Spherical product hypersurfaces in Euclidean spaces

Sezgin BÜYÜKKÜTÜK ${ }^{1}$, Günay ÖZTÜRK ${ }^{2, *}$
${ }^{1}$ Gölcük Vocational School of Higher Education, Kocaeli University, Kocaeli, Turkey, ORCID iD: https://orcid.org/0000-0002-1845-0822
${ }^{2}$ Department of Mathematics, Arts and Science Faculty, İzmir Democracy University, İzmir, Turkey, ORCID iD: https://orcid.org/0000-0002-1608-0354

Received: . 202 • Accepted/Published Online: . 202 • Final Version: .. 202

Abstract

Spherical product surfaces are obtained with the help of a special product by considering two curves in n - dimensional space. One of their special cases is rotational surface. The reason why the present study is significant that the spherical product is used to construct hypersurfaces. ($n-1$) - curves are needed during this construction. Firstly, the spherical product hypersurfaces are defined in \mathbb{E}^{4}, Gaussian and mean curvature are yielded and then conditions being flat or minimal are examined. Moreover, superquadrics, which are associated with spherical product, are handled for the first time in hypersurface form and give some examples. Finally, spherical product hypersurfaces are generalized to n-dimensional Euclidean space and contribute to literature.

Key words: Hypersurface, spherical product, superquadrics.

1. Introduction

In differential geometry, using the sum of the curves, many times using the product of the functions, some surfaces can be created. These are translation and factorable surfaces [3, 7]. In addition, the surfaces can also be created with the help of a product called spherical product. The concept of spherical product comes from the definition of rotational embedding (see, [12]). Using this product on the curves $\alpha(x)=\left(f_{1}(x), f_{2}(x)\right)$ and $\beta(y)=\left(g_{1}(y), g_{2}(y)\right)$, the parameterization

$$
\begin{equation*}
\alpha(x) \otimes \beta(y)=\left(f_{1}(x), f_{2}(x) g_{1}(y), f_{2}(x) g_{2}(y)\right) \tag{1.1}
\end{equation*}
$$

is specified and this corresponds to a spherical product surface in 3-dimensional Euclidean space [5]. Such a surface was also evaluated in Euclidean 4 -space \mathbb{E}^{4} and remarkable results were obtained [6]. Among the special cases of this, the most familiar are the rotational surfaces and the superquadrics. These two concepts have a wide coverage in geometry with their visual examples $[8,11]$.

In (1.1), by taking $\beta(y)=(\cos y, \sin y)$, the surfaces of revolution are encountered. Some of them are ruled, developable, helicoidal, canal, tube surfaces and catenoid, also have many applications in different disciplines $[1,4,13]$.

[^0]
BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

The first fundamental form of M is given with the help of the coefficients

$$
\begin{align*}
e & =\left\langle F_{x}, F_{x}\right\rangle, \quad f=\left\langle F_{x}, F_{y}\right\rangle, \quad a=\left\langle F_{x}, F_{z}\right\rangle \\
g & =\left\langle F_{y}, F_{y}\right\rangle, \quad b=\left\langle F_{y}, F_{z}\right\rangle, \quad c=\left\langle F_{z}, F_{z}\right\rangle \tag{2.5}
\end{align*}
$$

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

and the second fundamental form of M is written by the coefficients

$$
\begin{align*}
l & =\left\langle F_{x x}, \eta\right\rangle, \quad m=\left\langle F_{x y}, \eta\right\rangle, \quad p=\left\langle F_{x z}, \eta\right\rangle \\
n & =\left\langle F_{y y}, \eta\right\rangle, \quad t=\left\langle F_{y z}, \eta\right\rangle, \quad v=\left\langle F_{z z}, \eta\right\rangle \tag{2.6}
\end{align*}
$$

(see, [9]).
Suppose I and $I I$ are the matrices corresponding to the 1st and 2 nd fundamental form. Then, the shape operator matrix can be obtained by

$$
\begin{equation*}
S=(I)^{-1} I I \tag{2.7}
\end{equation*}
$$

Definition 2.1 Let M be a hypersurface given by (2.3) in \mathbb{E}^{4}. Then, the mean curvature and the Gaussian curvature of M is defined by

$$
\begin{equation*}
H=\frac{\operatorname{tr}(S)}{3} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
K=\frac{\operatorname{det}(I I)}{\operatorname{det}(I)}=\operatorname{det}(S) \tag{2.9}
\end{equation*}
$$

respectively [2, 9].

