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1Computer Engineering Department, Abdullah Gül University, Kayseri, Turkiye,

2Turkcell, Istanbul, Turkiye,
ORCID iD: https://orcid.org/0000-0002-5811-6722,
ORCID iD: https://orcid.org/0000-0001-7686-6298,
ORCID iD: https://orcid.org/0000-0003-0803-8372

Received: .202 • Accepted/Published Online: .202 • Final Version: ..202

4

Abstract: The rapid growth of computer networks emphasizes the urgency of addressing security issues. Organizations5

rely on Network Intrusion Detection systems (IDSs) to protect sensitive data from unauthorized access and theft. These6

systems analyze network traffic to detect suspicious activities, such as attempted breaches or cyberattacks. However,7

existing studies lack a thorough assessment of class imbalances and classification performance for different types of8

network intrusions: wired, wireless, and Software-Defined Networking (SDN). This research aims to fill this gap by9

examining these networks’ imbalances, feature selection, and binary classification to enhance intrusion detection system10

efficiency. Various techniques like SMOTE, ROS, Adasyn, and SMOTETomek are used to handle imbalanced datasets.11

Additionally, Extreme Gradient Boosting (XGBoost) identifies key features, and an AutoEncoder (AE) assists in feature12

extraction for the classification task. The study evaluates datasets like AWID, UNSW , and InSDN, yielding the best13

results with different numbers of selected features. Bayesian optimization fine-tunes parameters, and diverse machine14

learning algorithms (SVM, KNN, XGBoost, Random Forest, ensemble classifiers, and AutoEncoders) are employed. The15

optimal results, considering F1-measure, overall accuracy, detection rate, and false alarm rate, have been achieved for the16

UNSW-NB15, preprocessed AWID, and InSDN datasets, with values of [0.9356, 0.9289, 0.9328, 0.07597], [0.997, 0.9995,17

0.9999, 0.0171], and [0.9998, 0.9996, 0.9998, 0.0012], respectively. These findings demonstrate that combining Bayesian18

optimization with oversampling techniques significantly enhances classification performance across wired, wireless, and19

SDN networks when compared to previous research conducted on these datasets.20

Key words: Network Intrusion Detection systems (NIDS), Network Anomaly Detection, Deep Learning, Bayesian21

Optimization, Class Imbalance, Software-defined networking (SDN)22

1. Introduction23

The exponential growth of computer networks has led to a significant rise in security concerns, particularly24

regarding network intrusions. The role of Network Intrusion Detection Systems (NIDS) is of remarkable25

importance in protecting organizations’ IT infrastructure from potential cyber-attacks. As security incidents and26

financial losses per incident continue to increase, the detection of network attacks has become a top priority and a27

significant challenge for researchers in computer science and network security. The primary objective of NIDS is28
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to develop predictive models capable of distinguishing normal network activities from abnormal ones. Various1

studies in the literature have explored predictive modeling techniques, including XGBoost, Artificial Neural2

Networks (ANN), deep learning, and other conventional machine learning algorithms. However, class imbalance3

problems often arise in these predictive modeling studies [1]. Many approaches, like SMOTE (Synthetic Minority4

Over-Sampling Technique) [2], have been suggested as potential solutions to tackle this issue and have shown5

their efficacy by improving classification accuracy. In conjunction with the issue of class imbalance, an effective6

network anomaly detection system must also address the challenges posed by various attack patterns, encrypted7

data transmissions, and the need for real-time application performance. Researchers have conducted studies on8

various techniques for selecting features and integrating classifiers with network intrusion detection systems in9

order to improve the ability to predict network attacks. Nevertheless, the lack of a widely accepted approach for10

detecting network intrusions is obvious, and a noticeable lack of scientific studies comparing the different feature11

selection and classification algorithms performances with respect to distinct evaluation metrics is apparent.12

In order to address the existing research gap, the primary aim of this study is to conduct an analysis of13

network intrusions inside wired, wireless, and software-defined networking (SDN) settings. This analysis will14

specifically focus on the challenges associated with classification and class imbalance. This study utilizes many15

techniques such as class imbalance strategies, feature selection, hyperparameter optimization, and classification16

methods in order to accurately detect network intrusions. In this context, this study employs various methods,17

including ROS, SMOTE, SMOTETomek, and Adasyn (Adaptive Synthetic Sampling) [3] , to address the issue18

of unbalanced datasets. Additionally, XGBoost has been utilized to assess the importance of features during19

the feature selection process. The main contributions of this study to the literature are listed below:20

(i) To alleviate the computational workload and minimize training time, XGBoost feature selection has21

been applied to pinpoint the most informative features within IDS datasets.22

(ii) An efficient hyperparameter optimization technique called Bayesian optimization, has been employed23

to fine-tune the model’s parameters. This optimization process aims to identify the best combination of24

hyperparameters that yield optimal performance while minimizing the required training time.25

