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Abstract: This paper investigates the determination of any load or load combination in a power system at any4

instant. This process needs measurement at the main electric utility service entry of a house called Non-Intrusive.5

To accurately identify, Total Harmonic Distortion, RMS and third harmonic currents, and power consumption are6

considered fingerprints of loads. Based on these fingerprints, an algorithm called the Competitive Decision Process is7

developed and integrated into an embedded system. This algorithm has a two-level decision mechanism. In the first8

stage, the winner loads with the highest similarity scores from each feature are determined, and the loads with a higher9

similarity score than 90 move to the second stage to be evaluated. Loads that do not pass the first stage in all features10

are not considered for the next one. In the second stage, the scores from each feature of the loads passed to this stage are11

summed, and the load with the highest score is determined. It is experimentally validated that the method significantly12

detects correct load or load combinations for six residential appliances. Fifty-six type-tests are performed, and each13

type-test contains ten measurements. As a result, a total success rate of over 97 percent is obtained in all metrics.14

Key words: Harmonic analysis, Non-intrusive load identification, Residential appliances, embedded system, similarity15

score16

1. Introduction17

This paper focuses on the determination and identification of loads present at any moment in a power system.18

This method, also known as Non-intrusive load monitoring (NILM), was first proposed by Hart [1][2]. He19

declared that appliances operated in the house could be identified from the measurement captured at the utility20

side. Only active and reactive power (P and Q) measurements are recorded during 5-second intervals, and loads21

are determined by a clustering algorithm. Although simple, the method requires continuous recording, and22

inaccurate identifications are possible for similar loads. Significant progress has been made over time using very23

different approaches and features in the studies in this field, which started with Hart.24

In [3], an approach is proposed to identify harmonic source loads for industrial users. The study monitors25

current and voltage signals, and the integrated equivalent impedance is calculated. Then, complex local mean26

decomposition (CLMD) and complex fast independent component analysis (CFICA) are used to separate the27

equivalent impedance signal. The results illustrate that the approach is suitable for industrial users. [4] proposes28

a rule-based approach for load identification. The Fourier Transform of the current signal is employed, and some29

statistical features, such as minimum, maximum, standard deviation, etc., are extracted from this signal. Then,30
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the appliances are classified according to the rule table constructed from the boundaries of each load appliance1

in terms of extracted features. Over 90% accuracy is obtained in this study. [5] also uses statistical features2

for low-sampling NILM systems. An event detection-based structure is designed, and a sliding window (SW)3

based algorithm that monitors the statistical properties of the aggregated load data is employed. Around4

90% of performance is obtained in terms of precision and recall metrics. In [6], a Raspberry Pi-based system5

is designed for real-time non-intrusive load monitoring. In the designed system, current and voltage signals6

are collected, and some features such as active, reactive, and apparent power and RMS values of current and7

voltage are calculated from these signals. The Fractional Hidden Markov model and an automatic state detection8

algorithm are combined for load disaggregation. [7] also designs a Raspberry Pi-based system that uses active,9

reactive, and apparent power. Some statistical approaches, such as the Hidden Markov Model (HMM) [8],10

The Factorial Hidden Markov Model (FHMM) [9], and Additive Factorial Approximate Maximum A-Posteriori11

(AFAMAP) [10] are also used in different studies with power signal features. The differences by converting the12

time domain to the frequency domain for load currents are investigated, and the change in the current waveform13

is traced and isolated in [11]. The isolated current frequency spectrum is compared with each load frequency14

spectrum in the database, and load disaggregation success is remarkable. The linear and nonlinear properties15

of loads were investigated from the harmonic point of view and presented that harmonic components and active16

and reactive powers could be used as distinguishing features in their analysis [12][13].17