3. Spherical product hypersurfaces in 4-dimensional Euclidean space

Definition 3.1 Let $f_{i}, g_{i}, h_{i}(i=1,2)$ be smooth functions and $\alpha, \beta, \gamma: I \subset \mathbb{R} \rightarrow \mathbb{E}^{2}$ be regular curves in \mathbb{E}^{2} given by $\alpha(x)=\left(f_{1}(x), f_{2}(x)\right), \beta(y)=\left(g_{1}(y), g_{2}(y)\right), \gamma(z)=\left(h_{1}(z), h_{2}(z)\right)$. Spherical product of these curves $(\alpha(x) \otimes \beta(y) \otimes \gamma(z))$ defines a 3 -surface and is called spherical product hypersurface in \mathbb{E}^{4}.

Hence, for the parameterization of this, we write

$$
\begin{aligned}
F(x, y, z) & =\alpha(x) \otimes \beta(y) \otimes \gamma(z)=\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right] \otimes\left[\begin{array}{l}
g_{1}(y) \\
g_{2}(y)
\end{array}\right] \otimes\left[\begin{array}{l}
h_{1}(z) \\
h_{2}(z)
\end{array}\right] \\
& =\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right] \otimes\left[\begin{array}{c}
g_{1}(y) \\
g_{2}(y) h_{1}(z) \\
g_{2}(y) h_{2}(z)
\end{array}\right] .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
F(x, y, z)=\left(f_{1}(x), f_{2}(x) g_{1}(y), f_{2}(x) g_{2}(y) h_{1}(z), f_{2}(x) g_{2}(y) h_{2}(z)\right) . \tag{3.1}
\end{equation*}
$$

It is clear that the spherical product $\beta(y) \otimes \gamma(z)$ is congruent to spherical product surface in \mathbb{E}^{3} as

$$
\begin{equation*}
G(y, z)=\left(g_{1}(y), g_{2}(y) h_{1}(z), g_{2}(y) h_{2}(z)\right) \tag{3.2}
\end{equation*}
$$

Example 3.2 Choosing the curves $\alpha(x)=\left(f_{1}(x), x\right), \beta(y)=(\cos y, \sin y)$ and $\gamma(z)=(\cos z, \sin z)$, the spherical product hypersurface

$$
M: F(x, y, z)=\left(f_{1}(x), x \cos y, x \sin y \cos z, x \sin y \sin z\right)
$$

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

corresponds to a rotational hypersurface in Euclidean 4 -space \mathbb{E}^{4}.
Let M be a spherical product hypersurface given by (3.1) in \mathbb{E}^{4}. Then, the vectors

$$
\begin{align*}
& F_{x}=\frac{\partial F(x, y, z)}{\partial x}=\left(f_{1}^{\prime}, f_{2}^{\prime} g_{1}, f_{2}^{\prime} g_{2} h_{1}, f_{2}^{\prime} g_{2} h_{2}\right) \\
& F_{y}=\frac{\partial F(x, y, z)}{\partial y}=\left(0, f_{2} g_{1}^{\prime}, f_{2} g_{2}^{\prime} h_{1}, f_{2} g_{2}^{\prime} h_{2}\right) \tag{3.3}\\
& F_{z}=\frac{\partial F(x, y, z)}{\partial z}=\left(0,0, f_{2} g_{2} h_{1}^{\prime}, f_{2} g_{2} h_{2}^{\prime}\right)
\end{align*}
$$

span the tangent space $T(M)$.
The normal vector field is obtained by the vector product of F_{x}, F_{y}, and F_{z} as

$$
\begin{equation*}
\eta=\frac{f_{2}^{2} g_{2}}{W}\left(f_{2}^{\prime}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)\left(h_{1} h_{2}^{\prime}-h_{1}^{\prime} h_{2}\right),-f_{1}^{\prime} g_{2}^{\prime}\left(h_{1} h_{2}^{\prime}-h_{1}^{\prime} h_{2}\right), f_{1}^{\prime} g_{1}^{\prime} h_{2}^{\prime},-f_{1}^{\prime} g_{1}^{\prime} h_{1}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

