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Abstract 1 

Background/Aim: Skin lesions are commonly diagnosed and classified using 2 

dermoscopic images. There are many artefacts visible in dermoscopy images, including 3 

hair strands, noise, bubbles, blood vessels, poor illumination, and moles. As a result, these 4 

artefacts can obscure crucial information about lesions, which limits the ability to 5 

diagnose lesions automatically. 6 

Materials and methods: In this work, it is investigated how hair and noise artefacts in 7 

lesion images affect classifier performance and how they can be removed to improve 8 

diagnostic accuracy. A synthetic dataset created using hair simulation and noise 9 

simulation is used in conjunction with the HAM10000 benchmark dataset. Moreover, an 10 

integrated Convolutional Neural Network (CNN) has been proposed individually for (i) 11 

removing hair artefacts using hair inpainting and classification of refined dehair images 12 

called Integrated Hair Removal (IHR), (ii) removing noise artefacts using non-local mean 13 

denoising and classification of refined denoised images called Integrated Noise Removal 14 

(INR). 15 

Results: Five deep learning models are used for the classification: ResNet50, 16 

DenseNet121, ResNet152, VGG16, and VGG19. The proposed IHR-DenseNet121, IHR-17 

ResNet50, and IHR-ResNet152 achieve 2.3%, 1.78%, and 1.89% higher accuracy than 18 

DenseNet121, ResNet50, and ResNet152 respectively by removing hairs. The proposed 19 

INR-DenseNet121, INR-ResNet50, and INR-VGG19 achieve 1.41%, 2.39%, and 18.4% 20 

higher accuracy than DenseNet121, ResNet50, and VGG19 respectively by removing 21 

noise. 22 

Conclusion: A significant proportion of pixels within the lesion area are influenced by 23 

hair and noise, resulting in reduced classification accuracy. However, the proposed CNNs 24 
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based on Image Hair Restoration (IHR) and Image Noise Reduction (INR) exhibit notably 1 

improved performance when restoring pixels affected by hair and noise. The performance 2 

outcomes of this proposed approach surpass those of existing methods. 3 

Keywords: Dermoscopic images, image hair, image noise, convolutional neural network, 4 

image restoration, classification 5 
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1. Introduction 1 

Skin cancer is the most prevalent type of cancer, accounting for millions of fatalities 2 

worldwide. Melanoma is the deadliest form of skin cancer, causing 10,000 deaths 3 

worldwide [1]. Melanoma incidence has increased rapidly all over the world during the 4 

last fifty years [2]. The survival rate is over 95% if detected early and only about 15% for 5 

late survival [3]. This huge difference emphasizes the importance of melanoma detection 6 

and diagnosis at an early stage because it is treatable at this time. Timely detection helps 7 

in reducing mortality rates and hence preserves patient lives. Dermoscopy is an imaging 8 

procedure that aids in the analysis of skin lesions [4]. The sub-surface structures of the 9 

skin can be visually enhanced, exposing deeper skin lesions [5] and providing higher 10 

accuracy than the naked eye assessment. However, manual diagnosis demands an expert 11 

dermatologist and also suffers from subjective variation and clinical experience, lowering 12 

the patient's life expectancy [6]. As a result, computer-aided diagnosis (CAD) systems 13 

have emerged to help improve the efficiency of dermoscopy image analysis [7]. An 14 

accurate automatic melanoma diagnostic system is critical to assisting dermatologists in 15 

making precise diagnosis decisions and reducing the number of unnecessary biopsies. In 16 

the arena of clinical medicine, deep neural networks (DNNs) have made major progress 17 

and achieved excellent results in image segmentation and classification tasks [8]. 18 

However, accurate recognition of skin lesions from dermoscopic images is challenging 19 

owing to the presence of certain artefacts, including hair strands, noise, air bubbles, blood 20 

vessels, clinical marks, uneven lighting, etc. Skin lesions may be partly obscured or 21 

covered by these artefacts, creating a partial occlusion. This kind of image with a partly 22 

obscured region makes the diagnosis of an infected area extremely difficult [9].  23 
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Many classical techniques have been used in literature for hair and noise removal in 1 

dermoscopic images [10-18]. Lee et al. [10] presented the first method to remove thick 2 

hairs called Dull Razor and used bilinear interpolation. The PDE-based continuous 3 

morphological filter has been used by D H Chung et al. to remove undesirable hairs [11]. 4 

Curvilinear analysis has been used by Zhou et al. to achieve automatic hair and ruler 5 

marking recognition, and the artefact is replaced with a feature-guided exemplar-based 6 

inpainting technique [12]. To eliminate features from dark hair, Silveira invented the 7 

morphological closing and median filter [13]. Top hat filtering is applied by Xie to 8 

eradicate thin and curled hairs followed by PDE base inpainting [14]. Abbas et al. [2011] 9 

introduced a hair detection and repairing algorithm by using a derivative of Gaussian 10 

method to remove hair and then inpaint using a fast-marching method [15].  Toossi et al. 11 

[16] implemented a canny edge detector and morphological operators to segment hairs 12 

and ruler markings. Multi-resolution transport inpainting is applied to repair hair. 13 

Abuzaghleh et al. [17] proposed 84 directional filters to identify and disregard hair in skin 14 

lesions. Reda Kasmi et al. offered a new method by using 11×11 median filters to remove 15 

thin hairs and a Gabor filter for thick hairs [18]. There are some existing methods for 16 

noise removal in images [19-25]. A new method for Gaussian noise removal is proposed 17 

using multiscale filter banks [20]. A novel effective noise estimation method is proposed 18 

based on singular values of corrupted images [21].  19 

A few deep learning methods are available for hair removal and image denoising tasks 20 

[26-30]. A CNN is built with a post-processing step using the Savitzky-Golay filter and 21 