[14] proposes a transfer learning-based approach for NILM studies. Some features such as power factor,18

power, and maximum power index are used as features, and the LSTM (Long Short-Term Memory) method is19

used for feature extraction. Then, the probabilistic neural network is employed to classify the appliances. It is20

shown that the proposed method can work on limited data. [15] also uses LSTM with power information. The21

target dataset is employed to pre-train the network in the first stage, while supervised downstream tasks are22

used to fine-tune the pre-trained network. In the last stage, load disaggregation is performed by the fine-tuned23

network. In [16], 1st, 3rd, 5th, 7th, and 9th harmonic currents, the angles of these signals and THD (total24

harmonic distortion) information are employed as features, and their importance is investigated. Then, the25

radial basis function and Elman neural network methods are used to classify the appliance. In [17], the current26

and voltage signals are transformed into structured images representing the relation between load types and27

features. Then, convolutional neural networks and combined Support Vector Machines are employed for the28

classification of the images and data. The results obtained show that the proposed method is more successful29

than many existing conventional methods. [18] also proposes a deep learning approach called a physics-informed30

time-aware neural network method for industrial loads. In the study, active, reactive, and apparent power are31

employed as features, and the success of the approach is compared with the conventional deep learning approach.32

The experimental results on real-world industrial data illustrate the success of the approach.33

As seen in the existing literature, many NILM studies consider events, such as edge, sequence, duration,34

etc., that occurred in power measurements [19]–[21]. Since the method requires a very long measurement35

time to capture the necessary events, any interruption during the process may affect the accuracy. Common36

features of all these studies include the search for a distinctive feature in determining each of the loads and37

determining loads based on these features. Some have looked at macroscopic features (such as ON/OFF) and38

others microscopic features (such as transients and harmonics) [22]–[25]. However, it is common in most studies39

that the best detection method is the investigation of microscopic properties.40

Contrary to steady-state measurements, transient currents that occurred during the energizing and de-41

energizing moments of each appliance are considered in determining load [26, 27]. In addition, both steady-42
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state and transient currents are evaluated to estimate the load [28]. However, it is hard to detect transients1

when energized or de-energized low-power loads in high-power environments. Further, event-based strategies2

require tracking and storing the previous state information; in case of any loss of this information, many of3

the approaches fail. Machine learning and artificial intelligence methods are generally preferred in such studies4

when classifying appliances. However, the computational complexity of such methods is relatively high, and5

depending on the training section and models, the success rate of the method changes significantly.6

This study proposes a novel method called the Competitive Decision Process (CDP). The method has7

a two-level decision mechanism. In the first level, all winner loads with a higher similarity score (SS) than8

90 are determined for each feature and sent to the second level for the final decision. The final winner is9

selected according to a total score in the second level. In this way, high identification performance can be10

achieved by considering only combinations of high importance while reducing the complexity of the process. The11

proposed approach does not require a training stage, and the computational complexity is reduced; therefore,12

it gets advantages in real-time applications. In the decision process, only one cycle current for individual13

appliances is used as reference signals. For combinations, reference signals are obtained from individual appliance14

measurements, and SS values are calculated for all possible appliance/appliance combinations. The method uses15

THD, power consumption, RMS, and third harmonic current as features. In order to operate and control the16

whole process, an STM®-based embedded system is designed. Therefore, a fast, accurate, and autonomous17

system is presented. Also, it does not require continuous and long measurements, so the predictions are not18

affected by any failures in the system during data acquisition. The study includes 560 measurements, and 54719

(97.67%) are correctly identified with only one-period measurement. The method is validated by experiments.20

Results are presented and discussed in the text.21

The paper is organized as implementation steps, and details of the embedded system are demonstrated22

in Section 2. Features that are used in the selection criteria are explained in Section 3. The competitive23

decision process and calculations of the proposed method are explained in Section 4. Experimental results and24

discussions are illustrated in Section 5, and the conclusions of the paper are presented in Section 6.25

2. Implementation Steps and Details26

In this section, the experimental setup, architecture of the embedded system, and data acquisition interface of27

the real-time load identification system are presented.28

2.1. Experimental setup29

The experimental setup (see Fig. 1) consists of current and voltage probes that measure the current and voltage30

of the power line, signal conditioning circuits adapted to the probes’ output voltages to the microcontroller ADC31

(analog-digital converter) inputs, a development board, and a user interface that performs the monitoring and32

recording of the test results.33

Pintek DP 25 voltage probe and Fluke 80i-110s current probe are used for corresponding measurements.34

Output signals are multiplied by 10 for current and 200 for voltage calibration. They are also protected from35

noise with galvanic isolation between the power line and the signal conditioning circuit. Signal conditioning36

circuits are designed to match the probe outputs to the ADC input level of the development board. These37

circuits perform two basic functions: scaling and adding an offset of probe outputs.38