(iii) By applying imbalanced strategies including SMOTE, SMOTETomek, and Adasyn, the model can26

better handle the challenges posed by imbalanced datasets and improve its performance in detecting intrusions27

accurately while minimizing the impact of class imbalance.28

(iv) Various ML models have been constructed to classify intrusions and normal flows, followed by29

a comprehensive evaluation using various metrics such as F1-measure, overall accuracy, false alarm rate,30

and detection rate (Figure 1 provides an overview of these steps). It has been observed that the proposed31

classification methodologies produce superior results compared to the existing literature (Table 1).32

(v) As far as we are aware, no study has been conducted to evaluate different network intrusion datasets,33

such as wired, wireless, and SDN, together, considering class imbalance, feature selection, and hyperparameter34

optimization tasks. This study aims to fill this gap.35

The organization of the paper can be sorted as follows: The subsequent section examines related work36

on network intrusion detection. The materials and methods section introduces the datasets, providing detailed37

information about their network features and preprocessing steps. It then describes the approach for feature38

selection and extraction using XGBoost and AutoEncoders. The fourth section presents the evaluation metrics39

used in classification conducted on the UNSW-NB15 [4], AWID [5], and InSDN [6] datasets. The final section40

provides the conclusion of this study.41
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2. Related Work1

The literature on network anomaly detection suggests a wide amount of algorithms, including both deep learning2

techniques and standard machine learning algorithms. Researchers have emphasized the importance of rapid3

response in network intrusion detection systems. For instance, Potluri et al. [7] have utilized parallel computing4

and deep learning algorithms on the NSL-KDD dataset, achieving an accuracy score of 97.5%. Hoang et al.5

[8] has employed parallel genetic programming on the AWID dataset, reducing computing costs and achieving6

precision, recall, and F1-measure values of 0.785, 0.78, and 0.78, respectively. Kolukisa et al. [9] also have7

trained logistic regression parameters via parallel Artificial Bee colony algorithm and achieved significant results8

on UNSW NB15 dataset.9

Tree-based machine learning algorithms, such as XGBoost, have demonstrated effectiveness and feasibility10

in network intrusion detection systems [10–13]. Kevric et al. [10] utilized NB trees and random trees as a11

hybrid technique on the NSL-KDD dataset, achieving an accuracy of 89.24%. Pattawaro et al. [11] employed12

an ensemble approach combining kNN and XGBoost on the NSL-KDD dataset, achieving an accuracy of13

84.4%. Dhaliwal et al. [13] performed XGBoost on the NSL-KDD dataset, attaining values of 98.70% accuracy14

and 98.76% F1-score. In another study [14], a novel hybrid feature selection and LightGBM-based Intrusion15

Detection System (IDS) is proposed for SDN. They tested their proposed model on the NSL-KDD dataset and16

achieved notable results.17

Prior to classification, several research studies have employed dimension reduction techniques such as18

Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), and AutoEncoder (AE). LDA and19

PCA are linear transformation methods, with PCA being unsupervised and LDA being supervised. AutoEn-20

coders, on the other hand, are neural networks that attempt to compress input data into a smaller model using21

an encoder and a bottleneck. AutoEncoders operate in a nonlinear manner, similar to PCA but with greater22

flexibility. Research studies have generated AutoEncoder algorithms for dimension reduction and classification23

tasks, achieving high evaluation scores [15–21].24

Wheelus et al. [22] tackle the issue mentioned and demonstrate that SMOTE proves to be more effective25

than alternative algorithms in addressing class imbalance, particularly in terms of ROC area compared to spe-26

cific machine learning algorithms. Additionally, Abdulhammed et al. [23] acknowledge the challenge of class27

imbalance and implement preprocessing techniques designed for imbalanced datasets, achieving a remarkable28

99.99% accuracy in the CIDDS-001 intrusion dataset. Meanwhile, Ran et al. [24] adopt a semi-supervised29

learning approach as a substitute for traditional supervised machine learning algorithms, incorporating under-30

sampling to effectively address the class imbalance problem. Abdelkhalek and Mashaly [25] achieve significant31

results by combining the Adasyn and TomekLinks sampling techniques.32

Other deep learning methods, including Deep Belief Networks (DBN), Deep Neural Networks (DNN),33

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and LSTM-based AutoEncoder, have34

been utilized to construct predictive models. These approaches have demonstrated high accuracy rates on35

datasets such as KDD Cup ’99, NSL-KDD, and InSDN [21, 22, 26, 27]. Some studies achieve significant results36

by employing deep learning algorithms in a hybrid manner. For instance, Qazi et al. [28] apply CNN and37

RNN algorithms in a hybrid manner to the CICIDS-2018 dataset, resulting in notable outcomes. Regarding38

Software-Defined Networking (SDN), research studies have highlighted the importance of detecting Distributed39

Denial of Service (DDoS) attacks in SDN networks. Bhayo et al. [29] proposed machine learning-based approach40

to detect DDoS attacks in an SDN-WISE IoT controller. They integrated Naive Bayes (NB), Decision Tree41

(DT), and Support Vector Machine (SVM)-based detection module into the controller and achieved a high level42
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of accuracy.1

