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Abstract: Cinchona alkaloids-derived sulfonamides and ester dimers containing chiral

hyperbranched polymers (HBPs) have been successfully synthesized and applied as

catalyst to asymmetric reactions. Several hyperbranched polymers derived from cinchona

alkaloids, incorporating sulfonamides and esters, have been synthesized through

Mizoroki-Heck coupling polymerization. These polymers were subsequently applied in

enantioselective Michael addition reactions. As these prepared polymers are not soluble
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in a frequently used organic solvent, the polymers act as an efficient catalyst to the
enantioselective reaction of p-ketoesters to nitroolefins to give up to 99%
enantioselectivity with good yields. The insoluble property gives them extra space to
satisfy ‘Green chemistry’ requirement and is used up to several times without losing the
enantioselectivity.

Key words: Hyperbranched polymers (HBPs); sulfonamide; polymeric chiral
organocatalyst; Michael addition reaction.

1. Introduction

Cinchona alkaloid is a member of the Rubiaceae family and is derived from the bark of
various species of cinchona trees [1]. Cinchona alkaloids are the chemical substances with
the most vivid past. There are many instances of cinchona alkaloids being used as chiral
resolving agents today [2 - 5]. The key use of cinchona alkaloids in chemistry is to
expedite numerous enantioselective transformations in both homogeneous and
heterogeneous catalytic systems. The use of cinchona derivatives in asymmetric catalysis
has grown dramatically since the publication of many ground-breaking studies. Now, it
is understood that cinchona alkaloids and derivatives of them are one of the most blatant
organic chirality inducers, working to activate practically all chemical processes in a
highly stereoselective manner. The chiral induction and discrimination mechanisms were
explained by structural analysis of cinchona alkaloids utilizing spectroscopic and
computational techniques [6]. The main reason for the widespread use of cinchona
alkaloids by numerous researchers [7, 8] in various reactions, including hetero-[2 + 2]
cycloadditions [9], phase transfer catalyzed epoxidation [10], alkylation [11], conjugate
additions [12], and phosphonylation reactions of aldehydes [13], was the use of these

compounds as chiral catalysts in between the 1970s and 1980s. Cinchona alkaloids have
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a variety of functions that are essential for producing chirality in asymmetric products,
either on their own or in chemically altered forms [14], because they contain both acidic
and basic sites and these behave as dual-functional chiral organocatalysts. A nucleophile
and an electrophile can both be activated and oriented by the hydroxyl moiety and tertiary
amine, respectively [15]. Cinchona alkaloids and their analogues are able to serve as
catalysts that are chiral in four distinct type of transformations, including the formation
of carbon-carbon bonds, carbon-oxygen bonds, carbon-hydrogen heteroatom bonds and
also additional processes including desymmetrization and hydrogenation. Bifunctional
chiral catalysts, which can concurrently interact with and activate both the reacting sites,
are a reliable, efficient technique to the stereoselective production of significant
asymmetric molecules. Sulfonamides, which can be produced from cinchona alkaloids,
are among the most significant and essential catalysts. In contrast to tertiary nitrogen of
quinuclidine, which in cinchona alkaloids may function as both a base and a hydrogen-
bond acceptor, the acidic NH part of sulfonamide is capable of functioning as a hydrogen-
bond donor. Since, the cinchona alkaloid-derived sulfonamides have both acidic and basic
sites, they have the unusual ability to keep a substrate in a certain orientation, creating a
chiral environment [16]. Additionally, C9 ester derivatives of cinchona alkaloids with
free OH [17], quinuclidine nitrogen [18 - 20], and a methoxy group adjacent to the C6'
position of the quinoline molecule extensively studied and used effectively in numerous
asymmetric processes [21 - 23]. The natural cinchona alkaloids in addition to alternate
varieties like bifunctional cinchona alkaloid derivatives are commonly utilized as a
flexible source for organocatalysts in the field of catalytic enantioselective chemical
synthesis [24 , 25]. Along with cinchona alkaloids with the 6'-OH group [26], cinchona

alkaloids with thiourea moiety [27], and cinchona alkaloids along with 9-squaramide
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[28], dual-functional cinchona alkaloid catalysts have also been found. Sulfonamide
catalysts based on cinchona alkaloids have been used to carry out asymmetric Michael-
type reactions successfully. For instance, According to Luo et al., the asymmetric Michael
reaction of 1,3-dicarbonyl compounds with nitrostyrene demonstrated good catalytic
activity for the quinidine-derived sulfonamide. According to research by Itsuno et al., the
Michael addition reaction between ketoester and nitrostyrene exhibited greater
stereoselectivity when cinchonidine sulfonamides that served as bifunctional chiral
organocatalysts [29].

Polymeric chiral organocatalysts are now used to great effect in the production of diverse
chiral building blocks. A chiral organocatalyst (such as cinchona squaramides,
sulfonamides, quaternary ammonium salt, cinchona ester, etc.) can be incorporated to
produce a polymer that can be used as a chiral polymeric organocatalyst in many
asymmetric reactions. Chiral polymers that include helical polymers, side-chain chiral
polymers, main-chain chiral polymers, chiral ligands with dendritic molecules, and
polymers with hyperbranched chirality. Polymeric chiral organocatalysts have drawn a
lot of interest in chemical synthesis of molecules that are optically active due to their ease
of removal from the reaction mixture and their capacity for multiple re-use. The design
of chiral polymeric catalysts for hyperbranched chiral polymer organocatalysts is the
primary focus of this work. Chiral catalysts were made by copolymerizing a variety of
chiral catalytic monomers with achiral monomers. A chiral catalyst is added to the main
structure of the polymer during polymer immobilization. In recent years, significant
advancements have been done in the chiral main-chain polymeric catalyst synthesis
process. In addition, several instances of polymer-immobilized catalysts have greater