Fourier Domain Filtering [26]. This method can detect the borders belonging to the hair 22 

follicles with an average Dice score of 0.83 ± 0.06. A FCN8-ResNetC based approach for 23 

hair removal and segmentation in dermoscopic images is proposed, the training accuracy 24 
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obtained is 89.38% for hair removal [27]. Jain et al. [28] proposed a fully convolutional 1 

CNN for image denoising. An image denoising and blind inpainting method is proposed 2 

to combine sparse coding with pre-trained CNNs, achieving decent results in both tasks 3 

[29]. Mao et al. proposed an encoding-decoding framework for image denoising and 4 

super-resolution. The method combines convolution and deconvolution layers 5 

symmetrically by skip connections, which improves the network’s performance [30]. 6 

The limitations of existing research are 1) The present research works mainly measured 7 

the hair detection accuracy and error, completely oblivious to the impact on skin lesion 8 

patterns. 2) Despite the availability of several methods for hair and noise removal, none 9 

of the works focus on the impact of eliminating these artefacts on the overall performance 10 

of a CAD system. It is essential to address the effects of hair lines and image noise on the 11 

classification accuracy of dermoscopic images to achieve better results and treatment. A 12 

deep learning model is developed for the removal of these artefacts. This model could be 13 

built into a complete CAD system for dermoscopic images. In this paper, it is studied how 14 

the hair and noise data overall affect the automatic detection of skin lesions. The deep 15 

learning model is run with the hair and noise artefacts and compared with ground truth 16 

images. An Integrated Convolutional Neural Network (CNN) with image inpainting is 17 

proposed to fix unwanted hairs and restore the color and texture of skin pixels below them 18 

(called dehairing), termed Integrated Hair Removal (IHR). This network performs image 19 

inpainting to eliminate unwanted hair initially and then integrates with deep learning 20 

models to perform classification and study the effect of removing hair. Secondly, an 21 

Integrated CNN with image denoising is implemented to remove noise from images 22 

(called denoising), termed Integrated Noise removal (INR). This integrated CNN first 23 

performs image denoising to reduce noise and then integrates with deep learning models 24 
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to perform classification and study the effect of removing noise. The training and 1 

validation results after dehairing and denoising are compared with ground truth images. 2 

The results show that the training and validation accuracies improve when hair strands 3 

and noise are eliminated. These artefacts removal helps in better pattern analysis of 4 

dermoscopy images by de-occluding lesion boundary or texture, hence resulting in 5 

accurate classification. The core contributions of the work are: 6 

• The investigation of the effect of image distortions like hair and noise on the 7 

performance of a skin CAD system. 8 

• Two datasets are created wherein new hairs and noise are added.  9 

• Integrated CNNs namely IHR and INR are developed to leverage the advantage 10 

of removing hair and noise artefacts integrated with deep learning models for the 11 

improved classification of skin lesions. 12 

• The evaluation of the performance of proposed integrated deep learning models 13 

against the hairy and noisy dataset through extensive experimentation. 14 

• Assessing the improved results based on accuracy and loss function when these 15 

distortions are removed. 16 

The remainder of the paper is structured as: Section 2 covers the dataset used, proposed 17 

methodology, architecture, and network training. Section 3 presents the implementation 18 

and experimental results. In Section 4 results are discussed to analyze the performance of 19 

the proposed work. Section 5 includes the conclusion and future aspects of the work.   20 

2. Materials and Method 21 

2.1. Dataset Description  22 

The benchmark dataset HAM10000 [31] is considered in this work. This is the ISBI 23 

Challenge dataset available as ISIC 2018. It is a collection of 10015 skin lesion images 24 
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divided into seven categories. The seven classes are melanocytic nevus, basal cell 1 

carcinoma, actinic keratosis, melanoma, benign keratosis, dermatofibroma, and vascular 2 

lesion.  3 

In a real-life scenario, the major artefacts causing factors are hair and noise. Though the 4 

images in the dataset are partially occluded by artefacts namely hair, rulers, moles, ink 5 

markings, etc. there are very few images causing major occlusion. The major concern in 6 

the detection and assessment of lesions is the lack of an appropriate dataset with major 7 

artefacts like hair and noise. Therefore, two synthetic datasets are generated called Hair 8 

Dataset and Noise Dataset. The hair and noise are introduced in images to obstruct the 9 

lesion region. These datasets are created to produce partial occlusion in skin cancer 10 

images and contain 5000 images. The images in the Hair Dataset are occluded by adding 11 

hair strands. For the Noise Dataset, Gaussian noise [32] is added to create a partial 12 

occlusion of the lesion area. For training, 80% of the whole data is taken and for testing 13 

20% data is considered. Table 1 shows images in each dataset. 14 

Hair Dataset: Hair is a major partial occlusion causing element in dermoscopic images 15 

of skin. The skin images contain thick and thin hairlines. The 5000 images are chosen 16 

from the original HAM10000 dataset. These images chosen contain no hair or very few 17 

hairs. Hair is extracted from other dermoscopic images with more hair. This is done to 18 

maintain a natural hair artefact appearance. Hair is taken out from hairy images using 19 

masking technique and then these hairs are superimposed on selected images for Hair 20 

Dataset.  21 

Noise Dataset: The 5000 images are chosen from the original HAM10000 dataset and 22 

noise is added. These images are chosen from the dataset that contains no noise. Low 23 

lighting and a scarcity of resources for capturing medical images with clinical equipment 24 
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result in large noise fluctuations in lesion images. Gaussian noise [32] is opted here as it 1 

is a main source of noise in digital photos while acquisition, such as sensor noise brought 2 

on by inadequate lighting and transmission noise.  3 

A (typically) modest amount will be added or subtracted from each pixel's original value 4 

in the image. In dermoscopic images, Gaussian noise is a major noise that can happen 5 

during acquisition. All images may contain noise, varying in intensity. Here, Gaussian 6 

noise is added with zero mean and scale (σ) varied from 1 to 30. Figure. 1(a-h) shows a 7 

few examples of Gaussian Noise added to Noise Dataset. 8 

2.2. Proposed Methodology 9 

The proposed Integrated CNN model is described in this section. The methods employed 10 