Various models, including Decision Trees, Naive Bayes, K Nearest Neighbors, and Extra Trees, have2

been applied with majority voting to defend against DDoS attacks [30]. Yoo et al. [31] proposed a hybrid3

model that combines a random forest and a deep learning model to classify files as either malware or benign.4

By employing hybrid majority voting rules, they achieved a significant improvement in detection rate. LSTM-5

based AutoEncoder and one-class SVMmethods have been used for encoding and classification in SDN networks,6

achieving high accuracy rates [32]. Ensemble approaches based on k-means++ and random forest have also7

demonstrated excellent precision and recall in detecting attacks on SDN datasets [33]. Transforming SDN8

network traffic tabular data into image data and employing modified CNN models have also yielded high9

accuracy rates [34]. Another studies [35, 36] use the widely used and benchmark UNSW-NB15 dataset, achieving10

significant results with DBN and SVM, respectively.11

While all the methods mentioned make valuable contributions to the existing literature, to our knowledge,12

there is no study in the literature that systematically assesses and compares anomaly detection across datasets13

generated in diverse network environments, considering factors such as class imbalance, hyperparameter opti-14

mization, and feature selection. To address these challenges in intrusion detection systems (IDS), this study15

evaluates wired, wireless, and SDN networks in terms of feature selection, class imbalance problems, hyper-16

parameter optimization, and binary classification tasks. By considering these factors, the goal is to efficiently17

detect network anomalies in different network environments. Table 1 shows that proposed methodologies yield18

superior classification outcomes compared to the literature.19

Ref Dataset Method Precision Recall F1 Acc Year
[21] UNSW-NB15 LDA and Random Tree 0.861 0.865 - 86.46% 2018
[35] UNSW-NB15 Improved DBN - - - 86.49% 2020
[36] UNSW-NB15 SVM - - - 85.99% 2019
[9] UNSW-NB15 ABC-LR - - 0.8826 88.25% 2023

this study UNSW-NB15
Random Forest
(with Bayesian opt.)

0.93 0.94 0.9356 92.89% -

[12] AWID Random Forest 0.96 0.96 0.95 99.106% 2018
[8] AWID GP 0.79 0.78 0.78 - 2018
[8] AWID Karoo-GP 0.82 0.79 0.80 - 2017
[24] AWID DNN based on Ladder Network - - - 99.28% 2019

[37] AWID
Hunger Games Search and
Remora Optimization

0.9976 0.994 0.9958 99.16% 2022

this study AWID
Random Forest
(with Bayesian opt.)

0.99 0.99 0.997 99.95% -

[30] InSDN V-NKDE 0.998 0.998 0.998 99.84% 2021
[32] InSDN LSTM-AutoEncoder-OC-SVM 0.93 0.93 0.93 90.50% 2020

this study InSDN
AE+ Random Forest
(with Bayesian opt.)

0.99 0.99 0.9998 99.96% -

Acc= Accuracy, Ref= Reference, F1= F1-score.

Table 1. Comparison of existing works using the UNSW-NB15, AWID, and InSDN datasets.

3. Materials and methods20

In this research, three publicly available datasets are used: AWID, UNSW NB15, and InSDN. The AWID21

dataset focuses on wireless network attacks and contains 155 features. The training set has 1,795,575 instances,22
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and the testing set has 575,643 instances. The UNSW NB15 dataset includes wired network attacks, and it1

contains various attack categories along with normal traffic. The InSDN dataset consists of SDN traffic data2

and includes attacks targeting different layers and SDN-specific attacks. It contains 77 features and 343,9393

instances for normal and attack traffic. Before conducting classification experiments, preprocessing steps have4

been performed on the AWID dataset to transform it into an efficient format. The UNSW NB15 dataset does5

not require preprocessing. In the InSDN dataset, non-contributing features have been removed. To address6

the class-imbalance problem, oversampling techniques such as SMOTE, SMOTETomek, and Adasyn have been7

applied. Feature selection has been carried out using XGBoost to identify the most relevant network traffic8

features. Bayesian optimization has been utilized to optimize the hyperparameters of existing machine learning9

algorithms as well as the proposed technique. Finally, evaluation metrics have been computed to assess the10

performance of the classification methods employed in the study.11

3.1. Dataset and data preprocessing12

Data preprocessing constitutes a crucial and fundamental step in data mining, and it encompasses converting13

raw data into a format that is efficient and relevant for analysis. In the context of this study, data preprocessing14

techniques have been applied to the AWID, InSDN and UNSW-NB15 datasets.15

The AWID dataset contains 155 attributes, yet not all play a role in training the model. Within the16

AWID dataset, data varies in value and type—ranging from discrete and continuous to symbolic—creating a17

wide-ranging value spectrum. These diverse data characteristics pose a challenge for classifiers to accurately18

understand the underlying details. Hence, an essential step in classification is the pre-processing phase to19

navigate this complexity. In literature, some researches ([8, 12, 24, 37]) mentioned in comparison table (Table20

1) that they have used a reduced version of the AWID dataset have applied different pre-processing strategies.21

