
Turk J Math

() : –

c© TÜBİTAK
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Abstract: We investigate a dual bending energy functional that operates on the dual pseudo-sphere in dual Lorentzian4

space. For a non-null dual curve on the dual pseudo-sphere to be considered elastic, it must satisfy the conditions of a5

dual Euler-Lagrange equation. To solve this problem, we use Jacobi elliptic functions to approach the real part and the6

integral factors method to solve the dual part. Using E. Study mapping, we examine situations where every timelike or7

spacelike dual elastic curve on the dual pseudo-sphere matches an elastic strip with a suitable base curve in Minkowski8

3-space.9

Key words: calculus of variations, dual pseudo-spherical elastic curve, elastic strips, dual pseudo-sphere.10

1. Introduction11

Dual numbers, consisting of a real and a dual parts, establish a commutative ring with respect to addition and12

multiplication. A sequence of three dual numbers constitutes what is termed a dual vector. Such vectors define13

a module known as a dual space, denoted by D3 within this commutative ring. E. Study’s research in line14

geometry and kinematics heavily relied on the application of dual numbers and dual vectors, emphasizing the15

representation of oriented lines through the use of dual unit vectors. His findings lead to the creation of the E.16

Study’s theorem, establishing that the points on the dual unit sphere S2 in D3 correspond one-to-one with the17

oriented lines in Euclidean 3−space E3 ; a smooth curve on S2 represents a ruled surface in E3 , making this a18

effective subject for investigation (for details, see [6]).19

An elastic curve (EC) is a solution of the variational problem that minimizes the bending energy of a thin,20

non-extensible wire. Mathematically, it is defined as one of the critical points of the total squared curvature21

functional among the family of regular curves, with the same starting and ending points and tangent vectors at22

these points [10]. Elastic curves, have recently been characterized in D3 and on S2 [14, 21]. One of the primary23

objectives of these studies is to establish a one-to-one relationship between EC, characterized on S2 , and elastic24

strips (ES), a special type of ruled surface in E3 . In particular, in [21], the authors have sought to answer the25

question of what type of ES in E3 corresponds to the dual spherical EC.26

In the context of Minkowski 3−space E3
1 , rather than the traditional Euclidean 3−space E3 , E. Study’s27
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mapping may be formulated as follows: The timelike dual unit vector (t.d.u.v.)and spacelike dual unit vector1

(s.d.u.v.) of dual pseudo-hyperbolic space H2
0 and dual pseudo-sphere S21 in D3

1 correspond one-to-one to the2

directed timelike and spacelike lines in E3
1 , respectively. Then a differentiable curve on H2

0
relates to a timelike3

ruled surface in E3
1 . Similarly, the timelike (resp. spacelike) curve on S2

1
corresponds to any spacelike (resp.4

timelike) ruled surface in E3
1 (see, [16, 18]). It is noteworthy that studying ruled surfaces in E3

1 presents a5

significantly richer and more complex area of investigation compared to the corresponding study in E3 . For6

example, ES determined by the stationary point of the Sadowsky functional are determined by two Euler-7

Lagrange (E-L) equations that complement each other in E3 , while it has provided a rich content to the8

literature by expressing with the different differential equation systems according to causal character of the base9

curve (or directrix) of the rectifying strip (RS) in E3
1 (for example, see [11–13]).10

In this work, our primary aim is to seek the solution to a variational problem on S21 . For finding solution11

of the problem, we establish dual E-L equation and we consider the dual and real parts of the dual E-L equation12

separately. The solution to the real part of the equation is recognized to be achieved through the use of Jacobi13

elliptic functions (see [7, 20]). We use the integral factor method to solve the dual part of the equation and then14

combine the results. Finally, we establish a one-to-one relationship between the timelike and spacelike dual EC15

on S21 and the ES with non-null base curve in E3
1 .16

2. Preliminary results17

A dual number â is written as â = a+ ξa∗ , where ξ is the dual operator with the conditions ξ2 = 0 and ξ 6= 0.

The collection of dual numbers is represented by D. We have the following operations:

â+ b̂ = (a+ b) + ξ (a∗ + b∗) ,

â.b̂ = ab+ ξ(ab∗ + a∗b)

and
â

b̂
=
a

b
+ ξ

a∗b− ab∗

b2
, b 6= 0,

where â = a + ξa∗ , b̂ = b + ξb∗ . û = (û1, û2, û3) is known as a dual vector and the entire collection of dual

vectors is denoted by

D3 =
{
û| û = (u1 + ξu∗1, u2 + ξu∗2, u3 + ξu∗3) = u+ ξu∗, u, u∗ ∈ E3

}
and known as dual space (see, [8, 17]). Lorentzian inner product and Lorentzian cross product are given by

< û, v̂ >=< u, v > +ξ(< u, v∗ > + < u∗, v >)

and
û× v̂ = u× v + ξ(u× v∗ + u∗ × v),

for dual vector û and v̂ . Dual Lorentzian space D3
1 is the dual space endowed with Lorentzian inner product.