for hair and noise restoration i.e. IHR and INR are presented. The deep learning models 11 

used for dermoscopic images and their classification is discussed.  12 

Convolutional Neural Networks 13 

Convolutional neural networks (CNN) contribute to image and video recognition tasks 14 

on a broad scale. There are several advantages to employing CNN over standard neural 15 

networks, including the ability to learn spatial hierarchies of patterns. It enables CNN to 16 

acquire increasingly complex and abstract visual concepts and analyse images with great 17 

efficiency. A vast number of images are necessary to train a new CNN model. This 18 

scenario relates to a situation in which the entire network must be trained. In this 19 

situation, all the network's parameters must be learned from the ground up. This 20 

approach necessitates extremely large datasets, which are frequently unavailable for 21 

medical purposes. However, employing a standard network allows for the option of 22 

transfer learning. 23 
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Transfer learning is a technique that uses a model trained on one dataset as the basis for 1 

a model trained on another. The model that is already trained is known as a pre-trained 2 

model. Typically, these models are built on ImageNet [33], a dataset of over fourteen 3 

million images and can classify images into over 1,000 different categories. In addition 4 

to using the same architecture as a standard network, one may also use parameters learnt 5 

by the CNNs with earlier training on a different dataset. Therefore, to adjust the network 6 

for the classification of a new target dataset, there are two possible ways. One way is to 7 

replace only the final classification layer according to one's target dataset, i.e., the 8 

network can be used to classify new dataset images. In another approach, the parameters 9 

gained from the model's training over a large dataset are fine-tuned through transfer 10 

learning. This allows the network's early layers to extract highly generalizable patterns 11 

from a larger dataset, and the network's later layers will take on the details of the new 12 

dataset for the adapted model. 13 

In this paper, the first approach is followed i.e., the final classification layer is modified. 14 

The proposed CNN for dermoscopic image classification is given in Figure. 2. As a 15 

result, the time-consuming training stages are avoided and benefits are gained from the 16 

features learnt during the training over many images through transfer learning. 17 

The most successful methods submitted for ISIC challenges 2016, 2017, 2018, 2019 and 18 

2020 [34] used CNNs pre-trained on the ImageNet [33] database. Five deep transfer 19 

learning models used in this work are ResNet50 [35], DenseNet121 [36], ResNet152 20 

[35], VGG16 [37], and VGG19 [38]. These models are used to find how the system 21 

performs in the case of partly occluded image data. Table 2 shows the deep learning 22 

architectures used.  23 

 24 
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Integrated CNN with Image Inpainting for Hair Removal (Dehairing) 1 

An integrated CNN with inpainting is proposed for the classification of dermoscopic 2 

images shown in Figure. 3. Integration here defines a combination of two methods viz. 3 

skin cancer image inpainting and classification. Inpainting is done to restore hairs by 4 

substituting them with patches that resemble the nearby pixels. This reduces the impact 5 

of hairs on diagnosis analysis. Five deep learning models are applied for the 6 

classification of refined skin cancer images. These models are named IHR-ResNet50, 7 

IHR-DenseNet121, IHR-ResNet152, IHR-VGG16, and IHR-VGG19. Algorithm 3 8 

explains an integrated CNN with inpainting for hair removal. Hair Dataset contains 5000 9 

images where new hairs are added (Ref. Section 2.1). Removal of dark, dense hairs and 10 

regions that resemble hair is to be done properly as it aids in effective segmentation and 11 

classification of features. Numerous techniques are available in the literature for 12 

removing hair in dermoscopic images, based on morphological operations [39] and 13 

thresholding [40]. Although being fast, these techniques tend to eliminate subtle, 14 

significant features that can be mistaken for hair. An effective method for dermoscopic 15 

hair removal is the black-hat transform followed by inpainting, which is employed here, 16 

and described in Algorithm 2.  17 

The first step is to perform the Gaussian blur and median blur operations before applying 18 

other methods to reduce the high-frequency data. It removes noise and edges from an 19 

image while preserving its original data. Gaussian blur is a low-pass filter that 20 

determines the variation to apply to each pixel of the image using a Gaussian function. 21 

Its purpose is to smooth down sphere edges, which frequently have inconsistencies 22 

because of the marker's rough surface. It is also used to reduce skin lines, air bubbles, 23 

light, and small hairs around the lesion. The kernel used is 3* 3 and  is the standard 24 
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deviation of the Gaussian kernel. The median filter is a nonlinear filter and is very 1 

effective in removing noise while preserving edges. The current pixel value is replaced 2 

with the median value in a 3 x 3 neighborhood.  3 

The input dermoscopic image is converted from RGB to grayscale, followed by a 4 

morphological filter to find the hair contours. The morphological filter, called "black 5 

hat," is employed on the grayscale image. It gives a difference between the closing and 6 

the given input image. Closing eliminates the foreground's tiny holes. Black Hat extracts 7 

the dark objects smaller than the structuring element and finally outputs them as bright 8 

spots. An 11 × 11 cross-shaped structural element is defined. To intensify the hair 9 

contours, a thresholding operation is applied to the output of the black hat filter. This 10 

generates a binary mask. All unrequired objects present in the dermoscopic image are 11 

discarded, and only the hairlines are detected. Following this, an inpainting algorithm, 12 

TELEA [41], given in Algorithm 1, is used to restore the image by removing the hair 13 

structures from it. It preserves the appearance by replacing the hair structures with nearby 14 

pixels, producing a clear dermoscopic image. The eq. (1) shows point p is inpainted as a 15 

function of all points q in Bꜫ (p) by summing the estimates of all points q, weighted by a 16 

normalized weighting function w (p, q), 17 

𝐼(𝑝) =
∑ 𝑤(𝑝,𝑞)[𝐼(𝑞)+ 𝛻 𝐼(𝑞)(𝑝−𝑞)]𝑞∈𝐵ℰ(𝑝)