Here, $W=\left\|F_{x} \times F_{y} \times F_{z}\right\|$ and obtained as

$$
W^{2}=f_{2}^{4} g_{2}^{2}\left[\left(h_{1} h_{2}^{\prime}-h_{1}^{\prime} h_{2}\right)^{2}\left(f_{2}^{\prime 2}\left(g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2}\right)^{2}+f_{1}^{\prime 2} g_{2}^{\prime 2}\right)+f_{1}^{\prime 2} g_{1}^{\prime 2}\left(h_{1}^{\prime 2}+h_{2}^{\prime 2}\right)\right]
$$

${ }_{5}$ The matrix I corresponding the 1st fundamental form is

$$
I=\left[\begin{array}{lll}
e & f & a \tag{3.5}\\
f & g & b \\
a & b & c
\end{array}\right]
$$

6 where the coefficients are calculated as

$$
\begin{align*}
e & =f_{1}^{\prime 2}+f_{2}^{\prime 2}\left[g_{1}^{2}+g_{2}^{2}\left(h_{1}^{2}+h_{2}^{2}\right)\right]=f_{1}^{\prime 2}+f_{2}^{\prime 2}\|G(y, z)\|^{2} \\
f & =f_{2}^{\prime} f_{2}\left[g_{1}^{\prime} g_{1}+g_{2}^{\prime} g_{2}\left(h_{1}^{2}+h_{2}^{2}\right)\right]=f_{2}^{\prime} f_{2}\left\langle G(y, z), G_{y}(y, z)\right\rangle \\
a & =f_{2}^{\prime} f_{2} g_{2}^{2}\left(h_{1}^{\prime} h_{1}+h_{2}^{\prime} h_{2}\right)=f_{2}^{\prime} f_{2}\left\langle G(y, z), G_{z}(y, z)\right\rangle \\
g & =f_{2}^{2}\left[g_{1}^{\prime 2}+g_{2}^{\prime 2}\left(h_{1}^{2}+h_{2}^{2}\right)\right]=f_{2}^{2}\left\|G_{y}(y, z)\right\|^{2} \tag{3.6}\\
b & =f_{2}^{2} g_{2}^{\prime} g_{2}\left(h_{1}^{\prime} h_{1}+h_{2}^{\prime} h_{2}\right)=f_{2}^{2}\left\langle G_{y}(y, z), G_{z}(y, z)\right\rangle \\
c & =f_{2}^{2} g_{2}^{2}\left(h_{1}^{\prime 2}+h_{2}^{\prime 2}\right)=f_{2}^{2}\left\|G_{z}(y, z)\right\|^{2}
\end{align*}
$$

It can be seen from the equations (3.5) and (3.6) that $\operatorname{det} I=W^{2}$. Since this expression is positive definite, M is regular.

The second partial derivatives are

$$
\begin{align*}
F_{x x} & =\left(f_{1}^{\prime \prime}, f_{2}^{\prime \prime} g_{1}, f_{2}^{\prime \prime} g_{2} h_{1}, f_{2}^{\prime \prime} g_{2} h_{2}\right) \\
F_{x y} & =\left(0, f_{2}^{\prime} g_{1}^{\prime}, f_{2}^{\prime} g_{2}^{\prime} h_{1}, f_{2}^{\prime} g_{2}^{\prime} h_{2}\right) \\
F_{x z} & =\left(0,0, f_{2}^{\prime} g_{2} h_{1}^{\prime}, f_{2}^{\prime} g_{2} h_{2}^{\prime}\right) \\
F_{y y} & =\left(0, f_{2} g_{1}^{\prime \prime}, f_{2} g_{2}^{\prime \prime} h_{1}, f_{2} g_{2}^{\prime \prime} h_{2}\right) \tag{3.7}\\
F_{y z} & =\left(0,0, f_{2} g_{2}^{\prime} h_{1}^{\prime}, f_{2} g_{2}^{\prime} h_{2}^{\prime}\right) \\
F_{z z} & =\left(0,0, f_{2} g_{2} h_{1}^{\prime \prime}, f_{2} g_{2} h_{2}^{\prime \prime}\right)
\end{align*}
$$