enantioselectivities compare to the corresponding catalysts that has the low-molecular-
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weight [30]. Different kinds of synthetic polymers, both organic and inorganic, have been
employed as supports for chiral catalysts, and it has been documented which polymer
network is best for each reaction [17]. As a substrate for the chiral catalyst, there are
various polymers such as cross-linked, branching, dendritic as well as linear shaped have
been used. A functional polymer with a chiral ligand can be polymerized to create a
polymer-support chiral organocatalyst, and different monomers can be utilized depending
on the kind of polymerization.  Extremely branched three-dimensional (3D)
macromolecules are known as hyperbranched polymers (HBPs) [31]. Due to their
advantageous physical characteristics above those of their linear analogs, such as lower
inherent viscosity, a lower glass transition temperature, and a higher number of terminal
groups, hyperbranched polymers (HBPs) have garnered significant attention [32 - 36].
HBPs are therefore appropriate for a variety of uses, such as lubricants, coatings,
medication delivery systems, and also catalysts [37 - 41]. While HBPs are relatively
simple to manufacture in a single-step polymerization using the single-monomer
methodology (SMM) and double-monomer methodology (DMM) [42]. As our research
team has already established that the Mizoroki-Heck coupling process is trustworthy for
forming C-C bonds to produce chiral polymers from cinchona alkaloid derivatives, we
are concentrating on this coupling reaction in this article to synthesize HBPs [21, 43, 44].
The olefinic double bond of the sulfonamide dimer generated from cinchona alkaloid, the
cinchona ester dimer, and the halide of trifunctionalized aromatic iodide were combined
in the Mizoroki-Heck process to create chiral HBPs. In the asymmetric Michael Addition
reaction, we employed these hyperbranched polymers as chiral polymeric
organocatalysts.

2. Result and discussion:
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2.1 Synthesis of cinchona-derived sulfonamide and ester dimers and their corresponding
chiral hyperbranched polymers

In this paper, we were mainly focusing to design HBPs based on cinchona sulfonamide
and cinchona ester dimers. These HBPs contain rigid catalytic centers that are
substantially more numerous, which may create a favorable microenvironment at the
catalytic sites and enable systematic manipulation of their catalytic characteristics. We
have synthesized various polymers of chiral organocatalyst by ion exchange
polymerization, etherification polymerization, neutralization polymerization and
quarternization polymerization. Sulfonyl chloride is very reactive towards amine, even in
mild reaction condition to give sulfonamide derivatives. So, sulfonamide dimers 3 except
3e, were designed and synthesized by the combination of C-9 aminated cinchona
alkaloids 1 [3(R),4(S),8(S),9(S)] and disulfonyl chloride 2 (Scheme 1) at rt. Only for 24
h reaction tine with the excess amount of 1 (~ double amount of 2), resulted pleasant
yield. C-9 aminated cinchona alkaloids 1 was synthesized from cinchona alkaloid 4

[3(R),4(S),8(S),9(R)] having C-9 hydroxyl group by using the reported procedure [45].

(i) EtsN N ® 9 HFAON
| .
| NH> g CH,Cl,, 24 h, 1t N H § 5

vvwn N
1 2 3 R
N P
3aaR=H; L= 3c:R=H; L=

s, A h
3b:R=H;L}A©Af 3d: R=0OMe; L = ’;\©/ _ 3e:R:OH;L=\©/

Scheme 1: i) Synthesis of cinchona based sulfonamide dimers. ii) Demethylation of 3d dimer
by 1M BBr3, dry CH.Cl;, Ar gas, -78°C to rt, 48h
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where C-6" OH carrying dimer 3e was procured by demethylation of 3d by using BBr3
(scheme 1) at -78 °C for 2 days. On the other hand, dimeric ester 6a were resulted from
C-9 hydroxyl cinchona alkaloids 4 and hexa acid chloride 5. Cinchona ester dimer 6b

obtained from 6a as 3e prepared by demethylation (Scheme 2).

(i) EtzN
CH,Cly, 1t, 24 h

6
6a: R = OM .

6b: R = OHj(")

Scheme 2: i) Synthesis of ester dimers of cinchona. ii) Demethylation of 6a dimer by 1M BBr3,
dry CH,Cl;, Ar gas, -78 °C to rt, 48h.

Novel chiral hyperbranched polymers holding cinchona based sulfonamide and ester
dimers were designed by accumulating of bifunctional dimers and trifunctional aromatic
halides, 9. The two C3-vinyl groups in the structure of cinchona dimers make it possible
to carry out the polymerization process with aromatic iodides using a two-component
type approach the Mizoroki-Heck coupling reaction is the most effective reaction among
the numerous reactions that can proceed a C-C bond with a vinylic double bond [43, 44].
In order to produce polymers, we therefore used the Mizoroki-Heck reaction between
aromatic triiodides and divinylic compounds. These trifunctional aromatic iodide
compound 9a and 9b were prepared from trihydroxybenzene and tris phenol with
1odobenzoylchloride 8 respectively at room temperature (Scheme 3) [46, 47]. Tris phenol
and iodobenzylbromide 10 were used to make another class of trifunctional compounds
9¢ which has three iodophenyl groups. (Scheme 3) [46]. Repeated MH reactions take
place in the presence of a catalyst, Pd(OAc)2 when these triiodo aromatic compounds 9

are combined with cinchona dimers 3 or 6, and the resulting chiral hyperbranched
7



1 polymers (Scheme 4) are produced with a high yield (up to 93%, entry 6). One reaction

2 route has been shown in (Scheme 4).