The STM32F4 Discovery board is preferred as the development board. There is an STM32F407VGT639

microcontroller with a 32-bit ARM® Cortex®-M4 core, frequency up to 168 MHz, 1-Mbyte flash memory, and40
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192-Kbyte RAM (random access memory) on the discovery board. This microcontroller is equipped with a single-1

precision floating-point unit (FPU), which supports all ARM® single-precision data-processing instructions and2

data types.3

The user interface is designed on the MATLAB/Simulink development platform. It performs two primary4

functions, such as displaying the data received from the microcontroller and saving them to the MATLAB5

workspace.6

 

Tested loads

Power line

Voltage 

probe

Current 

probe

Signal conditioning circuits

Development board
USB to RS232 

TTL converter

Programming & debug port

User interface

Figure 1. Experimental setup of the real-time load identification system.

2.2. The architecture of the embedded system7

Model-based design (MBD) has many advantages in embedded system design, such as rapid prototyping,8

simplification of debugging processes, modular design, and avoidance of manual code writing and coding errors9

that may occur in this process.10

The powerful, efficient, modular, and successful MBDmust be separated into logical partitions. Therefore,11

the study divides the MBD into four logic components: the tested loads, voltage and current probes and their12

signal conditioning circuits, the microcontroller, and the user interface (see Fig. 2).13

The microcontroller continuously samples the current and voltage signals to take 512 samples per period,14

buffers them in memory, runs the load recognition algorithm once a second, and sends the results to the user15

interface as detailed explained below.16
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LOADS

USER 

INTERFACE
V/I PROBES

SIGNAL 

CONDITIONING

PROGRAMING&DEBUG

MICROCONTROLLER

CODE GENERATION

ADC, TIMER, 

USART

Figure 2. Partitioning the MBD.
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The ADC unit is triggered with a timer with a frequency of 25,6 kHz so that 512 samples can be taken1

per period for sampling V/I signals. Data is buffered into RAM with the direct memory access (DMA) module2

when the analog conversion is completed. Then, the load identification algorithm is executed and buffers the3

results to the RAM with a one-second interval. Finally, the buffered data is sent to the interface via the USART4

(Universal Synchronous Asynchronous Receiver Transmitter) unit supported by the DMA unit.5

3. Features of Load Identification6

The literature presents loads that have unique features to separate them. Although features are the most7

crucial part of NILM studies, the key idea is to identify loads with the minimum number of features to8

mitigate complexity and increase accuracy. Therefore, several experiments are performed to investigate the9

distinctiveness and determine features.10

Appliances are evaluated in three classes: ON/OFF, finite state machine (FSM), and continuously variable11

[1]. While a single operating mode exists in the ON/OFF class, multiple operating modes exist in the FSM12

class, such as the washing machine’s rinsing, drying, and spinning modes. In each mode, the transition occurs13

in a step increase or decrease, and each can be considered a different load. In the continuously variable class,14

the change in load consumption is not a consistent step but a continuously variable consumption situation15

(light dimmers, sewing machines, etc.). Thus, six residential appliances in the ON/OFF class are selected for16

experiments and presented in Table 1, including their nominal powers and initials. Please note that initials will17

be used in the study for the corresponding loads.18

Three experiments are conducted for the selection of features. The first experiment is performed with19

LC and HL in a single case. The harmonic distribution of LC and HL is presented in Fig. 3 and Fig. 4,20

respectively. The nominal power of LC is 65W, and HL is 70W. In addition, the total harmonic distortion of21

current (THDI ), which will be described in the next section, is 190% and 4%, respectively. Although they22

have low power consumption and similar RMS currents, their third harmonic currents have distinctiveness, as23

seen in Fig. 3 and Fig. 4. Thus, these two loads could be separated by their THDI ’s and the third harmonic24

currents.25

Table 1. Loads in experiments.