Firstly, specific features that do not affect variance and have a high number of missing values have been excluded22

from all studies. However, the exclusion of features varies from one study to another based on their specific23

criteria and the methods used for feature selection. Secondly, they have applied different strategies to samples24

containing missing values. Vaca et al. [12] have removed missing values with the most occurred values. Ran25

et al. [24] have replaced missing values with zeros. Kumar et al. [37] also used replacing missing values. In26

this study, the AWID dataset has been imported into SPSS 1, and specific features that have no discriminatory27

power and no effect on variance have been excluded based on their feature-frequency specifications. Features28

with a large number of missing values have been removed from the dataset. Replacing or deleting missing values29

has both advantages and drawbacks. Given that only two percent of the original data contains missing values30

and to avoid errors or biases that may arise from ”replacing” missing values, ”deleting” was preferred in this31

study. Consequently, any remaining samples with missing values have been eliminated. As a result of these32

pre-processing methods, 20 out of the original 155 features from the AWID dataset have been retained.33

Similarly, irrelevant features, such as destination and source IP addresses, flow IDs, and timestamps,34

were removed from the InSDN dataset during the preprocessing step. These attributes were eliminated as they35

were deemed irrelevant for the classification task. With the application of these preprocessing techniques, the36

datasets were cleansed and rendered suitable for subsequent classification and analysis.37

The UNSW-NB15 dataset offers distinct training and testing datasets. The training set comprises38

175,341 samples, with 56,000 labeled as ”normal” and 119,341 labeled as ”abnormal.” Similarly, the testing set39

includes 82,332 samples, with 37,000 labeled as ”normal” and the remaining 45,332 labeled as ”abnormal” traffic40

1IBM Corp. IBM SPSS Statistics [online]. Website https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-25
[accessed 01 Semptember 2022].
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Figure 1. A schematic representation of our methodology: preprocessing, parameter optimization, and model construc-
tion.

samples. Hence, with the UNSW-NB15 dataset containing categorical features, the one-hot encoding technique1

is employed to convert these categorical features into numeric values. After encoding, the three categorical2
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features, including ’service,’ ’state,’ and ’proto’ in the UNSW-NB15 dataset, contribute to an increased total of1

45 to 196 features.2

3.2. Evaluation metrics3

A critical stage in model development, the evaluation of machine learning algorithms involves assessing the4

model’s performance using various evaluation metrics, which obtain from confusion matrix (Table 2). Although5

accuracy (1) is commonly used, it is essential to consider additional metrics for a comprehensive evaluation of6

the model’s performance. When faced with imbalanced datasets, such as intrusion detection and others with7

a greater proportion of normal samples than abnormal samples, accuracy may fail to provide a comprehensive8

understanding. Metrics such as precision, F1-score (2), recall, False Alarm Rate (FAR) (3), and Detection9

Rate (DR) (4) become critically important in such situations. The metric of precision assesses the model’s10

capability to accurately detect positive instances by dividing the number of predicted positive samples by the11

number of actual positive samples. Recall, also known as sensitivity or true positive rate (TPR), measures the12

percentage of real positive samples that are correctly identified. The F1-score, a combination of precision and13

recall, provides an integrated performance evaluation that considers both aspects. The Detection Rate (DR)14

is the ratio of actual positive samples to the total number of positive samples. The False Alarm Rate (FAR)15

is calculated by dividing the number of false positive samples by the overall count of actual negative samples,16

indicating the model’s tendency to incorrectly label negative instances as positive. In addition to accuracy, in17

this study, other evaluation metrics such as precision, F1-score, recall, Detection Rate, and False Alarm Rate18

have been used to assess the performance of an algorithm for machine learning in a more comprehensive manner.19

Table 2. Confusion Matrix

Predicted Negative Predicted Positive
Actual Negative TN FP
Actual Positive FN TP

Accuracy =
TP + TN

TN + FP + FN + TP
(1)

F1 score =
2 ∗ TP

2 ∗ TP + FP + FN
(2)

False Alarm Rate (FAR) =
FP

TN + FP
(3)

Detection Rate (DR or TPR) =
TP

FN + TP
(4)

3.3. Class imbalance problem20

When the minority class in a dataset contains fewer samples than the majority class, traditional machine learning21

algorithms may struggle to perform well. This study employs oversampling rather than under sampling to resolve22

this issue and prevent the loss of informative minority class samples.23
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The SMOTE method has been applied as the initial oversampling technique on the preprocessed datasets.1

SMOTE is commonly used to fix class imbalance by creating synthetic data points for the minority class, using2

nearest neighbors. This balances class distribution and boosts classification accuracy and F1-measure.3

In addition to SMOTE, the SMOTETomek algorithm has been applied to all datasets. SMOTETomek4

combines the capabilities of SMOTE for generating synthetic data with the Tomek Link under sampling method.5

Tomek Links, which are pairings of samples belonging to distinct classes that are in close range to one another,6

can be eliminated to enhance the differentiation between classes.7

Furthermore, the Adasyn algorithm has been implemented as the final step of oversampling. Adasyn is8

an enhanced version of SMOTE that adds small random values to the synthetic samples generated by SMOTE.9