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

1 From now on, we will use the following abbreviations

$$
\begin{align*}
& A(x)=f_{1}^{\prime \prime} f_{2}^{\prime}-f_{2}^{\prime \prime} f_{1}^{\prime} \\
& B(y)=g_{1} g_{2}^{\prime}-g_{1}^{\prime} g_{2} \\
& C(y)=g_{1}^{\prime} g_{2}^{\prime \prime}-g_{1}^{\prime \prime} g_{2}^{\prime} \tag{3.8}\\
& D(z)=h_{1} h_{2}^{\prime}-h_{1}^{\prime} h_{2} \\
& E(z)=h_{1}^{\prime \prime} h_{2}^{\prime}-h_{1}^{\prime} h_{2}^{\prime \prime}
\end{align*}
$$

2 By the use of (3.7), (3.4) and (2.6), we can write the matrix $I I$ corresponding the 2nd fundamental form as

$$
I I=\left[\begin{array}{ccc}
l & 0 & 0 \tag{3.9}\\
0 & n & 0 \\
0 & 0 & v
\end{array}\right]
$$

3 where l, n, and v are given by

$$
\begin{align*}
l & =\frac{f_{2}^{2} g_{2}}{W} A(x) B(y) D(z) \\
n & =\frac{f_{1}^{\prime} f_{2}^{3} g_{2}}{W} C(y) D(z) \tag{3.10}\\
v & =\frac{f_{1}^{\prime} g_{1}^{\prime} f_{2}^{3} g_{2}^{2}}{W} E(z)
\end{align*}
$$

Theorem 3.3 Let M be a spherical product hypersurface in Euclidean 4 -space \mathbb{E}^{4}. Then, the Gaussian curvature of M is presented by

$$
\begin{equation*}
K=\frac{f_{1}^{\prime 2} f_{2}^{8} g_{2}^{4} g_{1}^{\prime} A(x) B(y) C(y) D^{2}(z) E(z)}{W^{3}} \tag{3.11}
\end{equation*}
$$

where the functions $A(x), B(y), C(y), D(z)$, and $E(z)$ are specified by (3.8).
Proof With the help of the equalities (3.5), (3.6), (3.9), (3.10) with (2.9), we get the desired result.

8 Theorem 3.4 Let M be a spherical product hypersurface in Euclidean 4 -space \mathbb{E}^{4}. Then, M has zero

Proof Let M be a spherical product hypersurface given by (3.1). If M is flat $(K=0)$, then by using the equation (3.11), we obtain that at least one of the following equalies satisfy:

$$
\begin{aligned}
& A(x)=0 \\
& B(y)=0 \\
& C(y)=0 \\
& D(z)=0 \\
& E(z)=0
\end{aligned}
$$

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

This means that the curve $\alpha(x)$ or $\beta(y)$ or $\gamma(z)$ is congruent to a straight line. In addition, the converse statement is trivial.

Theorem 3.5 Let M be a spherical product hypersurface in Euclidean 4 -space \mathbb{E}^{4}. Then, the mean curvature of M is presented by

$$
H=\frac{f_{2}^{5} g_{2}}{3 W^{3}}\left\{\begin{array}{c}
D(z)\left[\begin{array}{c}
f_{2} A(x) B(y)\left(\left\|G_{y}\right\|^{2}\left\|G_{z}\right\|^{2}-\left\langle G_{y}, G_{z}\right\rangle^{2}\right) \\
+f_{1}^{\prime} C(y)\left(f_{1}^{\prime 2}\left\|G_{z}\right\|^{2}+f_{2}^{\prime 2}\left(\|G\|^{2}\left\|G_{z}\right\|^{2}-\left\langle G, G_{z}\right\rangle^{2}\right)\right)
\end{array}\right] \tag{3.12}\\
+g_{2} f_{1}^{\prime} g_{1}^{\prime} E(z)\left(f_{1}^{\prime 2}\left\|G_{y}\right\|^{2}+f_{2}^{\prime 2}\left(\|G\|^{2}\left\|G_{y}\right\|^{2}-\left\langle G, G_{y}\right\rangle^{2}\right)\right)
\end{array}\right\},
$$

where $A(x), B(y), C(y), D(z), E(z)$ are indicated in (3.8) and $G=G(y, z)$ is a $3 D$-spherical product surface parameterization specified as (3.2).