Appliances Initials Nominal Power (W)
Vacuum Cleaner VC 1000
Halogen Light HL 70
Heater HE 600
Laptop Charger LC 65
Monitor MO 25
LCD Television TV 21

The second experiment is performed with LC and MO. They are expected to have similar features since26

both have power converter units, e.g., AC-DC and DC-DC, and their harmonic distributions are presented in27

Fig. 3 for LC and Fig. 5 for MO. In comparing both figures, it is clearly seen that they have similar harmonic28

distribution and THDI. However, the RMS current and power consumption of LC are almost three times higher29

than MO. Thus, they differ from power and RMS current, although they show similarities regarding harmonic30

distribution.31

LC and MO are operated together (multiple load case) for the third experiment, and the harmonic32

distribution is presented in Fig. 6. The fundamental current of multiple operations is higher than that consumed33
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Figure 3. Harmonic distribution of LC current.

 

Figure 4. Harmonic distribution of HL current.

 

Figure 5. Harmonic distribution of MO current.

by each of their single case operations. In addition, THDI (180%) is also less than their individual cases.1

However, the harmonic current distribution demonstrates similarities for both. The fundamental current of2

both loads is at most 0.22A. Thus, it is seen that the load presented in Fig. 6 is not only LC or MO. It should3

be multiple load cases, so LC-MO (90W) and HL-MO (95W) are two options based on their power consumption.4

For the HL-MO case, the third harmonic current would be much less than 90% (see Fig.7). However, for the5

LC-MO case, the third harmonic current would be around 90% because both have the same harmonic current6

concerning their fundamental currents. Hence, all results indicate that LC and MO are operated together after7

all features are considered.8

The distinctiveness of the 5th , 7th , and 9th harmonics is lower than the 3rd one, although these harmonic9

currents have a higher effect, as indicated in [16]. Therefore, harmonics higher than 3rd one are not considered.10
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These experiments demonstrate that power consumption, RMS current, THDI , and the third harmonic1

current have sufficient and critical information for loads. However, the acquisition of each data and their correct2

interpretations are the most critical factors that will increase the accuracy of the method applied. It will be3

explained in the next section.4

 

Figure 6. Harmonic analysis of MO & LC current.

 

Figure 7. Harmonic analysis of MO & HL current.

4. Competitive Decision Process5

This study proposes a new method called the Competitive Decision Process (CDP). The proposed method6

only needs a one-cycle current and voltage measurement for each individual load to store in the database as7

a reference. One of the most important advantages of the method is that it does not require a training stage8

and continuous measurement. The proposed method utilizes the similarity score metric introduced in [29] while9

deciding, and it has a two-level decision process to identify the residential load or loads used in the experiments.10

It can identify both individual loads and load combinations. In the first level of this approach, similarity scores11

belonging to each feature are calculated by using measured signal and reference signals, as explained in detail12

in the following section, for all possible combinations. It should be noted that one-period reference signals13

are required only for individual loads, and reference signals for combination loads are not needed. The steady14

state measurements are used in calculation of the similarity score metric and then the winner/winners with a15

similarity score above 90 are determined. The reason is that there are deviations due to various reasons (noise,16

voltage fluctuations, etc.) in the different measurements of the same load. Since they remained in the band of17

about 10%, the value of 90 was considered appropriate as the threshold level for this study and is applied. In18

this way, it is aimed to create a stronger decision mechanism where weak relationships are ignored and only19

strong features are considered. In the second stage, only the winner payload combinations selected for each20
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feature in the first stage are considered. A final score value is obtained by summing the scores from each feature1

for each load combination that moves to the second stage. The highest score load combination (final winner) is2

assigned as the selected combination. If a load combination enters the second stage with a score higher than 903

for each used feature, the probability of that load combination being selected will be relatively high. Likewise,4

suppose a load combination is chosen with a high score from one feature but not from another. In that case,5

the probability of the highest final score will decrease since no value will come from that feature (zero). In this6

way, not only a more robust method has been created, but also measurement instabilities that may arise from7

the hardware are prevented from negatively affecting the decision. Furthermore, the computational complexity8

of the approach is thus reduced, as some load/load combinations are excluded from the calculation and no9

calculations are performed for them. One advantage of the approach is that identification can be performed10

any time without needing previous state information, which differs from the event-based methods. In other11

words, continuous measurements are optional. In this way, the storage space required to store the previous12

state information in embedded system applications is saved, and the loss of the previous state information does13

not have a negative impact on the identification performance (in event-based methods, this negatively affects14

the identification performance). In addition, the steady-state, the longest part of the load, has been considered15

in the paper since the transient effect is absorbed quickly.16

After measurements, SS, which ranges from 0 to 100 for each feature, calculations are initiated. Power17

consumption, RMS current, THDI , and third harmonic current are selected and employed as features during18

analyses. So, the load combinations with higher scores than 90 are determined for each. In the second level, the19

sum of SSs is calculated for loads past this stage. Then, the measured load is identified as the reconstructed20

load with the highest SS. Therefore, all SS calculations are described below to perform the load identification21

process.22

4.1. Power SS23

Power consumption calculated as in (1) is the most common evaluation feature for NILM studies.24