∑ 𝑤(𝑝,𝑞)𝑞∈𝐵ℰ(𝑝)
                                                                              (1)                                                                           18 

where I(q) is the original image and I(p) is an inpainted image. In algorithm 1, Ω is the 19 

region to be inpainted, ∂Ω is the boundary of the region to be inpainted and Bꜫ (p) is a 20 

neighborhood of p. To inpaint the whole Ω, apply Equation 1 iteratively to all the pixels 21 

of ∂Ω, in increasing distance from ∂Ω’s initial position ∂Ωi. Complete the boundary 22 
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inside Ω until the whole region has been inpainted. Figure. 4 shows the stages of the hair 1 

removal process. 2 

Algorithm 1: INPAINT_TELEA 3 

δΩi = boundary of the region to inpaint   4 

δΩ = δΩi  5 

while (δΩ not empty)  6 

{  7 

p = pixel of δΩ closest to δΩi  8 

inpaint p using Eq.1 9 

advance δΩ into Ω  10 

} 11 

 12 

Algorithm 2: Dehair_Inpainted (Image, Kernel, Mask) 13 

Input: Image, Kernel, Mask 14 

Output: Skin images with Inpainted Hair 15 

G_Blur               GaussianBlur (Image, Kernel * Kernel, ) 16 

Med_blur                MedianBlur (G_Blur, Kernel) 17 

Image_GrayScale             Color (Med_blur, RGB2GRAY) 18 

Kernel1             StructuringElement (Morph_Cross, Kernel) 19 

Blackhat               MorphologyEx (Image_GrayScale, MORPH_BLACKHAT, Kernel1) 20 

ret_v, Thresh2_Image    Threshold (Blackhat, Thresh, Thresh_MaxVal, 21 

THRESH_BINARY) 22 

Output_Image               Inpaint (Med_blur, Thresh2_Image, 1, INPAINT_TELEA) 23 

Dehair_Inpainted             Color (Output_Image, COLOR_BGR2RGB) 24 

 25 

Algorithm 3: Integrated CNN with Inpainting for Hair Removal 26 

Input: Skin Images from HAM10000 27 

Output: Hair removal Inpainted results with Accuracy and Loss 28 

1) Input Skin cancer Images M1……. Mn 29 
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2) For each Image Mi, 1 

     do 2 

    Dehair_Inpainted (Mi, Kernel, Mask) 3 

3) For each Dehair_Inpainted image Mi, resize = 224*224 4 

4) Fine-tune the last fully connected (FC) layer of deep CNN to identify the 5 

probabilities of seven skin cancer classes. 6 

5) Train five deep CNNs IHR-ResNet50, IHR-DenseNet121, IHR-ResNet152, IHR-7 

VGG16 and IHR-VGG19. 8 

6) Validate the model and calculate training and validation accuracy and loss for 9 

performance evaluation. 10 

 11 

Integrated CNN with Image Denoising for Noise Removal (Denoising) 12 

An integrated CNN with noise removal is proposed for the classification of dermoscopic 13 

images shown in Figure.  5. Integration here defines a combination of two methods viz. 14 

skin cancer images’ noise removal and classification. Denoising is done to take out 15 

undesirable noise from images so that they can be better analyzed. Five deep learning 16 

models are applied for the classification of refined skin cancer images. These models are 17 

named INR-ResNet50, INR-DenseNet121, INR-ResNet152, INR-VGG16, and INR-18 

VGG19. Algorithm 4 explains an integrated CNN with denoising for noise removal. 19 

5000 images from the Noise Dataset, in which noise is added are now denoised. The 20 

process of reconstructing a signal from noisy images is referred to as denoising an image. 21 

Non-local means [42] is utilized as the method of denoising to remove any probable 22 

aberrations from the image. The Non-Local (NL) Means Algorithm selects a pixel, draws 23 

a small window around it, and searches the image for other windows of the same size. It 24 

then performs an average of all the windows and calculates the resultant value for the 25 

pixel. The non-local signifies the whole image search, not an individual region. Given a 26 
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noisy image v = {v (i) | i ∈ I}, the NL[v] (i), for a pixel i, is computed as a weighted 1 

average of all the pixels in the image, given in Eq. (2), 2 

𝑁𝐿[𝑣](𝑖) = ∑ 𝑤(𝑖, 𝑗)𝑣(𝑗)𝑗∈𝐼                                                                                          (2)                                                                                                             3 

where {w(i, j)}j depends on the similarity between the pixels i and j. It is used as the 4 

OpenCV function: fastNlMeansDenoisingColored. The function converts the image to 5 

CIELAB color space and then separately denoises the L and AB components with given 6 

h parameters using the FastNon-LocalMeansDenoising function. Larger search windows 7 

require longer denoising times. The ideal value for the luminance and color components 8 

is 10, and the higher the value, the smoother the image will be. All the images from the 9 

Noise Dataset are run through this process for reconstruction. 10 

Algorithm 4: Integrated CNN with Non-Local Means for Denoising 11 

Input: Skin Images from HAM10000 12 

Output: Noise removal results with Accuracy and Loss 13 

1) Input Skin cancer Images M1….….Mn 14 

2) For each Image Mi, 15 

        Denoise                   fastNlMeansDenoisingColored (Input_img, Out_Image,         16 