Proof Let M be a spherical product hypersurface given by (3.1) in \mathbb{E}^{4}. By the use of (2.7), (3.5), and (3.9), we get

$$
\begin{equation*}
\operatorname{tr}(S)=l\left(\frac{g c-b^{2}}{W^{2}}\right)+n\left(\frac{e c-a^{2}}{W^{2}}\right)+v\left(\frac{e g-f^{2}}{W^{2}}\right) \tag{3.13}
\end{equation*}
$$

Also, substituting the 1st and 2nd fundamental form coefficients (3.6), (3.10) into (3.13) and using (2.8), we yield the mean curvature of M as (3.12) and complete the proof.

Corollary 3.6 Let M be a spherical product hypersurface given by (3.1). With the help of (3.12), the following cases occurs:
(a) If the curve $\gamma(z)$ is a straight line passing through the origin, then M has zero mean curvature (minimal).
(b) If $\alpha(x), \beta(y)$ and $\gamma(z)$ are straight lines, then M has zero mean curvature (minimal).

4. Superquadrics in Hypersurface Form

The concept of superellipse is associated with the definition of Lame curve that is represented by

$$
\begin{equation*}
\left(\frac{x_{1}}{a_{1}}\right)^{m}+\left(\frac{x_{2}}{a_{2}}\right)^{m}=1 \tag{4.1}
\end{equation*}
$$

Lame curves which are studied by Loria, 1910 and named by Gabriel Lame have nine types. While the number m increases, the curve gets closer to rectangularity. Superellipses are the special case of these curves and given by

$$
\begin{equation*}
\left(\frac{x_{1}}{a_{1}}\right)^{\frac{2}{\epsilon}}+\left(\frac{x_{2}}{a_{2}}\right)^{\frac{2}{\epsilon}}=1 \tag{4.2}
\end{equation*}
$$

Also, the parametric form is represented by

$$
\begin{equation*}
\alpha(x)=\left(a_{1} \cos ^{\varepsilon} x, a_{2} \sin ^{\epsilon} x\right) \tag{4.3}
\end{equation*}
$$

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

It is clear that the case $\epsilon=1$ is the simpliest form known from analitical geometry. In addition to superellipses, superhiperbola has a similar definition.

Using the spherical product of these types of curves we encounter with superellipsoid, superhyperboloid and supertoroid which are generally called superquadrics. Now, we define superquadrics with the form of hypersurfaces in 4-dimensional Euclidean space.

Definition 4.1 Let α, β, γ be the superellipses or the superhyperbolas in \mathbb{E}^{2}. The spherical product of these curves $(\alpha \otimes \beta \otimes \gamma)$ defines a 3 -surface called superquadrics in hypersurface form in \mathbb{E}^{4}.

Example 4.2 Suppose the related curves (superellipses) are chosen as

$$
\begin{align*}
\alpha(x) & =\left(a_{1} \cos ^{\varepsilon_{1}} x, \sin ^{\varepsilon_{1}} x\right) \\
\beta(y) & =\left(a_{2} \cos ^{\varepsilon_{2}} y, \sin ^{\epsilon_{2}} y\right) \tag{4.4}\\
\gamma(z) & =\left(a_{3} \cos ^{\varepsilon_{3}} z, a_{4} \sin ^{\varepsilon_{3}} z\right)
\end{align*}
$$

Then, the spherical product of these curves is presented as

$$
F(x, y, z)=\left(a_{1} \cos ^{\varepsilon_{1}} x, a_{2} \sin ^{\varepsilon_{1}} x \cos ^{\varepsilon_{2}} y, a_{3} \sin ^{\varepsilon_{1}} x \sin ^{\epsilon_{2}} y \cos ^{\varepsilon_{3}} z, a_{4} \sin ^{\varepsilon_{1}} x \sin ^{\epsilon_{2}} y \sin ^{\varepsilon_{3}} z\right)
$$