Pu =
1

T

∫
i(t)v(t)d(t). (1)

where, Pu is the power consumption of an unknown load, and i(t) and v(t) are the instantaneous current25

and voltage measurements, respectively. To determine the SS, reconstructed power (PRC ) for each type-test26

should be calculated and compared to Pu . The reconstruction process starts with calculating each single-load27

power consumption for each type-test and ends with their sum. Then, SS is calculated as in (2).28

Pss =

{
100 ∗ PRC

Pu
, PRC < Pu.

100 ∗ Pu

PRC
, Pu < PRC .

(2)

where, Pss is the similarity score of power consumption. Then, higher scores than 90 are considered for29

the second level.30

4.2. RMS Current SS31

RMS current is another feature to be used for the identification, calculated as in (3).1

Irms−u =

√
1

T

∫ ∑
i(t)2dt (3)
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where, Irms−u is the RMS current of the measured (unknown) load, and i(t) is the instantaneous current.2

The SS of RMS current, Irms−ss , is calculated in (4).3

Irms−ss =

{
100 ∗ Irms−rc

Irms−u
, Irms−rc < Irms−u.

100 ∗ Irms−u

Irms−rc
, Irms−u < Irms−rc.

(4)

where Irms−rc is the reconstructed RMS current for any possible cases. All possible combinations of4

loads are considered to find the closest Irms−rc to Irms−u . Therefore, Irms−rc is presented in (5) based on5

Kirchhoff’s current law.6

Irms−rc =

√
1

T

∫ ∑
j

ij(t)2dt (5)

where, ij(t) is the sum of instantaneous currents for each corresponding load located in the database.7

For example, if we consider the load combination of MO and TV, the ij(t) is equal to the sum of imo(t) and8

itv(t).9

4.3. THD SS10

FFT, the faster version of discrete Fourier transform (DFT), calculates harmonics (amplitude, angle, and11

harmonic order). The voltage waveform is not considered for FFT to reduce the complexity and calculation12

time. Therefore, FFT is only applied to the current waveform, and the angle and amplitude for each harmonic13

are obtained. Then, THDI is calculated by (6) [30], and THDSS, which is the SS of THD, is calculated by (7).14

THDI =

√∑50
h=2 I

2
h

I1
∗ 100. (6)

THDss =

{
100 ∗ THDI−rc

THDI−u
, THDI−rc < THDI−u.

100 ∗ THDI−u

THDI−rc
, THDI−u < THDI−rc.

(7)

where, Ih is the harmonic current, and I1 is the fundamental current. In multiple load cases, Ih is15

obtained by the vectorial sum of the corresponding harmonic currents since they may not be in phase with16

each other, and I1 is obtained by the sum of the corresponding fundamental currents of loads. THDI−u and17

THDI−rc are the THDI for the unknown load and reconstructed load, respectively.18

4.4. Third Harmonic SS19

The third harmonic current is another layer for the identification process. The ratio of the third harmonic20

(150Hz) to fundamental current (50Hz) depends on the load structure, as seen in Fig. 3 and Fig. 4. Fig. 3 is21

a highly nonlinear characteristic load, and Fig. 4 is a linear characteristics load. As a result, (8) is adopted to22

determine similarities between the measured load and the predicted one.1

Iss−3 =

{
100 ∗ i3−rc

i3−u
, i3−rc < i3−u.

100 ∗ i3−u

i3−rc
, i3−u < i3−rc.