Cl O
OH

o "0
\I{ N DMAP, EtsN o ]
HO/ \OH CH,CHoy, 1t., 4h /@)J\O/Y\O
' |
7 8
+
Br
Cs,CO,4
MeCN, 60 °C, 18 h
o
! |
10
3
4 Scheme 3: Different synthetic route of trifunctional aromatic iodides.
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Catalyst Pd(OAc),, 10 mol%
: o "
\ _NH
* DMF, 100 °C, 48 h Y N

P2-3b

Scheme 4: Synthesis of chiral HBP P2-3b.
The reaction mixture became precipitated in ether after polymerization, and then washed

with ether and water to yield the polymer powder. The desired polymers of entry 1-5 were
prepared by the Mizoroki-Heck polymerization using cinchona alkaloids based
sulfonamide dimers 3 and the entry 8-9 resulting from cinchona ester dimers 6 with tri-
iodide 9a, where entry 6-7 are procured from different type of trifunctional aromatic
iodide 9b and 9c with sulfonamide dimers 3b. The HBPs that we obtained were soluble
in DMF and DMSO, except P6-3b and P7-3b those were dissolved minimally. But all
polymers were slightly dissolved in other prevalently used organic solvents, for instance,
dichloromethane, methanol, diethyl ether, ethyl acetate, THF, hexane as well as acetone.
The outcomes of the MH polymerization of aromatic triiodides and cinchona dimers are
shown in Table 1. In every cases, chiral HBPs gives higher molecular weight of around
over 10,000 was found. But we couldn’t take molecular weight for polymer P6-3b and

P7-3b due to poor solubility in DMF.
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Table 1: Synthesis of chiral hyperbranched polymers of different cinchona dimers and
trifunctional aromatic iodides by applying Mizoroki-Heck polymerization.

Pd(OAc),, 10 mol%
DMF, 100 °C, 48 h

Dimer + Tri-iodide

Hyperbranched polymer

Chiral . . .
Entry Dimer lodides . Yield [%] Mn MW MW/Mn
1 3a 9a P1-3a 79 8000 13000 1.65
2 3b 9a P2-3b 81 10000 19000 1.97
3 3c 9a P3-3c¢ 70 24000 63000 2.63
4 3d 9a P4-3d 86 23000 61000 2.72
5 3e 9a P5-3e 55 16000 23000 1.43
6° 3b 9b P6-3b 93 - - -
7° 3b 9¢ P7-3b 88 - - -
8 6a 9a P8-6a 73 15000 25000 1.67
9 6b 9a P9-6b 77 18000 27000 1.52

aDetermined by GPC with a flow rate of 1.0 mL per minute at 40 °C and DMF as the solvent (polystyrene
standard). ®Not soluble in DMF.

2.2 Catalytic activity of cinchona alkaloid derived dimers and Hyperbranched polymers
(HBPs):

We have selected the asymmetric Michael addition of methyl 2-
oxocyclopentanecarboxylate 11 to trans- B-nitrostyrene 12 as the model reaction (Scheme
5) to examine the catalyst’s function of the cinchona based chiral Hyperbranched
polymers. Initially, we took a look for dimeric low-molecular-weight catalysts in the
enantioselective Michael addition reaction in CH.Cl, at room temperature, reaction
proceeded smoothly and got excellent enantioselectivites up to 99% with preferable yield

(up to 96%) except 6a which gave only 44% ee (Table 2 entry 6). Table 2 provides a

10
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summary of the results of the asymmetric Michael reaction of 11 and 12 using low-
molecular dimeric catalysts. We are encouraged by these results to use the corresponding
sulfonamide polymers as a catalyst by applying the same procedure. Then, HBPs of the
respective dimers have been synthesized as polymeric organocatalysts and employed for
the same reaction. In the first instance, we trialled hyperbranched polymeric catalyst P1-

3a.

Table 2: Asymmetric Michael addition? of B-ketoesters (11) with trans-f-nitrostyrene (12) using
various dimers.

Entry Catalysts Reaction time [h] Yield® [%] dr[%] ee’ [%]
1 3a 24 93 7.6:1 99
2 3b 24 96 15:1 99
3 3c 28 79 7.9:1 98
4 3d 42 62 4.7:1 99
5 3e 3 92 10:1 97
6 6a 32 72 0.6:1 44
7 6b 20 94 5.3:1 99

2At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the dimeric
catalyst (5 mol%) were conducted in 2.5 mL of CHCl,. ’Isolated yield after purification by the column
chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral cel OD-
H).

Although it was insoluble in CH2Cl, gives heterogeneous mixture, the asymmetric
Michael addition of trans-nitrostyrene 12 and methyl 2-oxocyclopentanecarboxylate 11

progressed without any cumbersome

2 (@)
/ . COOCH;3
|:/§7COOCH3 + Ph/\/ N02 5 mol% Cat. ‘.
Solvent, rt., time ~ NO;
Ph H
11 12 13

Scheme 5: Asymmetric Michael addition? of 3-ketoesters (11) with trans-p-nitrostyrene (12).
11
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at the room temperature to provide corresponding asymmetric product up to 99% ee with
96% yield. However, a higher reaction time was demanded owing to heterogeneous
system for polymeric catalysts. It was almost similar result compared with previously
reported cinchona based sulfonamide main chain type linear polymer. In this case, half

(5 mol %) catalyst loading was required compared to linear polymers.