This parameterization is congruent to superellipsoid in hypersurface form. Actually, it satisfies the equation

$$
\begin{equation*}
\left(\frac{x_{1}}{a_{1}}\right)^{2}+\left(\frac{x_{2}}{a_{2}}\right)^{2}+\left(\frac{x_{3}}{a_{3}}\right)^{2}+\left(\frac{x_{4}}{a_{4}}\right)^{2}=1 . \tag{4.5}
\end{equation*}
$$

We can plot the projection of a superellipsoid in \mathbb{E}^{3} (As shown in Figure 1) by taking $a_{1}=1, a_{2}=2$, $a_{3}=a_{4}=3, \epsilon_{1}=3, \epsilon_{2}=2, \epsilon_{3}=1$, and $z=\pi$, with Maple command

$$
\left.\operatorname{plot} 3 d\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)+x_{4}(u+v)\right], u=-2 * P i \ldots 2 * P i, v:-2 * P i . .2 * P i\right)
$$

Figure 1. Projection of a superellipsoid in hypersurface form
${ }_{1}$ Example 4.3 Suppose the curves (superhyperbola and superellipses) are chosen as

$$
\begin{align*}
\alpha(x) & =\left(a_{1} \tan ^{\epsilon_{1}} x, \sec ^{\epsilon_{1}} x\right) \\
\beta(y) & =\left(a_{2} \cos ^{\epsilon_{2}} y, \sin ^{\epsilon_{2}} y\right) \tag{4.6}\\
\gamma(z) & =\left(a_{3} \cos ^{\epsilon_{3}} z, a_{4} \sin ^{\epsilon_{3}} z\right)
\end{align*}
$$

Then, the spherical product of these curves is presented as

$$
F(x, y, z)=\left(a_{1} \tan ^{\epsilon_{1}} x, a_{2} \sec ^{\epsilon_{1}} x \cos ^{\epsilon_{2}} y, a_{3} \sec ^{\epsilon_{1}} x \sin ^{\epsilon_{2}} y \cos ^{\epsilon_{3}} z, a_{4} \sec ^{\epsilon_{1}} x \sin ^{\epsilon_{2}} y \sin ^{\epsilon_{3}} z\right)
$$

The parameterization above is congruent to superhyperboloid with one piece in \mathbb{E}^{4} and following equation is hold:

$$
\begin{equation*}
-\left(\frac{x_{1}}{a_{1}}\right)^{2}+\left(\frac{x_{2}}{a_{2}}\right)^{2}+\left(\frac{x_{3}}{a_{3}}\right)^{2}+\left(\frac{x_{4}}{a_{4}}\right)^{2}=1 \tag{4.7}
\end{equation*}
$$

${ }_{4}$ The projection of a hyperboloid one piece can be yielded in \mathbb{E}^{3} by taking $a_{1}=2, a_{2}=3, a_{3}=a_{4}=1, \epsilon_{1}=2$, $\epsilon_{2}=\epsilon_{3}=1$, and $z=\pi$, with Maple. It is observed as in Figure 2.

Figure 2. Projection of a superhyperboloid (one piece)

6

Example 4.4 Suppose the curves (superhyperbolas) are chosen as

$$
\begin{align*}
\alpha(x) & =\left(a_{1} \tan ^{\epsilon_{1}} x, \sec ^{\epsilon_{1}} x\right) \\
\beta(y) & =\left(a_{2} \tan ^{\epsilon_{2}} y, \sec ^{\epsilon_{2}} y\right) \tag{4.8}\\
\gamma(z) & =\left(a_{3} \tan ^{\epsilon_{3}} z, a_{4} \sec ^{\epsilon_{3}} z\right)
\end{align*}
$$

Then, the spherical product of these curves is presented as

$$
F(x, y, z)=\left(a_{1} \tan ^{\epsilon_{1}} x, a_{2} \sec ^{\epsilon_{1}} x \tan ^{\epsilon_{2}} y, a_{3} \sec ^{\epsilon_{1}} x \sec ^{\epsilon_{2}} y \tan ^{\epsilon_{3}} z, a_{4} \sec ^{\epsilon_{1}} x \sec ^{\epsilon_{2}} y \sec ^{\epsilon_{3}} z\right) .
$$

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

1

2 projection of this type of hypersurface is encountered as Figure 3.