(8)
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where i3−rc is the vectorial sum of the corresponding third harmonic current of loads. i3−u is the third2

harmonic current for the unknown load.3

All steps are converted to an algorithm and presented below based on the evaluations.4

1. Get measurements (time vs. current and voltage).5

2. Extract one-period zero-crossing voltage and corresponding current from measurement.6

3. Perform FFT for the current waveform.7

4. Calculate the RMS current, third harmonic current, THDI, and power consumption.8

5. Calculate the SSs for all features.9

6. Pick all the load combinations with higher scores than 90 according to the scores for each feature.10

7. Calculate the final scores from the selected load combination in the previous step.11

8. Decide the one with the highest SS as the decision (final winner).12

5. Experimental Results and Discussions13

All experiments presented in Table 2 are performed with the proposed method. Remember that each type-test14

contains ten measurements, and there are 56 type-tests in total. As a result, 560 identifications are evaluated by15

the embedded system, which performs the algorithm, and results are obtained. These results present accurate16

loads of 53 type-tests (530 experiments). However, three type-tests, 10, 11, and 32, contain a varying number17

of incorrect results. When we investigate the results, type-test 32 has only one inaccurate result out of 1018

measurements. In addition, type-test-10 has two failed results, and type-test-11 cannot be identified in any of19

the measurements. Therefore, all these failed predictions are deeply investigated.20

5.1. Failed Predictions21

Three type-tests have failed predictions, and the first one is the type-test-10. Although the exact combination22

of the type-test-10 is VC and MO (loads 1 and 5), the method determines it as VC and TV (loads 1 and 6) in23

two cases. As indicated, VC is the common load for all evaluations, but MO is misidentified as TV in two. Also,24

Table 3 presents the SSs of the correct and failed experiments of the corresponding type-test. Fig. 8 shows the25

current waveforms of measurement and reconstructed current waveforms, both correct and failed ones. Although26

MO and TV are completely different in harmonic distributions and power consumption, it should be considered27

load composition. Since the evaluations of combination loads are based on the reconstructed waveforms, it is28

noticed that the measured current is located between the reconstructed ones. Therefore, the result is declared29

type-test-11 instead of type-test-10 for the failed experiment with a tiny difference.30

The second failed type-test is Type-test 11, consisting of VC and TV (loads 1 and 6). The load is31

identified as VC, HL, and MO (loads 1, 2, and 5) at the failed results. VC is the expected load for all results32

due to its relatively higher SS effect in the combination. However, TV cannot be determined in all experiments33

as TV. It is thought that the reason behind this situation is the measurement errors.34

The last failed one is Type-test 32. Although it is a combination of HL, HE, and LC, one of the35

measurements is determined as HE, LC, and TV. As seen on the load combinations, HL is misidentified as36

TV. The reason is the same as the previous cases. As a result, there are only 13 failed predictions out of 56037

experiments.1
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Table 2. Load tests.

Type-test* Load Type-test* Load
1 VC 29 VC-LC-MO
2 HL 30 VC-LC-TV
3 HE 31 VC-MO-TV
4 LC 32 HL-HE-LC
5 MO 33 HL-HE-MO
6 TV 34 HL-HE-TV
7 VC-HL 35 HL-LC-MO
8 VC-HE 36 HL-LC-TV
9 VC-LC 37 HL-MO-TV
10 VC-MO 38 HE-LC-MO
11 VC-TV 39 HE-LC-TV
12 HL-HE 40 HE-MO-TV
13 HL-LC 41 LC-MO-TV
14 HL-MO 42 VC-HL-HE-LC
15 HL-TV 43 VC-HL-HE-MO
16 HE-LC 44 VC-HL-HE-TV
17 HE-MO 45 VC-HL-LC-MO
18 HE-TV 46 VC-HL-LC-TV
19 LC-MO 47 VC-HL-MO-TV
20 LC-TV 48 VC-HE-LC-MO
21 MO-TV 49 VC-HE-LC-TV
22 VC-HL-HE 50 VC-HE-MO-TV
23 VC-HL-LC 51 VC-LC-MO-TV
24 VC-HL-MO 52 HL-HE-LC-MO
25 VC-HL-TV 53 HL-HE-LC-TV
26 VC-HE-LC 54 HL-HE-MO-TV
27 VC-HE-MO 55 HL-LC-MO-TV
28 VC-HE-TV 56 HE-LC-MO-TV

* Each set contains ten measurements

 

Figure 8. Harmonic analysis of MO & HL current.