        Lum_comp, color_comp, template_win, search_win) 17 

3) For each Denoised image Mi, resize = 224*224 18 

4) Fine-tune the last fully connected (FC) layer of deep CNN to identify the 19 

probabilities of skin cancer classes. 20 

5) Train five deep CNNs INR-ResNet50, INR-DenseNet121, INR-ResNet152, INR-21 

VGG16 and INR-VGG19. 22 

6) Validate the model and calculate training and validation accuracy and loss for 23 

performance evaluation. 24 

2.3. Model Training 25 

Transfer learning is employed for training the IHR and INR models on the dataset, 26 

utilizing pre-trained weights obtained through training on the ImageNet dataset. Five pre-27 
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trained models are implemented for the given dataset. The model's weights are loaded 1 

and the final fully connected layer is removed. The remaining part of the model is used 2 

as a feature extractor for the given dataset. A new final fully connected layer is added to 3 

get the skin lesion classes required for output which is 7.  4 

The network is trained for 25 epochs. Table 1 shows the hyperparameters used to train 5 

the model. The input image size for the model is a 224 × 224 × 3 RGB image. ReLU [43] 6 

activation function is employed throughout the architecture and the optimization function 7 

used is Adam [44]. The loss function applied is categorical cross entropy [45]. Table 3 8 

shows all the hyperparameters and their values. 9 

Fully Connected Layer: 10 

• There is a need to categorise the data into several classes after feature extraction, 11 

which can be achieved with a fully connected (FC) layer. 12 

• The fully connected layer in the convolutional network takes the outcome of the 13 

convolution/pooling process and makes a classification judgement. 14 

• Fully Connected Input: The output of the final Pooling/Convolutional Layer is 15 

flattened, turned into a single vector and sent as the input into the fully connected 16 

layer. 17 

• Fully Connected Output: It gives the final probabilities for each label. 18 

• The final layer employs the softmax activation function to determine the 19 

likelihood that the input belongs to one of several classes (classification). The 20 

class probabilities are calculated and output in a 3D array with [1 x 1 x N] 21 

dimensions, where N is the number of classes. 22 

 23 

 24 
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ReLU Activation Function: 1 

• The rectified linear activation function (ReLU) [43] is a non-linear function and 2 

can learn complex relationships from the training data. 3 

• ReLU is very easy to compute and implement since it just requires a comparison 4 

between its input and the value 0. 5 

• A ReLU function will apply a max (0, x) function. The function outputs the input 6 

directly if it is positive, otherwise, it will output zero. 7 

• Derivative remains constant i.e. 1 for a positive input and thus reduces the time 8 

taken for the model to learn and in minimizing the errors. 9 

• ReLU has a predictable gradient for the backpropagation of the error. As a 10 

consequence, the computation speed is very quick.  11 

Categorical Cross-Entropy Loss: 12 

• The network's performance is measured using a metric (loss function) that counts 13 

the similarity between predicted and actual value. Cross-entropy loss is the most 14 

important cost function used in multi-class classification.  15 

• The objective of the loss function is to optimize the model during training [45]. 16 

To optimise the loss function, parameters are modified iteratively and help in 17 

correct prediction.  18 

• The model performs better when loss is low. 19 

3. Experimental Results and Discussion 20 

The implementation of the proposed architecture is done in Google Colab. The 21 

classification accuracy and loss of the trained CNN models are calculated for training and 22 

validation. ResNet50 [35], DenseNet121 [36], ResNet152 [35], VGG16 [37], and VGG19 23 

[38] models are run on ground truth images from HAM10000 Dataset and the 24 
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corresponding images adulterated by the Hair Dataset and Noise Dataset. The models 1 

IHR-ResNet50, IHR-DenseNet121, IHR-ResNet152, IHR-VGG16, and IHR-VGG19 are 2 

run on Hair Dataset after dehairing.  The models INR-ResNet50, INR-DenseNet121, 3 

INR- ResNet152, INR-VGG16, and INR-VGG19 are run on Noise Dataset after 4 

denoising the images. All the models are run for 25 epochs. Here, the results are shown 5 

after 10, 15, and 25 epochs. The performance metrics used to validate the results are 6 

Training Accuracy (TAcc), Training Loss (TLoss), Validation Accuracy (VAcc), and 7 

Validation Loss (VLoss). 8 

3.1. Experimental Results on HAM Dataset  9 

Skin cancer images are taken from the Ground Truth (GT) Dataset (HAM). This dataset 10 

comprises 10,015 images. All the models are run on these images. Table 4 shows training 11 

and validation accuracies on the GT Dataset. Table 5 shows training and validation loss 12 

on the GT Dataset. 13 

3.2. Experimental Results with Hair Dataset 14 

The model performance for Hair Dataset is shown in Tables 6-9. Table 6 shows training 15 

and validation accuracy on Hair Occluded images. Table 7 shows training and validation 16 

loss on Hair Occluded images. DenseNet121 gives a training accuracy of 95.20% with a 17 

validation accuracy of 87.10%. VGG19 with occluded hair gives a training accuracy of 18 

85.03 and a validation accuracy of 78.62%. 19 

Dehairing results using Proposed Integrated CNN with Hair Inpainting 20 

Dehairing is performed using Algorithm 3 proposed in Section 2.2. Table 8 shows training 21 

and validation accuracy after Dehairing. Table 9 shows training and validation loss after 22 

Dehairing. It can be seen that training and validation accuracy decreases when the skin 23 

image is occluded with hair strands. DenseNet121 gives a training accuracy of 95.20% 24 
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with hair while IHR-DenseNet121 provides 97.50% accuracy with hair removal. The 1 

validation accuracy with Densenet121 is 87.10% when hair is present while 89.16% with 2 

IHR-DenseNet121 when hairs are removed. There is an improvement of approximately 3 

2% accuracy with IHR-Densenet121. For each model, there is an increase in training and 4 

validation loss when the lesion is obstructed with hair.  5 

Figure. 6 shows a comparison of improvement in training accuracy and loss after 6 

dehairing. 7 

The training accuracy and loss curves are drawn and contrasted for both hair and dehair 8 

datasets. It is seen that accuracy and loss curves after dehairing with the proposed IHR 9 

models are better and show improved results than with hair. 10 

3.3. Experimental Results with Noise Dataset 11 

The model performance for Noise Dataset is shown in Tables 10-13. Table 10 shows 12 

training and validation accuracy on Noise Occluded images. Table 11 shows training and 13 

validation loss on Noise Occluded images. Dense-Net121 achieves highest training 14 

accuracy of 96.04% and validation accuracy of 86.50%. VGG19 with occluded noise 15 

gives a training accuracy of 78.25 and a validation accuracy of 76.75%.  16 

Denoising Results using Proposed Integrated CNN with Non-Local means Denoising 17 