The dual vector v̂ = v + ξv∗ is called spacelike, timelike or lighlike (null) if the vector v is spacelike, timelike

or lightlike (null), respectively. The norm ‖v̂‖ of v̂ is as follows:

‖v̂‖ =
√
|< v̂, v̂ >| = ‖v‖+ ξ

< v, v∗ >

‖v‖
, v 6= 0.
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A dual vector v̂ is referred to as a dual unit vector if the norm of v̂ equals to 1 (or 1 + ξ0), i.e., < v, v >= 1

and < v, v∗ >= 0. It follows that v̂ is a td.u.v (resp., sd.u.v) if the relations < v, v >= −1 (respectively,

< v, v >= 1) and < v, v∗ >= 0 hold. The dual pseudo-sphere S21 or (Lorentzian dual unit sphere) and dual

pseudo-hyperbolic space (hyperbolic dual unit sphere) are respectively given by

S21 =
{
v̂ ∈ D3

1

∣∣ < v̂, v̂ >= 1
}

and

H2
0 =

{
v̂ ∈ D3

1

∣∣ < v̂, v̂ >= −1
}
.

Let γ̂(t) = γ(t) + ξγ∗(t), where γ(t) = (γ1(t), γ2(t), γ3(t)) and γ∗(t) = (γ∗1 (t), γ∗2 (t), γ∗3(t)), be a dual1

curve with parameter t ∈ I ⊂ R in D3
1. γ(t) is defined the (real) indicatrix of γ̂(t). If all γi (t) and γ∗i (t),2

1 ≤ i ≤ 3, are smooth, then γ̂(t) is smooth in D3
1 . γ̂(t) in D3

1 is referred to spacelike, timelike or lightlike3

(null) if the real part γ(t) of γ̂(t) in E3
1 is spacelike, timelike or lightlike, respectively. The dual arc length of4

γ̂ is given by5

ŝ =

s∫
0

∥∥∥∥ ·γ̂ (t)

∥∥∥∥ dt =

s∫
0

∥∥∥ ·γ (t)
∥∥∥ dt+ ξ

s∫
0

< T,
·
γ∗ (t) > dt = s+ ξs∗, (2.1)

where s is arc length and T is the unit tangent vector (TV) to γ . Assume that γ̂ is a reparametrization with

s of the indicatrix. Thus,

γ̂′ =
·
γ̂
ds

dŝ
= T̂

is defined as the dual TV to γ̂ (s), where γ̂′ = dγ̂
dŝ and

·
γ̂ = dγ

ds and we have dŝ
ds = 1 + ξ∆ from (2.1), where6

∆ =< T,
·
γ∗ (t) > .7 {
T̂ , N̂ , B̂

}
is the dual Frenet frame along γ̂ with derivative equations

d

dŝ

 T̂

N̂

B̂

 =

 0 κ̂ 0
−εT εN κ̂ 0 τ̂
0 −εNεB τ̂ 0

 T̂

N̂

B̂

 ,

where N̂ is the dual principle normal vector field (PNV), B̂ is the dual binormal vector field (BV) of γ̂ at the8

point γ̂(s), κ̂ = κ + ξκ∗ and τ̂ = τ + ξτ∗ are nowhere pure dual curvature and dual torsion functions of γ̂,9

εT =< T, T >= ∓1, εN =< N,N >= ∓1 and εB =< B,B >= ∓1 (see for detail, [1, 15, 19]).10

Now we recall ruled surface in E3
1 . Let J and I be open intervals containing 0 in the real line R . Let11

α(s) be a curve on J into E3
1 and β(s) a vector field along α(s) orthogonal to α′(s). A ruled surface M in E3

112

is a semi-Riemannian surface swept out by the vector field β(s) along the curve α(s). Such a surface has the13

following parametrization form14

R (s, v) = α (s) + vβ(s), (2.2)

for s ∈ J and v ∈ I , where α(s) is called a base curve and β(s) is called a direction curve. The causal15

character of the curve α (s) and the vector field β (s) are important for determining the type of the ruled16

surface parametrized by R (s, v). R (s, v) is called as a spacelike ruled surface if α (s) is a spacelike curve17

3
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and β (s) is spacelike vector field. (2.2) is called as timelike ruled surface if α (s) is spacelike curve and β (s)1

timelike vector field or α (s) is timelike curve and β (s) spacelike vector field (see [3], for detail description)2

