4.2 Suppose the related curves (superellipses) are chosen as8

α(x) = (a1 cos
ε1 x, sinε1 x) ,

β(y) = (a2 cos
ε2 y, sinϵ2 y) , (4.4)

γ(z) = (a3 cos
ε3 z, a4 sin

ε3 z) .

Then, the spherical product of these curves is presented as

F (x, y, z) = (a1 cos
ε1 x, a2 sin

ε1 x cosε2 y, a3 sin
ε1 x sinϵ2 y cosε3 z, a4 sin

ε1 x sinϵ2 y sinε3 z) .

This parameterization is congruent to superellipsoid in hypersurface form. Actually, it satisfies the9

equation10 (
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

+

(
x4

a4

)2

= 1. (4.5)

We can plot the projection of a superellipsoid in E3 (As shown in Figure 1) by taking a1 = 1, a2 = 2,

a3 = a4 = 3, ϵ1 = 3, ϵ2 = 2, ϵ3 = 1, and z = π, with Maple command

plot3d (x1(u, v), x2(u, v), x3(u, v) + x4(u+ v)], u = −2 ∗ Pi...2 ∗ Pi, v : −2 ∗ Pi..2 ∗ Pi)

Figure 1. Projection of a superellipsoid in hypersurface form

11
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Example 4.3 Suppose the curves (superhyperbola and superellipses) are chosen as1

α(x) = (a1 tan
ϵ1 x, secϵ1 x) ,

β(y) = (a2 cos
ϵ2 y, sinϵ2 y) , (4.6)

γ(z) = (a3 cos
ϵ3 z, a4 sin

ϵ3 z) .

Then, the spherical product of these curves is presented as

F (x, y, z) = (a1 tan
ϵ1 x, a2 sec

ϵ1 x cosϵ2 y, a3 sec
ϵ1 x sinϵ2 y cosϵ3 z, a4 sec

ϵ1 x sinϵ2 y sinϵ3 z) .

The parameterization above is congruent to superhyperboloid with one piece in E4 and following equation2

is hold:3

−
(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

+

(
x4

a4

)2

= 1. (4.7)

The projection of a hyperboloid one piece can be yielded in E3 by taking a1 = 2, a2 = 3, a3 = a4 = 1, ϵ1 = 2,4

ϵ2 = ϵ3 = 1, and z = π, with Maple. It is observed as in Figure 2.

Figure 2. Projection of a superhyperboloid (one piece)

5

Example 4.4 Suppose the curves (superhyperbolas) are chosen as6

α(x) = (a1 tan
ϵ1 x, secϵ1 x) ,

β(y) = (a2 tan
ϵ2 y, secϵ2 y) , (4.8)

γ(z) = (a3 tan
ϵ3 z, a4 sec

ϵ3 z) .

Then, the spherical product of these curves is presented as

F (x, y, z) = (a1 tan
ϵ1 x, a2 sec

ϵ1 x tanϵ2 y, a3 sec
ϵ1 x secϵ2 y tanϵ3 z, a4 sec

ϵ1 x secϵ2 y secϵ3 z) .

8
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This representation is congruent to superhyperboloid with two piece in E4 due to satisfying the equation1

−x1

a1
− x2

a2
− x3

a3
+

x4

a4
= 1. (4.9)

In addition, by taking taking a1 = a2 = a3 = a4 = 1, ϵ1 = ϵ3 = 1, ϵ2 = 2, and z = π, the visiluation of the2

projection of this type of hypersurface is encountered as Figure 3.

Figure 3. Projection of a superhyperboloid (two piece)

3

5. The Generalization of Spherical Product Hypersurfaces4

In the present section, we purpose to obtain the parameterization of spherical product hypersurfaces in5

n−dimensional Euclidean space En.6

In 3−dimension using two curves:7

α1 ⊗ α2 =

[
f1
f2

]
⊗

[
f3
f4

]
,

α1 ⊗ α2 = (f1, f2f3, f2f4) .

In 4−dimension using three curves:8

α1 ⊗ α2 ⊗ α3 =

[
f1
f2

]
⊗
[

f3
f4

]
⊗

[
f5
f6

]
,

α1 ⊗ α2 ⊗ α3 = (f1, f2f3, f2f4f5, f2f4f6) .

In 5−dimension using four curves:9

9
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α1 ⊗ α2 ⊗ α3 ⊗ α4 =

[
f1
f2

]
⊗

[
f3
f4

]
⊗

[
f5
f6

]
⊗
[

f7
f8

]
,

α1 ⊗ α2 ⊗ α3 ⊗ α4 = (f1, f2f3, f2f4f5, f2f4f6f7, f2f4f6f8) .

In 6−dimension using five curves:1

α1 ⊗ α2 ⊗ α3 ⊗ α4 ⊗ α5 =

[
f1
f2

]
⊗

[
f3
f4

]
⊗

[
f5
f6

]
⊗
[

f7
f8

]
⊗
[

f9
f10

]
,

α1 ⊗ α2 ⊗ α3 ⊗ α4 ⊗ α5 = (f1, f2f3, f2f4f5, f2f4f6f7, f2f4f6f8f9, f2f4f6f8f10) .

Corollary 5.1 Let α1 = (f1, f2) , α2 = (f3, f4) , α3 = (f5, f6) , ... , αn−1 = (f2n−3, f2n−2) be regular curves in2

E2. The spherical product of these curves defines a hypersurface in En called spherical product hypersurface.3

The parameterization of this hypersurface is given by4

α1 ⊗ α2 ⊗ α3 ⊗ ...⊗ αn−1 =

[
f1
f2

]
⊗
[

f3
f4

]
⊗

[
f5
f6

]
⊗ ...⊗

[
f2n−3

f2n−2

]

= f1Y1 +

n−1∑
i=2

i−1∏
j=1

f2j

 f2i−1Yi +

n−2∏
j=1

f2j

 f2n−2Yn,

where Y1, Y2, ..., Yn are coordinate functions in En.5

6. Conclusion6

In this study, we achieve to give the general parameterization of spherical product hypersurfaces and give the7

significant results in four-dimensional space and especially for superquadrics. We hope this work will be the8

base for further studies.9
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