Table 3: Asymmetric Michael addition? of B-ketoesters (11) with trans-f-nitrostyrene (12) using
different HBPs.

1. Entry Catalysts Reaction time [n]  Yield® [%] dr[%] ee® [%]
1 P1-3a 36 96 4.5:1 99
2 P2-3b 24 84 8:1 >99
3 P3-3c 30 86 6.4:1 98
4 P4-3d 36 81 6.4:1 98
5 P5-3e 24 75 55:1 99
6 P6-3b 36 63 10.5:1 94
7 P7-3b 36 67 11.3:1 96
8 P8-6a 24 59 1.1:1 64
9 P9-6b 24 73 5.9:1 >99

aAt room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CHCls. "Isolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral
cel OD-H).

Shorter reaction time needed when P2-3b more flexible structure than P1-3a was used as
catalyst, the chiral product 13 obtained with nearly perfect enantioselectivity of the major
diastereomer (over 99%) within 24 hours (Table 3 entry 2). Though it gave better
enantioselectivity comparing with corresponding dimer, but diastereoselectivity
somewhat diminished. A competent performance was executed by chiral HBPs in

particular asymmetric reaction might be because of creating microenvironment in chiral

12
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polymer network. Other polymers also demonstrated splendid enantioselectivity (94 to
99%) except for the result obtained by using P8-6a (Table 3 entry 8). It was derived from
quinine ester dimer 6a having C6’' methoxyl group which gave lower enantioselectivity
for the selected model Michael reaction due to lack of acidic proton. Poor
enantioselectivity also displayed by dimeric catalyst 6a dimer. The enantioselective
Michael addition reaction proceeded under the same conditions when the chiral
hyperbranched polyester P9-6b with C6'-OH was used as a catalyst, yielding 13 with
significantly better enantioselectivity (99% ee, Table 3 entry 9). Compared with the result
obtained by using corresponding dimer catalyst 6b, P9-6b catalyst took somewhat longer
time because of heterogeneous condition. Changing trifunctional aromatic compound 9b
and 9c instead of 9a, lower enantioselectivity and yield obtained with longer reaction time
for HBPs P6-3b and P7-3b (Table 3 entry 6 & 7) compared with P2-3b (Table 3 entry
2). Then we screened the influence of solvents on the catalytic activity by using HBP P2-
3b. The results of the Michael addition reaction for P2-3b catalyst have been recapitulated
in Table 4 with the diversity of solvents. The reactions were highly enantioselective above
95% ee for all the selected solvents with good yields. But in case of ethyl acetate only
27% yield obtained with 97% ee (entry 4, table 4). Though acetonitrile, THF, acetone
gave somewhat lower yield (entry 2, 6, 7 table 4) compared with dichloromethane, but
still maintaining pleasant enantioselectivity. The most effective solvent for this model
Michael reaction is CH2Clz, with over 99% ee and 84% vyield, was determined after
investigating the impact of the solvent (entry 1, table 4).

Table 4: Asymmetric Michael addition? of p-ketoesters 11 to trans- p-nitrostyrene 12 using
hyperbranched polymeric catalyst P2-3b in different solvents.

Entry Solvent Yield® [%] dr¢[%] ee® [%]

1 CH2C|2 84 8:1 >909

13
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2 Acetone 60 6:1 98

3 MeOH 70 3.7:1 95
4 EtOACc 27 3.4:1 97
5 Hexene 81 7.9:1 97
6 THF 52 6.6:1 96
7 CHsCN 55 4.9:1 98

2At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CH.Cl,. PIsolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate:1.0 mL/min on chiral

cel OD-H).
@]
5 mol % cat.
coon o pston s
CH2C|2, rt., 24 h
11: R = Me 12: Ar = CGH5 ] _ _
14: R = Et 15: Ar = FCgH,4 13: R : Me, Ar_‘ CeHs (R,S)
17: Ar = 2-Thiophenyl 19: R=Me, Ar=FCeH, (R,S)
20: R = Me, Ar = MeCgH4 (R,S)
o 21: R = Me, Ar = 2-Thiophenyl (R,S)
=
5 mol % cat.
CN._NC : »  No Reaction
CH,Cl,, rt., 48 h
22 23
5 mol % cat.
CN_NC Ar/\/NOZ >~ >  No Reaction
CH,Cl, rt., 48 h
22 12

Scheme 6: Michael addition reaction of various Michael donors and acceptors by using polymer
P2-3b as catalyst.

Afterward, we applied chiral HBP P2-3b to monitor asymmetric Michael addition
reaction by changing the Michael acceptor substituents as well as Michael donors
(Scheme 6), and the results are summarized in Table 5. Higher enantioselectivity was
observed by wusing methyl 2-oxocyclopentanecarboxylate 11 and ethyl 2-
oxocyclopentanecarboxylate 14 as Michael donor for all of the reactions (entries 1-4,

Table 5) except entry 2.

14
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Table 5: Enantioselective Michael addition? reaction resulted from the combination of different
donors and acceptors using polymeric catalyst, P2-3b.

Michael Michael Reaction YieldP
Entry Product dre [%] ee [%]
donor acceptor time [h] [%]
1 14 12 18 42 77 14.4:1 92
2 11 15 19 48 87 9.3:1 73
3 11 16 20 46 82 1.7:1 >99
4 11 17 21 38 89 13:1 99

aAt room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CHCls. "Isolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral
cel OD-H).