This improves the performance of the classification model by increasing the diversity and realism of the synthetic10

samples.11

By using oversampling methods like SMOTE, SMOTETomek, and Adasyn, the problem of imbalanced12

class distribution can be reduced. These algorithms help the classification models learn better from the minority13

class samples, leading to improved accuracy and F1-measure for classification tasks.14

3.4. Feature selection via EXtreme Gradient Boosting (XGBoost) algorithm15

In this study, the XGBoost algorithm has been applied for feature selection in the network intrusion detection16

model construction. Feature selection plays a crucial role in reducing computation costs and improving the17

classification performance of the model.18

XGBoost assigns relative relevance values to features based on their importance in making critical19

decisions on decision trees. The more a feature is used in decision making, the higher its importance score. By20

applying a threshold, which has been determined based on the point where feature importance scores decline21

rapidly, the top-ranked features can be selected.22

Figure 2 and Figure 3 provide visual representations of the importance scores of each feature for the AWID23

and the UNSW-NB15 datasets. These figures present the relative importance scores of the selected features based24

on their respective weights, where the cumulative importance scores of all features amount to 1. For the AWID25

dataset, experiments encompassed 20 features ranging from ”wlan.fc.subtype” to ”radiotap.channel.type.cck,” as26

well as 12 features covering ”wlan.fc.subtype” to ”wlan.fc.frag,” as indicated in Table 3. Similarly, experiments27

were conducted for the UNSW-NB15 dataset, encompassing 37 features spanning from ”sttl” to ”service=ftp,”28

and 20 features from ”sttl” to ”dloss,” as indicated in Table 4. Feature selection has not been applied to the29

InSDN dataset because it produces efficient results in its current form ([6]).30

The feature selection step helps to identify the most relevant and informative features, which can31

lead to improved classification performance. By selecting critical attributes, the model can efficiently reduce32

computational costs while simultaneously improving its accuracy in identifying network intrusions.33

3.5. Feature extraction via AutoEncoder34

Figure 4 depicts the AutoEncoder (AE), an unsupervised deep learning model designed to handle high-35

dimensional data. The AE compresses the input data into a bottleneck hidden layer, representing the encoded36

input data. The decoder component of the AE reconstructs the original input data by leveraging the encoded37

data and minimizing the reconstruction loss. During the training process, AEs aim to minimize the reconstruc-38

tion error. In this particular context, the AE model has been trained using the training set and validated using39

the validation set. Following the Bayesian optimization process, a random forest classifier has been applied to40

the best encoded samples (compressed data shown in Figure 4) obtained from the AE model.41
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Figure 2. The top 20 features with higher relative importance in the AWID dataset. The Y axis corresponds to the
names of these features, and the X axis corresponds to the relative importance values of the corresponding features.

3.6. Hyperparameter optimization using bayesian optimization1

Optimizing parameters is a critical aspect of learning algorithms. While machine learning algorithms come2

with default parameters, tuning them is essential to achieve optimal performance. In this study, we explore3

various classification algorithms with different hyperparameters. To prevent overfitting, we employ validation4

sets instead of test sets. Stratified random sampling has been utilized to create balanced validation sets, which5

involve randomly sampling 30 percent of the imbalanced versions of the AWID and UNSW-NB15 training sets.6

Table 5 presents the tuned hyperparameters for each classification algorithm along with the search7

approaches employed. For an SVM model, ”c” and ”gamma” are hyperparameters that require careful balancing8

between bias and variance. To find optimal values for these parameters, a randomized search strategy has been9

employed. The parameter named ”n estimators” determines the total number of trees present in the forest10

when employing algorithms like Random Forest. In the XGBoost model, ”learning rate” is a hyperparameter11

that determines the weight adjustment of newly added trees. Furthermore, the parameters ”max depth”,12

”min child weight”, ”colsample bytree” and ”subsample” correspond to the following properties in the context13

of base learners: the maximum depth allowed for each tree, the ratio of columns to consider when building each14

tree, the minimum required sum of instance weight in a child node, and the ratio of training instances to use15

during the construction of individual trees, respectively.16

9
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Figure 3. The top 37 features with high relative importance in the UNSW-NB15 dataset. The Y axis corresponds to
the names of these features, and the X axis corresponds to the relative importance values of the corresponding features.