Figure 3. Projection of a superhyperboloid (two piece)
This representation is congruent to superhyperboloid with two piece in \mathbb{E}^{4} due to satisfying the equation

$$
-\frac{x_{1}}{a_{1}}-\frac{x_{2}}{a_{2}}-\frac{x_{3}}{a_{3}}+\frac{x_{4}}{a_{4}}=1
$$

In addition, by taking taking $a_{1}=a_{2}=a_{3}=a_{4}=1, \epsilon_{1}=\epsilon_{3}=1, \epsilon_{2}=2$, and $z=\pi$, the visiluation of the

5. The Generalization of Spherical Product Hypersurfaces

In the present section, we purpose to obtain the parameterization of spherical product hypersurfaces in n-dimensional Euclidean space \mathbb{E}^{n}.

In 3-dimension using two curves:

$$
\begin{aligned}
\alpha_{1} \otimes \alpha_{2} & =\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] \otimes\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right] \\
\alpha_{1} \otimes \alpha_{2} & =\left(f_{1}, f_{2} f_{3}, f_{2} f_{4}\right)
\end{aligned}
$$

In 4-dimension using three curves:

$$
\begin{aligned}
\alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} & =\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] \otimes\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right] \otimes\left[\begin{array}{c}
f_{5} \\
f_{6}
\end{array}\right] \\
\alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} & =\left(f_{1}, f_{2} f_{3}, f_{2} f_{4} f_{5}, f_{2} f_{4} f_{6}\right)
\end{aligned}
$$

In 5-dimension using four curves:

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

$$
\begin{aligned}
& \alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} \otimes \alpha_{4}=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] \otimes\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right] \otimes\left[\begin{array}{l}
f_{5} \\
f_{6}
\end{array}\right] \otimes\left[\begin{array}{l}
f_{7} \\
f_{8}
\end{array}\right], \\
& \alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} \otimes \alpha_{4}=\left(f_{1}, f_{2} f_{3}, f_{2} f_{4} f_{5}, f_{2} f_{4} f_{6} f_{7}, f_{2} f_{4} f_{6} f_{8}\right)
\end{aligned}
$$

In 6-dimension using five curves:

$$
\begin{gathered}
\alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} \otimes \alpha_{4} \otimes \alpha_{5}=\left[\begin{array}{c}
f_{1} \\
f_{2}
\end{array}\right] \otimes\left[\begin{array}{c}
f_{3} \\
f_{4}
\end{array}\right] \otimes\left[\begin{array}{c}
f_{5} \\
f_{6}
\end{array}\right] \otimes\left[\begin{array}{c}
f_{7} \\
f_{8}
\end{array}\right] \otimes\left[\begin{array}{c}
f_{9} \\
f_{10}
\end{array}\right] \\
\alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} \otimes \alpha_{4} \otimes \alpha_{5}=\left(f_{1}, f_{2} f_{3}, f_{2} f_{4} f_{5}, f_{2} f_{4} f_{6} f_{7}, f_{2} f_{4} f_{6} f_{8} f_{9}, f_{2} f_{4} f_{6} f_{8} f_{10}\right)
\end{gathered}
$$

Corollary 5.1 Let $\alpha_{1}=\left(f_{1}, f_{2}\right), \alpha_{2}=\left(f_{3}, f_{4}\right), \alpha_{3}=\left(f_{5}, f_{6}\right), \ldots, \alpha_{n-1}=\left(f_{2 n-3}, f_{2 n-2}\right)$ be regular curves in \mathbb{E}^{2}. The spherical product of these curves defines a hypersurface in \mathbb{E}^{n} called spherical product hypersurface. The parameterization of this hypersurface is given by

$$
\begin{aligned}
\alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} \otimes \ldots \otimes \alpha_{n-1} & =\left[\begin{array}{c}
f_{1} \\
f_{2}
\end{array}\right] \otimes\left[\begin{array}{l}
f_{3} \\
f_{4}
\end{array}\right] \otimes\left[\begin{array}{c}
f_{5} \\
f_{6}
\end{array}\right] \otimes \ldots \otimes\left[\begin{array}{l}
f_{2 n-3} \\
f_{2 n-2}
\end{array}\right] \\
& =f_{1} Y_{1}+\sum_{i=2}^{n-1}\left(\prod_{j=1}^{i-1} f_{2 j}\right) f_{2 i-1} Y_{i}+\left(\prod_{j=1}^{n-2} f_{2 j}\right) f_{2 n-2} Y_{n}
\end{aligned}
$$

where $Y_{1}, Y_{2}, \ldots, Y_{n}$ are coordinate functions in \mathbb{E}^{n}.