In  this instance, 4-Fluoro-trans-nitrostyrene 15 and  methyl 2-
oxocyclopentanecarboxylate 11 interacted with P2-3b to produce Michael adducts 19
with just 72% ee. However, chiral catalyst P2-3b was ineffective to catalyse the reaction
between malononitrile 22 with chalcone 23 and trans-B-nitrostyrene 12 respectively to
give chiral product at room temperature. The polymeric catalysts utilised in the
asymmetric reaction were easily separated and recovered from the reaction mixture by
normal filtration since chiral HBPs were insoluble in frequently used organic solvent to
give suspension. The recovered HBPs were applied to the same asymmetric reaction
multiple times. To confirm the authenticity chiral HBP P2-3b used as model catalyst in
the asymmetric reaction in dichloromethane at room temperature. This polymer was
reused up to S cycle to check the catalytic activity. The yield in entry 3 is higher compare
to entry 2 due to the increasing of reaction time 24 to 30 h. The results of the recyclability
were summarized in Table 6. Although, P2-3b catalyst maintaining the enantioselectivity

and diastereoselectivity as fresh one, but decreased the yield in some extend.

15
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Table 6: Enantioselective Michael addition® of B-ketoesters 11 with trans- -nitrostyrene 12 using
different HBP P2-3a to look on recyclability performance.

Entry Cycle Reaction time [h] Yield® [%] dre [%] ee’ [%]
1 fresh 24 84 8:1 >99
2 1 24 77 9.8:1 97
3 2 30 85 9.4:1 99
4 3 30 81 7.8:1 98
5 4 36 67 8.6:1 99

2At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CHCl.. ®Isolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral
cel OD-H).

3. Experimental:
3.1 Synthesis of cinchona derived sulfonamide and ester dimers:
3.1.1 Synthesis of compound 3b
Cinchonidine amine 1 (1099.0 mg, 3.7456 mmol; 2 equiv or double amount of 2), a,a'-

m-Xylene sulfonyl chloride 2 (545.0 mg, 1.7977 mmol), triethyl amine (522 pL, 3.7456
mmol) and magnetic stir bar were added in a 20 mL volumetric flask. The mixture was
then given 10.0 mL of dry CH2Cl> and kept it at rt. while being stirred. Reaction progress
was observe by TLC. The crude compound was purified using silica gel (100-200 mesh)
column chromatography with a CH2Cl2: MeOH = 9:1 eluent after 24 hours, yielding the
target component 3b in 48% yield as a white solid, mp: 151-153 °C. [a]3%* =—7.53 (¢
0.19 g/dL in DMF). IHNMR (400 MHz, CDClL, 25 °C)  8.95-8.92 (m, 2H), 8.23-8.28
(m, 2H), 8.10-8.12 (m, 2H), 7.68-7.45 (m, 2H), 7.50-7.63 (M, 4H), 7.32 (d, J=4.8, 1H),
7.02 (s, 1H), 6.83-6.92 (m, 2H), 6.59-6.92 (m, 2H), 6.59 (d, J=11.2, 1H), 5.54-5.22 (m,
2H), 4.85-4.99 (m, 4H), 4.58 (d, J=8.8, 1H), 3.58-3.77 (M, 4H), 3.14-3.24 (m, 4H), 2.86-
3.02 (M, 2H), 2.68-2.77 (m, 4H), 2.28 (br, 2H), 1.57-1.69 (m, 6H), 1.25-1.31 (m, 2H),

0.74-0.92 (m, 2H) ppm. 3C NMR (100 MHz, CDCls, 25 °C) § 150.3, 148.5, 145.9, 141.2,
16
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132.3,130.8,130.4,129.7,128.9, 127.4,124.9, 122.8, 120.0, 114.8, 60.7, 59.8, 55.5, 52.7,
40.4, 39.5, 27.6, 25.5 ppm. IR (KBr) v 3213, 2938, 2865, 1708, 1590, 1509, 1455, 1424,
1319, 1222, 1149, 1128, 988, 764 cm™. HRMS (ESI) calcd for C46H52N6O4S2 [M+Na]" :
817.02 found: 817.3606.

Other cinchona derived sulfonamide and ester dimers 3c, 3d & 3e were prepared from
different cinchona derivatives and sulphonyl chloride using the same process that were
reported in the supporting information section.

3.1.2 Synthesis of trifunctional aromatic triiodides

Synthesis of compound 9b
50 mL of CH2Cl> were used to mix 4, 4', 4"-Trihydroxyphenylmethane 7 (1.461 g, 5.0

mmol), 4-iodobenzoyl chloride 8 (4.132 g, 15.5 mmol), EtsN (2.2 mL, 15.5 mmol), and
DMAP (0.20 g). At room temperature, the resulting reaction mixture was stirred
constantly for 4 hours. The layers were then separated after the addition of water.
Additional CH2Cl> was used to extract the aqueous phase, and the mixed organic layer
was washed with brine, 10% aqg. HCI solution, and 5% ag. NaOH solution before being
dried over anhydrous MgSOa. The crude product was obtained after filtration and solvent
removal, and the chemical was then refined using silica gel column chromatography (with
a Hex: EtOAc = 9:1) to produce a white solid 9b with a 48% vyield. mp: 104-107 °C.
1HNMR (CDCls, 400 MHz, 25 °C) & 7.86-7.91 (m, 12H), 7.15-7.21 (m, 12H), 5.63 (s,
1H) ppm. '3C NMR (100 MHz, CDCls, 25 °C) 5 164.6, 149.2, 141.0, 137.9, 131.4, 130.4,

128.9, 121.5, 101.6, 55.0 ppm.