4. Experiments and results1

The research methodology for this study comprises three primary phases. First, the contribution of feature2

selection using XGBoost has been evaluated in the classification problem. Second, the impact of different3

imbalance strategies on classification outcomes has been investigated. Third, the effectiveness of Bayesian4

hyper parameter optimization in classification has been assessed. Performance metrics have been compared5

across wired, wireless, and SDN networking flows.6

For the classification task, several machine learning algorithms have been employed. The SVM algorithm7

has been used to evaluate IDS datasets with respect to the linearity aspect. Tree-based models, including8

random forest and XGBoost, have been utilized, which make use of if-then rules for classification. The k-9

nearest neighbor algorithm has been applied both independently and in combination with random forests to10

create an ensemble classifier. These classification methods have been implemented using the scikit-learn library11

in Python.12

When evaluating the performance of classification models using accuracy, it is important to address issues13

10
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Selected Features Descriptions
frame.time epoch Epoch Time
frame.time delta Time delta from previous captured frame
frame.len Frame length on the wire
radiotap.datarate Data rate (Mb/s)
radiotap.dbm antsignal Antenna signal
wlan.fc.type Types of 802.11 packets
wlan.fc.subtype Spesific types of 802.11 packets
wlan.fc.frag Control bit for more fragments coming or not
wlan.fc.retry Control bit for frame is a retransmission or not
wlan.fc.pwrmgt Control bit for station will stay awake or sleep
wlan.fc.protected Control bit for MSDU payload encrypted or not
wlan.duration Duration
frame.time delta displayed Time delta from previous displayed frame
frame.time relative Time since reference or first frame
frame.cap len Frame length stored into the capture file
radiotap.mactime MAC timestamp
radiotap.channel.freq Channel frequency
radiotap.channel.type.cck Complementary Code Keying (CCK)
radiotap.channel.type.ofdm Orthogonal Frequency-Division Multiplexing (OFDM)
wlan.fc.moredata Frame Control Field More Data

Table 3. Selected features and their descriptions of the AWID dataset

Figure 4. Illustration of the AutoEncoder model.

related to imbalanced datasets. The number of samples from different classes should not vary significantly.1

Additionally, in this study, other evaluation metrics such as F1 score, precision, recall, detection rate, and false2

alarm rate have been utilized.3

Table 6, Table 7 and Table 8 provide a summary of the performance results from the experiments with4

optimal hyperparameters obtained through Bayesian optimization. These experiments include ablation studies,5

that is, the effect of feature selection and different class imbalance strategies on classification results.6
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Selected Features Descriptions
dur Record total duration
proto=tcp Transaction protocol
proto=arp Transaction protocol
proto=ospf Transaction protocol
proto=unas Transaction protocol
service=- http, ftp, ssh, dns ..,else (-)
service=http http, ftp, ssh, dns ..,else (-)
service=dns http, ftp, ssh, dns ..,else (-)
service=ftp http, ftp, ssh, dns ..,else (-)
state=CON The state and its dependent protocol, e.g. ACC, CLO, else (-)
spkts Source to destination packet count
sbytes Source to destination bytes
dbytes Destination to source bytes
rate there is no description
sttl Source to destination time to live
dttl Destination to source time to live
sload Source bits per second
dload Destination bits per second
sloss Source packets retransmitted or dropped
dloss Destination packets retransmitted or dropped
sinpkt Source inter-packet arrival time (mSec)
dtcpb Destination TCP base sequence number
stcpb Source TCP base sequence number
tcprtt The sum of ’synack’ and ’ackdat’ of the TCP.
synack The time between the SYN and the SYN ACK packets of the TCP.
smean Mean of the flow packet size transmitted by the src
dmean Mean of the flow packet size transmitted by the dst
trans depth the depth into the connection of http request/response transaction
response body len The content size of the data transferred from the server’s http service.

ct srv src
No. of connections that contain the same service and source address
in 100 connections according to the last time.

ct state ttl No. for each state according to specific range of values for source/destination time to live.

ct dst ltm
No. of connections of the same destination address
in 100 connections according to the last time.

ct src dport ltm
No of connections of the same source address and the destination portin
100 connections according to the last time.

ct dst sport ltm
No of connections of the same destination address and the source port
in 100 connections according to the last time.

ct dst src ltm
No of connections of the same source and the destination address
in 100 connections according to the last time.

ct src ltm
No. of connections of the same source address
in 100 connections according to the last time.

ct srv dst
No. of connections that contain the same service and destination address
in 100 connections according to the last time .

Table 4. Selected features and their descriptions of the UNSW-NB15 dataset

In summary, the experiments demonstrate the effectiveness of feature selection, imbalance strategies, and1
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Method Parameter Lowest Highest
Random forest n estimators 10 500
Random forest min samples leaf 1 5
Random forest max depth 1 150
Random forest min samples split 2 10
SVM c 0.001 1
SVM gamma 0.01 1
XGBoost n estimators 10 500
XGBoost subsample 0.3 1
XGBoost max depth 2 10
XGBoost colsample bytree 0.1 0.6
XGBoost learning rate 0.01 0.07
XGBoost min child weight 1 5
AutoEncoder learning rate 10−8 10−1

AutoEncoder no of hidden units 5 50
AutoEncoder dropout rate 0 0.5
AutoEncoder batch size 1 1024
AutoEncoder no of epochs 1 50

Table 5. Ranges of classifier’s hyperparameters used for Bayesian optimization.