6. Conclusion

In this study, we achieve to give the general parameterization of spherical product hypersurfaces and give the significant results in four-dimensional space and especially for superquadrics. We hope this work will be the base for further studies.

Acknowledgment

The authors declares that there are no conflict of interest and they received no financial support for the research, authorship, and/or publication of this article.

References

[1] Alegre P, Arslan K, Carriazo A, Murathan C, Öztürk G. Some special types of Developable Ruled Surface. Hacettepe Journal of Mathematics and Statistics 2010; 39 (3): 319-325.
[2] Altın M. Rotational hypersurfaces in Euclidean 4-space with density. Journal of Polytechnic 2022; 25 (1): 107-114. https://doi.org/10.2339/politeknik. 740513
[3] Arslan K, Bayram B, Bulca B, Öztürk G. On translation surfaces in 4-dimensional Euclidean space. Acta Et Commentationes Universtatis Tratuensis De Mathematics 2016; 20: 123-133. https://doi.org/10.12697/acutm.2016.20.11
[4] Ateş F, Kocakuşaklı E, Gök İ, Yaylı Y. A study of tubular surfaces constructed by the spherical indicatrices in Euclidean 3-space. Turkish Journal of Mathematics 2018; 42 (4): 1711-1725. https://doi.org/10.3906/mat-1610101

BÜYÜKKÜTÜK and ÖZTÜRK/Turk J Math

[5] Bulca B, Arslan K, Bayram (Kılıç) B, Öztürk G, Ugail H. On spherical product surfaces in \mathbb{E}^{3}. 2009 International Conference on CyberWorlds; Bradford, UK; 2009. pp. 132-137.
[6] Bulca B, Arslan K, Bayram (Kılıc) B, Öztürk G. Spherical product surfaces in \mathbb{E}^{4}. Analele stiintifice ale Universitatii Ovidius Constanta 2012; 20 (1): 41-54. https://doi.org/10.2478/v10309-012-0004-9
[7] Büyükkütük S, Öztürk G. Spacelike Factorable Surfaces in four-dimensional Minkowski space. Bulletin of Mathematical Analysis and Applications 2017; 9 (4): 12-20.
[8] Gray A. Surfaces of Revolution. Ch. 20 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd edition Boca Raton, Florida, USA: CRC Press, 1997, pp. 457-480.
[9] Güler E. Rotational hypersurfaces satisfying $\Delta^{I} R=A R$ in the four-dimensional Euclidean space. Journal of Polytechnic 2021; 24 (2): 517-520. https://doi.org/10.2339/politeknik. 670333
[10] Hacısalihoglu H.H. Diferansiyel Geometri. İnönü Universitesi, Fen-Edebiyat Fakültesi, No:2, 895, Ankara, Turkiye, 1983 (in Turkish).
[11] Jaklic A, Leonardis A, Solina F. Superquadrics and their geometric properties: Segmentation and Recovery of Superquadrics. Computational Imaging and Vision. Dordrecht: Springer, 2000.
[12] Kuiper N.H. Minimal total absolute curvature for Immersions. Inventiones mathematicae 1970; 10: 209-238. https://doi.org/10.1007/bf01403250
[13] Küçükarslan Yüzbaşı Z, Yoon D.W. Characterizations of a helicoid and a catenoid. Hacettepe Journal of Mathematics and Statistics 2022; 51 (4): 1005-1012. https://doi.org/10.15672/hujms. 881876

[^0]: *Correspondence: gunay.ozturk@idu.edu.tr
 2010 AMS Mathematics Subject Classification: 53A05, 53A10