Synthesis of compound 9c
In a 30 mL flask, 15.0 mL of CH3:CN was employed to dissolve 4,4'4"-

Trihydroxyphenylmethane 7 (292.34 mg, 1.0 mmol) and 4-lodobenzyl bromide 10 (979.5
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mg, 3.3 mmol). Cesium carbonate Cs,CO3z (1075.2 mg, 3.3 mmol) was then added to the
mixture. Under an Ar environment, the mixture was stirred at 60 °C for 18 hours. After
that, 60 mL of CHCl, was filled with the reaction mixture. Yellow solid product
was formed and separated by filtering and evaporating the organic solution under reduced
pressure after it had been cleaned with water (2/30) and brine (2/30). The organic solution
had also been dried over anhydrous magnesium sulphate. Compound 9c was obtained
with a 31% yield as a white solid after the crude product was refined using silica gel (100-
200 mesh) column chromatography (using Hex: DCM = 1:1) Rs: 0.42 (DCM/Hex =

5.0/5.0). Other experimental data are found in the supporting information section.

3.2 Synthesis of HBPs by Mizoroki-Heck polymerization reaction:

Synthesis of polymer P1-3a
In a 30 mL flask, compounds 3a (100.0 mg, 0.12674 mmol) and 9a (104.0 mg, 0.12674

mmol) were combined with triethyl amine (double the amount, 35 pL, 0.2535 mmol).
Palladium acetate (10 mol %) and DMF solvent (3 mL) were added, and the mixture was
stirring at 100 °C for 48 hours. NMR was used to observe the course of the process of the
reaction. Then the solvent was evaporated and washed with a suitable solvent, diethyl
ether and finally water. The desired polymeric compounds were then dried again in a
vacuum oven to produce the small compound P1-3a as a brown solid in 79% of the cases.
[a]3%* = +39.40 (¢ 0.05 g/dL in DMF). IHNMR (400 MHz, DMSO-ds, 25 °C) & 8.68,
7.27-8.22 (aromatic H), 6.37-6.63 (vinylic H), 5.10, 0.61-2.92 (quinuclidine H) ppm. IR
(KBr) v 3178, 3067, 2942, 2865, 1733, 1652, 1604, 1509, 1458, 1327, 1257, 1177, 1069,

1004, 758, 683 cm™. My (SEC) = 8.0 x 10°, Mw/M, = 1.65.
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Using the same procedure described in the supporting information section, additional
optically active hyperbranched polymers were synthesized from various sulfonamide and

ester dimers derived from cinchona. Table 1 summarizes the relevant results.

3.3 General procedure for the asymmetric Michael addition reaction of B-ketoesters
to nitroolefins using the chiral sulfonamide polymers:

Trans-nitrostyrene 12 (82.05 mg, 0.55 mmol) and methyl 2-oxocyclopentanecarboxylate
11 (63 L, 0.50 mmol) were taken in a reaction vessel with 2.5 mL of solvent. HBPs
catalyst was then poured into the mixture (5 mol %). The reaction mixture was then stirred
for a predetermined amount of time at room temperature. A rotary evaporator was used
to evaporate the solvent once all 11 had been consumed (as determined by TLC). To
remove the utilized polymeric catalyst from the reaction mixture, the solution containing
the asymmetric compound was collected by pipette after being washed with ether. In
order to obtain the name "asymmetric compound,” the solution was concentrated in vacuo
and the compound was purified using column chromatography on silica gel (100-200
mesh) with hexane/EtOAc = 6.0/1.0 as the eluent to afford the title asymmetric compound
as a colorless oil. IHNMR (400 MHz, 25 °C, CDCls); & 7.29-7.23 (m, 5H), 5.14 (dd, J =
13.8 Hz, 3.8 Hz, 1H), 5.00 (dd, J = 13.8 Hz, 10.7 Hz, 1H), 4.08 (dd, J = 10.8 Hz, 3.8 Hz,

1H), 3.74 (s, 3H), 2.38-2.33 (m, 2H), 2.04-1.84.

The outcomes of further asymmetric Michael additions were carried out in a similar way,

and they are compiled in the Tables 2, 3, 4, 5, and 6 as well as in Scheme 5.

4. Conclusion:

In summary, we successfully developed novel chiral hyperbranched polymers (HPBS)
using the Mizoroki-Heck polymerization method, and these HPBs have a primary chain
repeating unit made of a sulfonamide and ester structure based on cinchona. For the chiral
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polymerization, two components were employed as the approach. Despite the fact that
these chiral polymers are insoluble in commonly used organic solvents, they function as
a superb catalyst to the asymmetric Michael addition of ketoesters to nitroolefins,
resulting in up to 99% enantioselectivity and good yield. Chiral HBP P2-3b shows
excellent level of enantioselectivity (>99% ee) with good yield as low molecular catalyst.
The insoluble property give them extra space to satisfy ‘Green chemistry’ requirement
and used up to several times without losing enantioselectivity. Those are the HBPs
polymer based on sulfonamide and ester dimer of cinchona alkaloids, and successfully

applied on enentioselective synthesis.
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Scheme 1: i) Synthesis of cinchona based sulfonamide dimers. ii) Demethylation of 3d dimer
by 1M BBr3, dry CH,Cl;, Ar gas, -78°C to rt, 48h
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Catalyst Pd(OAc),, 10 mol%

DMF, 100 °C, 48 h

Scheme 4: Synthesis of chiral HBP P2-3b.

ngcoocH3 + opy X NO2

11

0O

12

5 mol% Cat.