The binormal surface (BS), which is a special ruled surface that has an important place in the future3

parts of our paper, is also defined as follows: Let α(s) be a non-null curve in E3
1 with the arc length parameter4

s and the Frenet frame {T (s) , N(s), B(s)} . Then the ruled surface5

R (s, v) = α (s) + vB(s) (2.3)

is defined as BS of the non-null curve α(s) [5].6

E. Study’s mapping allows us to rewrite a dual curve γ̂ (s) = γ(s) + ξγ∗(s) as a ruled surface Eq. (2.2)7

in the following form:8

R (s, v) = γ (s)× γ∗ (s) + vγ(s) (2.4)

[16, 18].9

3. Setting of the E-L equation10

Let γ̂ be a non-null dual pseudo-spherical curve, that is, a non-null dual curve on S21 . Suppose that γ̂ is11

a reparametrization curve with the parametrization s of the indicatrix, T̂ is called the dual TV to γ̂ and12

ĝ = εgγ̂ × T̂ at the point γ̂ (s) , where εg =< g, g >= ±1 such that ĝ = g + εg∗. Since γ̂ is a non-null13

dual pseudo-spherical curve, we know that εg = −εT . Thus, we get the orthonormal frame {γ̂, T̂ , ĝ} with the14

following fundamental relations15

d

dŝ

 γ̂

T̂
ĝ

 =

 0 1 0
−εT 0 κ̂g
0 κ̂g 0

 γ̂

T̂
ĝ

 (3.1)

(see, [1, 2]). We have the following relation between dual geodesic curvature κ̂g and dual curvature κ̂ of γ̂ :16

κ̂2 =
∣∣1− εT κ̂2g∣∣ . (3.2)

Therefore, we can define dual pseudo-spherical EC as a stationary point of the dual bending energy17

∫
γ̂

(
κ̂2g + σ̂

)
dŝ (3.3)

in the space Φ =
{
γ̂ : [0, `]→ S21 ⊂ D3

1, γ̂ (i`) = p̂i, γ̂
′ (i`) = v̂i, i = 0, 1

}
for fixed dual constant σ̂ = σ + ξσ∗ .18

One may clearly check the following equality from (3.2) and (3.1):∥∥∥T̂ ′∥∥∥2 = ε− εεT κ̂2g,

where ε =
∣∣1− εT κ̂2g∣∣ / (1− εT κ̂2g) . So, (3.3) can be rewritten as follows

∫
γ̂

(
−εεT

∥∥∥T̂ ′∥∥∥2 + ρ̂

)
dŝ,

4
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where ρ̂ = σ̂ + εT under the constrain T̂ = γ̂′. As a result, we get

F̂ = −εεT
∣∣∣< T̂ , T̂ >

∣∣∣+ ρ̂+ λ̂
(
< T̂ , T̂ > −εT

)
+ µ̂ (< γ̂, γ̂ > −1) + 2 < Λ̂, γ̂′ − T̂ > .

The following equations satisfy if γ̂ is a critical value for F̂ ,

∂F̂

∂γ̂
− d

dŝ

(
∂F̂

∂γ̂′

)
= 0,

∂F̂

∂T̂
− d

dŝ

(
∂F̂

∂T̂ ′

)
= 0.

Thus, we have1

µ̂γ̂ − Λ̂′ = 0 (3.4)

and2

λ̂T̂ + εT T̂
′′ = Λ̂. (3.5)

Taking into consideration (3.4) and (3.5), we arrive at3

λ̂′T̂ + λ̂T̂ ′ + εT T̂
′′′ = µ̂γ̂. (3.6)

We get the following derivatives from (3.1):4

T̂ ′ = −εT γ̂ + κ̂g ĝ, (3.7)

5

T̂ ′′ = κ̂′g ĝ − (εT − κ̂g) T̂ , (3.8)

6

T̂ ′′′ = (1− εT κ̂g) γ̂ + 3κ̂gκ̂
′
gT̂ +

(
κ̂′′g −

(
εT − κ̂2g

)
κ̂g
)
ĝ. (3.9)

Using (3.7), (3.8) and (3.9) in (3.6), we find

−
(
εT λ̂+ µ̂+

(
κ̂2g − εT

))
γ̂ +

(
λ̂′ + 3εT κ̂gκ̂

′
g

)
T̂ +

(
λ̂κ̂g + εT κ̂

′′
g + εT κ̂

3
g − κ̂g

)
ĝ = 0.