Denoising is performed using Algorithm 4 proposed in Section 2.2. Table 12 shows 18 

training and validation accuracy after Denoising. Table 13 shows training and validation 19 

loss after Denoising. It can be seen that training and validation accuracy decreases when 20 

the skin image is distorted with noise. DenseNet121 gives training accuracy of 96.04% 21 

with noise and 97.45% with INR-DensetNet121 when noise is removed.  22 

The validation accuracy with Densenet121 is 86.50% when noise is present while INR-23 

DenseNet121 gives 87.58% when noise is removed. There is an improvement of 24 
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approximately 1% in accuracy with INR-Densenet121. For each model, there is an 1 

increase in training and validation loss when the lesion is obstructed with noise. 2 

Figure. 7 shows a comparison of improvement in training accuracy and loss after 3 

denoising. The training accuracy and loss curves are drawn and contrasted for both noise 4 

and denoise datasets. It is seen that INR models give more accurate output. The accuracy 5 

and loss curves after denoising are better and show improved results than with noise. 6 

3.4. Comparison of Ground Truth with Hair, Noise, Dehairing and Denoising          7 

Extensive experimentation is performed to analyze the distortions' effect on the overall 8 

diagnosis of skin lesions. Here, comparison graphs are drawn that compare ground truth 9 

results with the occluded dataset (Hair Dataset and Noise Dataset) and refined dataset 10 

(dehairing and denoising). Figure. 8 shows a comparison between training and validation 11 

accuracy for ground truth, hair and dehair images. Figure. 9 shows a comparison between 12 

training and validation loss for ground truth, hair and dehair images. 13 

The proposed IHR model is employed for dehairing. Figure. 10 shows a comparison 14 

between training and validation accuracy for ground truth, noised, and denoised images. 15 

Figure.11 shows a comparison between training and validation loss for ground truth, 16 

noised, and denoised images. The proposed INR model is employed for denoising. 17 

From Figure. 10-13, it can be interpreted that the proposed IHR-DenseNet121 achieves 18 

2.3% higher accuracy than DenseNet121 with hair occlusion and the proposed INR-19 

DenseNet121 achieves 1.41% higher accuracy than DenseNet121 with noise occlusion.  20 

It can be interpreted from the results that these appearances often result in low accuracy 21 

and high loss in skin lesion classification. The comparison of the results computed by 22 

deep learning models with and without artefacts has exposed a significant difference in 23 

employing a method for restoring distorted parts. 24 
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4. Discussion 1 

4.1. Performance Comparison with Existing Methods 2 

The performance of the proposed hair removal method is compared with published hair 3 

detection and segmentation algorithms. Table 14 shows the accuracy metric computed for 4 

all algorithms in the presence of hair and after dehairing. The proposed noise removal is 5 

compared with available methods for denoising. Table 15 shows the accuracy metric 6 

computed for all algorithms after denoising.  7 

Table 14 and Table 15 show that the proposed methods achieve comparable results to 8 

existing computer vision techniques. The proposed IHR-DenseNet121, IHR-ResNet50 9 

and IHR-ResNet152 outperform existing methods in dehairing. INR-DenseNet121, INR-10 

ResNet50 and INR-VGG19 models for noise removal beat available methods in the 11 

literature. The proposed methods can remove partial occlusion causing elements with 12 

more accuracy and perform precise classification of lesions according to class. 13 

In this work, the effects of skin images occluded with hair and noise are analyzed. 14 

Components, such as hair and noise, affect image quality and cause classification 15 

inaccuracies. These artefacts disrupt the features that get occluded behind them. If a lesion 16 

feature is not accurately determined, the diagnosis may not be appropriate. Therefore, it 17 

is necessary to diminish the effect of such elements. 18 

This is the first work where 5000 images are adulterated with hair and noise. The 19 

projected model can successfully eliminate the effects of occluded regions thereby 20 

resulting in better precision. Skin lesions bounded by these undesirable artefacts such as 21 

hair and noise are successfully corrected and classified with the inclusion of IHR and INR 22 

models with Inpainting and Non-Local Means, respectively. These methods mask any 23 

hair and noise hiding the lesion part and preserve the features occluded by them. The 24 
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examination of results after applying these methods has shown that the integrated models 1 

are capable of effectively classifying skin lesions regardless of the presence of unwanted 2 

artefacts. This automatic and efficient CAD system can help in the robust analysis of skin 3 

lesions in dermoscopic images saving doctors and patients’ time. 4 

5. Conclusion 5 

Skin lesion images suffer from artefacts like hairy pixels, noise, poor color contrast, low 6 

illumination, moles, bubbles, resolution, etc. In this work, datasets are created with hair 7 

and noise to make this CAD system fit in a more realistic scenario. The hairy strands in 8 

skin lesion images add extra features that can lead to misdiagnosis. Noise artefacts 9 

diminish the visual quality of digital images, lowering the precision and accuracy of 10 

image analysis operations. The effect of noise and hair artefacts on diagnostic accuracies 11 

is studied here and it is perceived that these artefacts lack accuracy and can be a reason 12 

for inaccurate analysis. Noise and hair removal techniques can enhance image quality. 13 

Removal and restoration of the regions after hair and noise removal is vital so that features 14 

within lesions can be examined more thoroughly and primary stage. It is concluded that 15 

the proposed integrated CNN i.e. IHR and INR can do an improved and accurate 16 

diagnosis of lesions from dermoscopic images after image restoration. This analysis is 17 

crucial to studying unwanted segmentation and classification results of lesion images due 18 

to the presence of the hairs and noise covering them. The output of the proposed methods 19 

delivers more accurate and quality results. Many other artefacts like ruler marks, color 20 

charts, ink marks, moles, a fuzzy border, and numerous shades of color should also be 21 

isolated and corrected. There is a necessity for an automatic hair removal method that 22 

preserves all the lesion features in the presence of all these artefacts while keeping its 23 

computational cost low for accurate melanoma recognition and classification tasks. The 24 
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future work focuses on developing a deep learning method for image inpainting and 1 

restoration.  2 
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 1 

Figure. 1 (a)-(d) are images from original HAM10000 dataset, (e)-(h) are 2 

corresponding noise added images 3 

 4 

Figure. 2 Proposed CNN for Dermoscopic Images Classification 5 
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 1 