Solvent, rt., time

P2-3b

Scheme 5: Asymmetric Michael addition? of B-ketoesters (11) with trans-B-nitrostyrene (12).
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22 12

No Reaction

No Reaction

Scheme 6: Michael addition reaction of various Michael donors and acceptors by using polymer

P2-3b as catalyst.

Table 1: Synthesis of chiral hyperbranched polymers of different cinchona dimers and
trifunctional aromatic iodides by applying Mizoroki-Heck polymerization.

Pd(OAc),, 10 mol%

Dimer + Tri-iodide » Hyperbranched polymer

DMF, 100 °C, 48 h
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N

Chiral

Entry Dimer lodides Yield [%] Mna MWa MW/Mna
HBP

1 3a 9a P1-3a 79 8000 13000 1.65
2 3b 9a P2-3b 81 10000 19000 1.97
3 3c 9a P3-3¢ 70 24000 63000 2.63
4 3d 9a P4-3d 86 23000 61000 2.72
5 3e 9a PS-3e 55 16000 23000 1.43
6° 3b 9b P6-3b 93 - - -

7° 3b 9¢ P7-3b 88 - - -

8 6a 9a P8-6a 73 15000 25000 1.67
9 6b 9a P9-6b 77 18000 27000 1.52

aDetermined by GPC with a flow rate of 1.0 mL per minute at 40 °C and DMF as the solvent (polystyrene
standard). ®Not soluble in DMF.

Table 2: Asymmetric Michael addition? of B-ketoesters (11) with trans-f-nitrostyrene (12) using
various dimers.

Entry Catalysts Reaction time [h] Yield® [%] dr[%] ee’ [%]
1 3a 24 93 7.6:1 99
2 3b 24 96 15:1 99
3 3c 28 79 7.9:1 98
4 3d 42 62 4.7:1 99
5 3e 3 92 10:1 97
6 6a 32 72 0.6:1 44
7 6b 20 94 531 99

aAt room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the dimeric
catalyst (5 mol%) were conducted in 2.5 mL of CHCl,. PIsolated yield after purification by the column
chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral cel OD-

O ooNO

10

H).
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Table 3: Asymmetric Michael addition® of B-ketoesters (11) with trans-f-nitrostyrene (12) using
different HBPs.

2. Entry Catalysts Reaction time [h]  Yield® [%] arc[%] ee® [%]
1 P1-3a 36 96 4.5:1 99
2 P2-3b 24 84 8:1 >99
3 P3-3c 30 86 6.4:1 98
4 P4-3d 36 81 6.4:1 98
5 P5-3e 24 75 55:1 99
6 P6-3b 36 63 10.5:1 94
7 P7-3b 36 67 11.3:1 96
8 P8-6a 24 59 1.1:1 64
9 P9-6b 24 73 5.9:1 >99

2At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CHCl.. ®Isolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral
cel OD-H).

Table 4: Asymmetric Michael addition® of B-ketoesters 11 to trans- B-nitrostyrene 12 using
hyperbranched polymeric catalyst P2-3b in different solvents.

Entry Solvent Yield® [%] dre [%] ee® [%]
1 CH.Cl, 84 8:1 >99
2 Acetone 60 6:1 98
3 MeOH 70 3.71 95
4 EtOAC 27 3.4:1 97
5 Hexene 81 7.9:1 97
6 THF 52 6.6:1 96
7 CHiCN 55 49:1 98

2At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CHCl,. PIsolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate:1.0 mL/min on chiral
cel OD-H).
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Table 5: Enantioselective Michael addition? reaction resulted from the combination of different
donors and acceptors using polymeric catalyst, P2-3b.

Michael Michael Reaction Yield®
Entry Product dr®[%] ee® [%]
donor acceptor time [h] [%]
1 14 12 18 42 7 14.4:1 92
2 11 15 19 48 87 9.3:11 73
3 11 16 20 46 82 1.7:1 >99
4 11 17 21 38 89 13:1 99

aAt room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CHCl.. ®Isolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral
cel OD-H).

Table 6: Enantioselective Michael addition® of B-ketoesters 11 with trans- 3-nitrostyrene 12 using
different HBP P2-3a to look on recyclability performance.

Entry Cycle Reaction time [h] Yield® [%] dre [%] ee’ [%]
1 fresh 24 84 8:1 >99
2 1 24 77 9.8:1 97
3 2 30 85 9.4:1 99
4 3 30 81 7.8:1 98
5 4 36 67 8.6:1 99

2At room temperature, asymmetric reactions involving 11 (0.50 mmol), 12 (0.55 mmol), and the
polymeric catalyst (5 mol%) were conducted in 2.5 mL of CHCl,. ®Isolated yield after purification by the
column chromatography °Enantioselectivity (ee), as assessed by HPLC (flow rate: 1.0 mL/min on chiral
cel OD-H).