5.2. Evaluations2

To evaluate the success of the approach, accuracy (9), precision (10), recall (11), and F-score (12) metrics are3

employed.1
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Said Mahmut ÇINAR and Rasim DOĞAN and Emre AKARSLAN/Turk J Elec Eng & Comp Sci

Table 3. Correct and failed experiment results for type-test 10.

Correct Evaluation Failed Evaluation

Type-test SS Type-test SS
10 290.52 11 290.06
11 290.26 10 289.39
9 196.43 9 196.6
47 98.73 47 99.44
25 98.10 25 97.74
23 97.22 23 96.53
29 95.44 29 95.51

Accuracy =
Numberofsuccessfulidentification

Numberofexperiments
. (9)

Precision =
TP

TP + FP
. (10)

Recall =
TP

TP + FN
. (11)

F − score = 2 ∗ precision ∗ recall
precision+ recall

. (12)

where TP, FN, and FP are true-positive (detected condition when the condition is present), false-negative2

(not detected condition when the condition is present), and false-positive (detected condition when the condition3

is absent), respectively.4

Table 4. Performance results

Accuracy Precision Recall F-score
Individual load 100 1 1 1
Two loads 92.0000 0.9290 0.9600 0.9442
Three loads 99.5000 0.9983 0.9983 0.9983
Four loads 100 1 1 1
Total performance 97.6786 0.9853 0.9916 0.9884

The performance results are presented in Table 4. As can be seen in Table IV, an accuracy rate of5

97.67% is obtained when considering all experiments. Furthermore, in all metrics, above ninety percent success6

is obtained. While the accuracy is about 97%, the precision and recall values are about 99%. It indicates7

that a significant portion of the loads in a combination are correctly determined, while one or two loads are8

misidentified. These results clearly show the success of the method. For single-load cases, it is indicated that all9

tests are accurately estimated. When the combinations consisting of different numbers of loads are evaluated10

separately, success of over 92% is achieved in all metrics. Table 5 is presented to compare the success of the11

proposed method with existing methods in the literature.1

12
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Table 5. Comparison of the proposed approach with existing methods in the literature

No NILM Technique Dataset Accuracy F-score
1 Du et al.[31] WHITED 87.08 87.31
2 Liu et al.[32] PLAID 80.70 78.71
3 Qu et al.[33] WHITED 95.99 95.43
4 De Baets et al.[34] PLAID 90.05 90.40
5 Proposed model Laboratory prototype 97.67 98.84

In comparison, two base criteria called Accuracy and F-score metrics are used. As seen in Table 5, the2

proposed approach outperforms the selected studies in terms of both Accuracy and F-score. Due to factors3

such as the method used, measurement techniques, and the loads’ characteristics, varying performances may be4

observed across different datasets. However, the results highlight the effectiveness of the proposed method.5

6. Conclusion6

This paper proposed a CDP method to determine any load/load combination in the system. THDI, RMS and7

third harmonic current, and power consumption are evaluated to identify loads. These electrical features ob-8

tained from high-frequency measurements (512 samples/period) have been considered for the study. In addition,9

this method contains a low-complexity algorithm that uses one-period current and voltage measurement.10

The method is validated by six different loads and their fifty-six combinations. Each experimental test11

is repeated ten times, so there are ten measurements of each combination. As a result, 560 measurements are12

obtained, and 547 of them (97.67%) are perfectly identified. Remember that the rest of the inaccurate results13

(2.33%) include partly correct load determinations, as explained in the paper.14

In the proposed method;15

� A novel Competitive Decision Process is introduced for the first time in this study.16

� A real-time STM-based embedded system is designed to perform the whole process.17

� In all load combination cases, the total success rate of over 97% is achieved with all metrics.18

�Waiting for any step changes and recording more than one-period data are eliminated since the method19

does not require a continuous measurement.20

� Low power consumption loads can be disaggregated in most cases.21

� Since only one-period measurements of single-load cases are required as references, a minimum database22

space is needed.23

� The complexity of the approach is reduced by the proposed two-level process.24

The future scope of the work will be to conduct in-depth research on demand-side management and25

system stability based on the dynamic model for conservation voltage reduction (CVR) studies since accurate26

load determination ensures a correct understanding of the load side.27
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