Figure. 3 Integration of CNN with Inpainting for Dermoscopic Hair Removal and 2 

Classification 3 

 4 

Figure. 4 Stages of the Hair removal process for Dermoscopic images 5 

 6 

Figure. 5 Integration of CNN with Denoising for Dermoscopic Noise Removal and 7 

Classification 8 
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 1 

Figure. 6 Comparison of Improvement in Training Accuracy and Loss after Dehairing 2 



s33 

 

 

 1 

Figure. 7 Comparison of Improvement in Training Accuracy and Loss after Denoising 2 

 3 

Figure. 8 Comparison of Improvement in Training and Validation Accuracy for GT, 4 

Hair, and Proposed IHR Model 5 
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 1 

Figure. 9 Comparison of Improvement in Training and Validation Loss for GT, Hair, 2 

and Proposed IHR Model 3 

 4 

Figure. 10 Comparison of Improvement in Training and Validation Accuracy for GT, 5 

Noised, and Proposed INR Model 6 

    7 

Figure. 11 Comparison of Improvement in Training and Validation Loss for GT, 8 

Noised and Proposed INR Model      9 
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Table 1.  Number of Images per Category in the Dataset 1 

Dataset Description No. of images opted for 

occlusion 

No. of images for 

Classification 

Dataset 1 Original Ground truth - 10015 

Dataset 2 Hair Strands 5000 10015 

Dataset 3 Noise (Gaussian) 5000 10015 

 2 

Table 2.  Details of Deep Learning Architectures 3 

Features ResNet50 DenseNet121 ResNet152 VGG16     VGG19 

No. of 

Layers 

50 121 152 16 19 

Top 5 

Accuracy 

0.921 0.923 

 

0.931 

 

0.901 

 

0.900 

 

No. of 

Parameters 

25 million 

 

8 million 

 

60 million 138 

million 

 

143 

million 

 

Size 98 MB 33 MB 232 MB 528 MB 549 MB 

Depth 168 121  - 23 26 

 4 

 5 

 6 

 7 

 8 

 9 
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Table 3.  Hyperparameters for the proposed work 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

Table 4.  Training and Validation Accuracy on GT Dataset. 12 

Epoc

h 

ResNet50 DenseNet121 ResNet152 VGG16 VGG19 

 TAcc VAc

c 

TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc 

10 0.902

7 

0.840

7 

0.938

2 

0.870

1 

0.892

1 

0.859

5 

0.813

2 

0.821

0 

0.782

7 

0.812

9 

15 0.941

4 

0.880

3 

0.956

9 

0.897

0 

0.925

5 

0.900

4 

0.852

0 

0.860

3 

0.823

0 

0.816

6 

25 0.969

4 

0.875

6 

0.976

3 

0.897

2 

0.961

4 

0.904

3 

0.891

8 

0.887

2 

0.863

4 

0.838

0 

 13 

 14 

S.No. Name of Hyperparameter Value of Hyperparameter 

1. Input Size 224 × 224 × 3 

2. Batch Size 32 

3. Epochs 25 

4. Optimization Function ADAM 

5. Learning Rate 1e-3 

6. Loss function Categorical Cross entropy 

7. Activation function ReLU 
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Table 5.  Training and Validation Loss on GT Dataset 1 

Epoc

h 

ResNet50 DenseNet121 ResNet152 VGG16 VGG19 

 TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

10 0.263

1 

0.468

3 

0.166

3 

0.403

0 

0.347

1 

0.425

4 

0.569

7 

0.568

5 

0.207

9 

0.501

0 

15 0.159 0.444

6 

0.116

7 

0.554

7 

0.235

1 

0.513

2 

0.477

1 

0.461

9 

0.134

5 

0.461

9 

25 0.083

2 

0.517

5 

0.066

5 

0.521

9 

0.120

2 

0.521

3 

0.361

7 

0.485

2 

0.067

5 

0.485

2 

 2 

Table 6. Training and Validation Accuracy on Hair Dataset 3 

Epoc

h 

ResNet50 DenseNet121 ResNet152 VGG16 VGG19 

 TAcc VAc

c 

TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc 

10 0.900

1 

0.793

2 

0.913

1 

0.828

3 

0.868

8 

0.842

3 

0.781

1 

0.773

1 

0.769

3 

0.727

3 

15 0.926

4 

0.812

9 

0.939

8 

0.844

7 

0.909

6 

0.875

2 

0.827

5 

0.792

2 

0.805

3 

0.771

0 

25 0.947

8 

0.841

1 

0.952 0.871

0 

0.941

2 

0.881

9 

0.878

0 

0.801

8 

0.850

3 

0.786

2 

 4 
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Table 7. Training and Validation Loss on Hair Dataset 1 

Epoc

h 

ResNet50 DenseNet121 ResNet152 VGG16 VGG19 

 TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

10 0.260

9 

0.446

5 

0.204 0.408

1 

0.308

7 

0.429

0 

0.570

5 

0.505

0 

0.604

9 

0.517

4 

15 0.168

8 

0.465

1 

0.135

2 

0.504

4 

0.214

4 

0.482

8 

0.453

8 

0.450

5 

0.513 0.571

5 

25 0.103

8 

0.577

2 

0.116

5 

0.583

7 

0.155

3 

0.601

2 

0.428

7 

0.542

4 

0.311

4 

0.539

0 

 2 

 3 

Table 8. Training and Validation Accuracy after Dehairing on Hair Dataset 4 

Epoc

h 

IHR-

ResNet50 

IHR-

DenseNet121 

IHR-

ResNet152 

IHR-VGG16 IHR-VGG19 

 TAcc VAc

c 

TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc 

10 0.891

8 

0.850

6 

0.918

4 

0.855

6 

0.894

9 

0.848

1 

0.813

4 

0.781

4 

0.775

4 

0.853

4 

15 0.932

7 

0.873

8 

0.950

6 

0.883

6 

0.928

8 

0.852

4 

0.854

9 

0.817

9 

0.814

2 

0.822

9 

25 0.965

6 

0.884

7 

0.975

0 

0.891

6 

0.960

1 

0.89 0.887

9 

0.866

3 

0.854

6 

0.844

5 
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Table 9. Training and Validation Loss after Dehairing on Hair Dataset 1 