Supporting Information

For
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All solvents and reagents were brought from Sigma-Aldrich, Wako Pure Chemical Industries,
Ltd., or Tokyo Chemical Industry (TCI) Co., Ltd. at the maximum available cleanness and were
used as received. Pre-coated silica gel plates (Merck 5554, 60F254) was used for Thin-layer
chromatography (TLC) to monitor various types of reactions progression. Column
chromatography was conducted by using a silica gel column (Wakogel C-200, 100-200 mesh).
Yanaco micro melting apparatus was used to record melting point and the average values of the
analysed samples were taken. NMR spectra were recorded on JEOL JNM-ECS400 spectrometers
and JEOL JNM-ECX500 spectrometers in CDCI3 or DMSO-d6 at room temperature operating at
400 MHz (1H), 500 MHz (1H) and 100 MHz (13C{1H}). For 1H NMR Tetramethylsilane (TMS)
was used as an internal standard and chemical shifts were reported in parts-per-million (ppm).
CDCI3 was used as standard for 13C NMR and the J values were reported in hertz. JEOL JIR-
7000 Fourier transform (FT)-IR spectrometer was use to record IR spectra and reported in
reciprocal centimeters (cm-1). High-resolution mass spectrometry (HRMS) electrospray
ionization (ESI) spectra were recorded using Bruker micro TOF-Q Il HRMS/MS instrument.
High-performance liquid chromatography (HPLC) was run with a Jasco HPLC system
constructed of a DG-980-50 three-line degasser, a HPLC pump (PU-980), a Jasco UV-975 UV
detector for peak detection, and a column oven CO-2065 equipped with a chiral column
(Chiralpak OD-H, Daicel) with hexane/2-propanol as the eluent at a flow rate of 1.0 mL/min at
room temperature. Size-exclusion chromatography (SEC) was performed using a Tosoh HLC
8020 instrument with UV (254 nm) or refractive index detection. As a carrier solvent
dimethylformamide (DMF) was used at a flow rate of 1.0 mL min-1 at 40 °C and two polystyrene
gel columns of 10-um bead size were used. The number average molecular weight (Mn) and
molecular weight distribution (Mw/Mn) values were determined by using a calibration curve
compared with polystyrene standards. The optical rotation was obtained by using a JASCO DIP-
149 digital polarimeter using a 10-cm thermostatted microcell.

Synthesis of cinchona derived sulfonamide and ester dimers:

Synthesis of compound 3b

Cinchonidine amine 1 (1099.0 mg, 3.7456 mmol; 2 equiv or little excess), a,o’-m-xylene sulfonyl
chloride 2 (545.0 mg, 1.7977 mmol), triethyl amine (522 pL, 3.7456 mmol) and magnetic stir
bar taken in a 20 mL volumetric flask. Then dry CH,Cl, 10.0 mL added to the mixture and kept
it at room temperature with stirring. The reaction progress was observe by TLC. After 24 hours
CH,CI; was removed by rotary evaporator and then the crude compound was purified by silica
gel (100-200 mesh) column chromatography using CH,Cl.: MeOH = 9:1 as an eluent to give the
desired compound 3b in 48% yield as white solid. mp: 151-153 °C. [a]3%* =-7.53 (c 0.19 g/dL
in DMF).INMR (400 MHz, CDCls, 25 °C) § 8.95-8.92 (m, 2H), 8.23-8.28 (m, 2H), 8.10-8.12 (m,
2H), 7.68-7.45 (m, 2H), 7.50-7.63 (m, 4H), 7.32 (d, J=4.8, 1H), 7.02 (s, 1H), 6.83-6.92 (m, 2H),
6.59-6.92 (m, 2H), 6.59 (d, J=11.2, 1H), 5.54-5.22 (m, 2H), 4.85-4.99 (m, 4H), 4.58 (d, J=8.8,
1H), 3.58-3.77 (m, 4H), 3.14-3.24 (m, 4H), 2.86-3.02 (m, 2H), 2.68-2.77 (m, 4H), 2.28 (br, 2H),
1.57-1.69 (m, 6H), 1.25-1.31 (m, 2H), 0.74-0.92 (m, 2H) ppm. 3C NMR (100 MHz, CDCls, 25
°C) 6 150.3, 148.5, 145.9, 141.2, 132.3, 130.8, 130.4, 129.7, 128.9, 127.4, 124.9, 122.8, 120.0,
114.8, 60.7, 59.8, 55.5, 52.7, 40.4, 39.5, 27.6, 25.5 ppm. IR (KBr) v 3213, 2938, 2865, 1708,
1590, 1509, 1455, 1424, 1319, 1222, 1149, 1128, 988, 764 cm?. HRMS (ESI) calcd for
CusHs2NsO4S2 [M+Na]*: 817.02 found: 817.3606.
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HPLC data of the products obtained from Enantioselective Michael

Addition of Methyl 2-oxocyclopentanecarboxylate, 11 to trans-§-

I\Iifrnchjlrono 12
pHHOSBIrENe L2

Intensity [pV]

200000

10.0

15.0
Retention Time [min]

Figure S34: HPLC chromatogram of asymmetric compound, 13
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Figure S45: HPLC chromatogram of asymmetric compound, 13
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Figure S46: HPLC chromatogram of asymmetric compound, 13
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Figure S48: HPLC chromatogram of asymmetric compound, 13
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Figure S50: HPLC chromatogram of asymmetric compound, 13
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Figure S51: HPLC chromatogram of asymmetric compound, 13
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Figure S52: HPLC chromatogram of asymmetric compound, 13
Table 4, entry 4
97% ee

400000

Intensity [pV]

200000

FHexane-P2-rt - CH

Retention Time [min]
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Figure S55: HPLC chromatogram of asymmetric compound, 13
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Figure S56: HPLC chromatogram of asymmetric compound, 18
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Figure S57: HPLC chromatogram of asymmetric compound, 19
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Figure S58: HPLC chromatogram of asymmetric compound, 20
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Figure S59: HPLC chromatogram of asymmetric compound, 21
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Figure S60: HPLC chromatogram of asymmetric compound, 13
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Figure S61: HPLC chromatogram of asymmetric compound, 13
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Figure S63: HPLC chromatogram of asymmetric compound, 13
Table 6, entry 4, cycle 3
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Figure S64: HPLC chromatogram of asymmetric compound, 13
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