the Bayesian hyper parameter optimization in the classification of network intrusion detection datasets. It has1

been observed that the proposed intrusion detection systems for wired, wireless, and SDN networks perform2

well in terms of normal/anomaly detection when hyper parameters are optimized on the validation set and3

evaluated on the test set. Balanced versions of the datasets yield better performance compared to imbalanced4

versions. The best performance of network intrusion detection systems (NIDS) has been reported in terms of5

accuracy, precision, recall, F1 measure, Detection rate (DR) and False Alarm Rate (FAR). The results show6

that the optimum values for F1 measure, overall accuracy, detection rate, and false alarm rate are high in all7

three datasets.8

5. Conclusions9

This study mainly aims to fill a gap in the literature by evaluating wired, wireless, and Software-Defined10

Networking (SDN) networks from different perspectives using various state-of-the-art and hybrid machine11

learning strategies to develop efficient network intrusion detection systems. The focus is on addressing class12

imbalance problems, performing feature selection and extraction, and conducting binary classification tasks13

effectively.14

To achieve this, this study utilizes the SMOTE, Adasyn, and TomekLink algorithms for handling class15

imbalances on wired, wireless, and SDN networking datasets. The Extreme Gradient Boosting (XGBoost)16

feature selection methodology has been employed to identify the most informative features. For the binary17

classification task, several machine learning methods have been applied, including SVM, KNN, XGBoost,18

Random Forest, and AutoEncoder-based ensemble classifiers.19

The datasets used in this study are publicly accessible wireless (AWID), wired (UNSW-NB15), and SDN20

(InSDN) network intrusion datasets. The performance of the proposed intrusion detection systems in this study21

has been assessed across important conditions, such as with or without feature selection and using imbalanced22

or balanced datasets.23

When optimized on the validation set and evaluated on the test set, this developed models for wired,24

13
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Dataset Model Precision Recall F1-Score Accuracy

AWID
(12 features)

Imbalance

kNN 0.85 0.91 0.879 0.9798
Random Forest 0.97 0.81 0.8828 0.9827
SVM 0.28 0.99 0.4365 0.7943
XGBoost 0.94 0.12 0.2128 0.9286
kNN+RF 0.96 0.32 0.4799 0.9442
AE+kNN 0.98 0.42 0.588 0.9526

Balance

kNN 0.84 0.91 0.8736 0.9788
Random Forest 0.96 0.82 0.8845 0.9828
SVM 0.43 0.43 0.4299 0.9083
XGBoost 0.95 0.81 0.8744 0.9813
kNN+RF 0.98 0.84 0.9046 0.9857
AE+kNN 0.98 0.42 0.588 0.9526

AWID
(20 features)

Imbalance

kNN 0.84 0.86 0.8499 0.9756
Random Forest 0.97 0.66 0.7855 0.971
SVM 0.63 0.63 0.63 0.9404
XGBoost 0.97 0.49 0.6511 0.9577
kNN+RF 0.97 0.65 0.7784 0.9702
AE+kNN 0.98 0.46 0.6261 0.9558

Balance

kNN 0.84 0.91 0.8736 0.9788
Random Forest 0.99 0.99 0.997 0.9995
SVM 0.43 0.43 0.4299 0.9083
XGBoost 0.79 0.80 0.795 0.9668
kNN+RF 0.98 0.82 0.8929 0.9842
AE+RF 0.98 0.46 0.6261 0.9558

Table 6. Binary classification with Bayesian optimization results on the AWID dataset. The bold ones present the best
F1-measure and accuracy scores for the AWID dataset and its subsets.

wireless, and SDN networks perform well in terms of binary classification. Balanced versions of the datasets1

perform better than their imbalanced counterparts. Table 9 provides a summary of the best performance results2

for each dataset in terms of F1-measure, overall accuracy, detection rate, and false alarm rate. In addition,3

Table 1 demonstrates that the combination of the machine learning methodologies proposed in this study4

generate superior outcomes in comparison to the existing literature.5

Importantly, the study demonstrates that reliable NIDS can be generated with oversampling techniques,6

efficient feature selection techniques, and cost-effective tree-based algorithms. Additionally, it is noteworthy7

that the proposed intrusion detection systems achieve significant performance that is a close to when used 208

features, while using only 12 features on the AWID dataset. Accuracy values are almost equal on both feature9

subsets (Table 6).10

Overall, this research makes a valuable contribution to the literature in the field of network intrusion11

detection by offering valuable insights into effective strategies for handling class imbalance, feature selection,12

and binary classification tasks in wired, wireless, and SDN networks. As far as we know, no study has13

been undertaken to evaluate different network intrusion datasets, such as wired, wireless, and SDN, together,14

considering class imbalance, feature selection, and hyperparameter optimization tasks. The performance results15

highlight the success of the proposed methods and their potential for practical implementation in real-world16

network security scenarios. The optimal results, considering F1-measure, overall accuracy, detection rate, and17

14
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Dataset Model Precision Recall F1-Score Accuracy

UNSW-NB15
(37 features)

Imbalance

kNN 0.84 0.92 0.8782 0.8595
Random Forest 0.82 0.99 0.8955 0.8732
SVM 0.74 0.97 0.8469 0.803
XGBoost 0.74 0.86 0.7955 0.7565
kNN+RF 0.84 0.92 0.8781 0.8595
AE+RF 0.81 0.99 0.891 0.8666