Epoc

h 

IHR-

ResNet50 

IHR-

DenseNet121 

IHR-

ResNet152 

IHR-VGG16 IHR-VGG19 

 TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

10 0.281

9 

0.456

7 

0.212

2 

0.389

8 

0.270

1 

0.499

1 

0.514

4 

0.551

1 

0.278

8 

0.435

4 

15 0.181

0 

0.465

1 

0.131

8 

0.411

4 

0.189

0 

0.486

0 

0.433 0.558

2 

0.186

1 

0.456

7 

25 0.093

8 

0.469

6 

0.077

9 

0.519

8 

0.118

7 

0.458

1 

0.320

2 

0.446

1 

0.091

4 

0.498

5 

 2 

Table 10.  Training and Validation Accuracy on Noise Dataset 3 

Epoc

h 

ResNet50 DenseNet121 ResNet152 VGG16 VGG19 

 TAcc VAc

c 

TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc 

10 0.817

9 

0.779

1 

0.887

1 

0.826

5 

0.812

0 

0.771

2 

0.732

2 

0.787

3 

0.664

2 

0.773

8 

15 0.882

1 

0.828

4 

0.927

5 

0.862

3 

0.865

8 

0.820

0 

0.784

8 

0.774

7 

0.725

1 

0.769

4 

25 0.946

2 

0.815

8 

0.960

4 

0.865

0 

0.911

4 

0.857

0 

0.833

9 

0.774

8 

0.782

5 

0.767

5 

 4 
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Table 11.  Training and Validation Loss on Noise Dataset 1 

Epoc

h 

ResNet50 DenseNet121 ResNet152 VGG16 VGG19 

 TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

10 0.472

3 

0.615

6 

0.297

5 

0.524

3 

0.566

9 

0.492

5 

0.701

2 

0.587

6 

0.261

3 

0.562

7 

15 0.303

8 

0.572

5 

0.194

9 

0.510

4 

0.414

4 

0.559

8 

0.570

9 

0.605

8 

0.217

1 

0.609

6 

25 0.147

5 

0.643

9 

0.107

8 

0.617

3 

0.237

8 

0.583

5 

0.439

8 

0.653

2 

0.165

6 

0.632

8 

 2 

Table 12.  Training and Validation Accuracy after Denoising on Noise Dataset 3 

Epoc

h 

INR-

ResNet50 

INR-

DenseNet121 

INR-

ResNet152 

INR-VGG16 INR-VGG19 

 TAcc VAc

c 

TAcc VAcc TAcc VAcc TAcc VAcc TAcc VAcc 

10 0.898

2 

0.852

5 

0.917

9 

0.888

3 

0.867

2 

0.847

0 

0.782

4 

0.774

4 

0.919

4 

0.869

5 

15 0.940

4 

0.871

3 

0.950

5 

0.845

3 

0.908

0 

0.842

5 

0.816

9 

0.837

3 

0.927

2 

0.873

1 

25 0.970

1 

0.874

7 

0.974

5 

0.875

8 

0.956

5 

0.871

0 

0.861

7 

0.856

0 

0.966

5 

0.888

2 

 4 
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Table 13.  Training and Validation Loss after Denoising on Noise Dataset 1 

Epoc

h 

INR-

ResNet50 

INR-

DenseNet121 

INR-

ResNet152 

INR-VGG16 INR-VGG19 

 TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

TLos

s 

VLos

s 

10 0.263

1 

0.468

3 

0.217

8 

0.403

0 

0.347

1 

0.425

4 

0.569

7 

0.568

5 

0.207

9 

0.501

0 

15 0.159 0.444

6 

0.133

8 

0.554

7 

0.235

1 

0.533

2 

0.477

1 

0.461

9 

0.134

5 

0.531

8 

25 0.089

5 

0.501

5 

0.060

2 

0.516

7 

0.124

2 

0.511

3 

0.359

2 

0.492

2 

0.077

5 

0.513

0 

 2 

Table 14.  Comparison with Existing Hair Removal Methods 3 

Year Method Used 

Accuracy with Hair 

Occlusion 

Accuracy Post Hair 

Removal 

(1997) [10] DullRazor - 93.15 

(2011) [46] PDE - 91.74 

(2013) [47] Curvilinear Matched 

Filtering 

                     - 81.13 

(2013) [48] Derivative of Gaussians                      -                 87.36 

(2015) [49] Threshold Decomposition                      - 80.13 

(2017) [50] ED+MBL                      - 90.99 
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Table 15.  Comparison with Existing Noise Removal Methods  2 

Year Method Used 

Accuracy with 

Noise Occlusion 

Accuracy Post 

Noise Removal 

(2016) [52] UNet - 87.25 

(2021) [53] DP-LinkNet - 94.86 

Proposed 

INR 

Non-Local Means +DenseNet121 96.04 97.45 

Non-Local Means + ResNet 50      94.62 97.01 

Non-Local Means + VGG19   78.25 96.65 

 3 

(2021) [51] SharpRazor                      - 93.80 

 

Proposed 

INR 

Inpainting + DenseNet121 95.2 97.50 

Inpainting + ResNet50  94.78 96.56 

Inpainting + ResNet152  94.12 96.01 