Balance

kNN 0.86 0.91 0.8843 0.8689
Random Forest 0.87 0.98 0.9155 0.9017
SVM 0.84 0.91 0.8736 0.855
XGBoost 0.99 0.52 0.6819 0.7328
kNN+RF 0.94 0.68 0.7891 0.7999
AE+RF 0.85 0.97 0.906 0.8892

UNSW-NB15
(20 features)

Imbalance

kNN 0.83 0.90 0.8636 0.8434
Random Forest 0.82 0.99 0.8941 0.8711
SVM 0.74 0.98 0.8469 0.803
XGBoost 0.76 0.94 0.8405 0.8035
kNN+RF 0.83 0.90 0.8636 0.8434
AE+RF 0.81 0.99 0.891 0.8666

Balance

kNN 0.83 0.91 0.8682 0.8478
Random Forest 0.93 0.94 0.9357 0.9286
SVM 0.89 0.85 0.8695 0.8596
XGBoost 0.98 0.56 0.7127 0.7514
kNN+RF 0.90 0.71 0.7938 0.7969
AE+RF 0.86 0.97 0.9117 0.8965

UNSW-NB15
(all features)

Imbalance

kNN 0.84 0.92 0.8781 0.8595
Random Forest 0.82 0.99 0.8923 0.8690
SVM 0.75 0.99 0.8553 0.8146
XGBoost 0.78 0.97 0.8647 0.8328
kNN + RF 0.84 0.92 0.8782 0.8595
AE + RF 0.81 0.99 0.891 0.8666

Balance

kNN 0.86 0.91 0.8843 0.8689
Random Forest 0.93 0.94 0.9356 0.9289
SVM 0.96 0.84 0.896 0.893
XGBoost 0.99 0.55 0.7071 0.7492
kNN + RF 0.96 0.67 0.7892 0.8029
AE + RF 0.83 0.98 0.8988 0.8785

Table 7. Binary classification with Bayesian optimization results on the UNSW-NB15 dataset. The bold ones present
the best F1-measure and accuracy scores for the UNSW-NB15 dataset and its subsets.

false alarm rate, have been achieved for the UNSW-NB15, preprocessed AWID, and InSDN datasets, with1

values of [0.9356, 0.9289, 0.9328, 0.07597], [0.997, 0.9995, 0.9999, 0.0171], and [0.9998, 0.9996, 0.9998, 0.0012],2

respectively. The outcome demonstrates the model’s potential capacity for detecting intrusions. However, there3

are some limitations to the proposed approach. There exists a trade-off between computational complexity and4

model performance. Despite achieving high-performance models with greater accuracy, it demands substantial5

resources, especially during the Bayesian optimization step, for detecting intrusions. Consequently, future work6

15
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Dataset Model Precision Recall F1-Score Accuracy

InSDN

Imbalance

kNN 0.99 0.99 0.9998 0.9996
Random Forest 0.99 0.99 0.9971 0.9953
SVM 0.99 0.99 0.9982 0.9970
XGBoost 0.99 0.99 0.9966 0.9946
kNN + RF 0.99 0.99 0.9998 0.9997
AE + RF 0.99 0.99 0.9998 0.9996

Balance

kNN 0.99 0.99 0.9967 0.9947
Random Forest 0.99 0.99 0.9970 0.9941
SVM 0.99 0.99 0.9987 0.9979
XGBoost 0.99 0.86 0.9263 0.8901
kNN + RF 0.99 0.99 0.9967 0.9947
AE + RF 0.99 0.99 0.9998 0.9996

Table 8. Binary classification with Bayesian optimization results on the InSDN dataset. The bold ones present the best
F1-measure and accuracy scores for the InSDN dataset and its subsets.

Dataset
No of
selected
features

Method
Imbalance
strategy

Prec Rec FM Acc DR FAR

AWID 12
voting
ensemble
(kNN+ RF)

SMOTE +
Tomek link

0.98 0.84 0.9046 0.9857 0.9797 0.0151

AWID 20 RF Adasyn 0.99 0.99 0.997 0.9995 0.9999 0.0171
UNSW-NB15 37 RF Adasyn 0.87 0.98 0.9155 0.9017 0.8688 0.0464
UNSW-NB15 20 RF Adasyn 0.93 0.94 0.9357 0.9286 0.9243 0.0678
UNSW-NB15 all RF Adasyn 0.93 0.94 0.9356 0.9289 0.9328 0.07597

InSDN all AE+ RF
SMOTE +
Tomek link

0.99 0.99 0.9998 0.9996 0.9998 0.0012

Acc: Accuracy, FM: F measure, Prec: Precision, Rec: Recall, DR: Detection rate, FAR: False Alarm Rate,
RF: Random Forest.

Table 9. Best results obtained from the AWID, UNSW, and InSDN datasets based on different numbers of selected
features.

should focus on designing effective intrusion detection techniques that classify attacks by accelerating the system1

using metaheuristics and GPUs.2
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