Because the dual vectors γ̂, T̂ and ĝ are linearly independent, we obtain7

εT λ̂+ µ̂+ κ̂2g − εT = 0, (3.10)

8

λ̂ = −3

2
εT κ̂

2
g + Ĉ, (3.11)

where Ĉ = C + ξC∗ is a dual constant and9

λ̂κ̂g + εT κ̂
′′
g + εT κ̂

3
g − κ̂g = 0. (3.12)

Substituting (3.11) into (3.12), we get10

κ̂′′g −
1

2
κ̂3g − εT

(
1− Ĉ

)
κ̂g = 0. (3.13)

5
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We address the boundary condition for γ̂ to find Ĉ with regard to σ̂ :

F̂ (`)− ∂F̂

∂γ̂′
(`) γ̂′ (`)− ∂F̂

∂T̂ ′
(`) T̂ ′ (`) = 0.

Then we have1

εT
(
1− εT κ̂2g (`)

)
− 2 < Λ̂ (`) , γ̂′ (`) > +ρ̂ = 0. (3.14)

Using (3.5), we calculate2

< Λ̂ (`) , γ̂′ (`) >= −1

2
κ̂2g (`) + εT Ĉ − εT . (3.15)

Substituting (3.15) into (3.14), we have

−εT
(

1− Ĉ
)

= εT +
1

2
σ̂.

Thus, we can rewrite equation (3.13) as follows3

κ̂′′g −
1

2
κ̂3g +

(
εT +

1

2
σ̂

)
κ̂g = 0. (3.16)

This leads us to the next theorem.4

Theorem 1. A non-null dual pseudo-spherical EC can be characterized by the dual E-L equation (3.16).5

4. Solutions of the dual E-L equation6

In this section we solve the dual E-L equation (3.16). If the dual geodesic curvature κ̂g is a dual constant value7

satisfying (3.16), then Eq. (3.1) is a system of linear ordinary differential equations with constant coefficients.8

Hence, it can be directly resolved.9

Now, suppose that κ̂g has a non dual constant. Thus, (3.16) may be integrated to10

(
κ̂′g
)2

= Ĉ1 +
1

4
κ̂4g −

(
εT +

1

2
σ̂

)
κ̂2g, (4.1)

where Ĉ1 = C1 + ξC∗1 is a dual constant. We consider the solution of (4.1) separately, depending on whether11

the dual pseudo-spherical curve is timelike or spacelike.12

Case 1 : We consider to the solution of the problem for timelike dual pseudo-spherical EC. In this case13

the real and the dual parts of Eq. (4.1) are respectively as follows;14

(κ̇g)
2

=
1

4
κ4g −

1

2
(σ − 2)κ2g + C1 (4.2)

and15

κ̇∗g +
κg
2κ̇g

(
σ − κ2g − 2

)
κ∗g =

1

2κ̇g

(
C∗1 − κ2gσ∗

)
, (4.3)

(4.2) may be regarded as a cubic polynomial, and subsequently, it is solved by using Jacobi elliptic functions

for κ2g0 < 2 (σ − 2) as follows

κg = κg0ksn
(κg0

2
(s− s0) |k

)
,

6
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where κg0 stands for the maximal geodesic curvature, k is the real parameter related to σ and κg0 such that

k2 =
2 (σ − 2)− κ2g0

κ2g0

and

C1 = −1

4
κ4g0 +

1

2
(σ − 2)κ2g0

(see, [7, 9, 20]). Eq. (4.3) may be solved by integral factor method. The integral factor is calculated as follows1

µ = e
∫ κg

2κ̇g
(σ−κ2

g−2)ds. (4.4)

Multiplying by µ of (4.3), we arrive at

·
(µκ∗g) =

µ

2κ̇g

(
C∗1 − κ2gσ∗

)
.

So, we obtain

κ∗g =
1

µ

[∫
µ

2κ̇g

(
C∗1 − κ2gσ∗

)
ds+ C2

]
,

where C2 is the integration constant. So, any timelike dual pseudo-spherical EC is determined by the following

dual geodesic curvature:

κg0ksn
(κg0

2
(s− s0) |k

)
+ ξ

1

µ

[∫
µ

2κ̇g

(
C∗1 − κ2gσ∗

)
ds+ C2

]

for κ2g0 < 2 (σ − 2).2

Case 2: We consider to the solution of the problem for spacelike dual pseudo-spherical EC. In this case3

the real and dual parts of Eq. (4.1) can be rewritten as follows;4

(κ̇g)
2

=
1

4
κ4g −

1

2
(σ + 2)κ2g + C1 (4.5)

and5

κ̇∗g +
κg
2κ̇g

(
σ − κ2g + 2

)
κ∗g =

1

2κ̇g

(
C∗1 − κ2gσ∗

)
, (4.6)

respectively. Similarly to the case of the timelike dual pseudo-spherical EC, Eq. (4.5) may be solved by Jacobi

elliptic functions for κ2g0 < 2 (σ + 2) as follows

κg = κg0ksn
(κg0

2
(s− s0) |k

)
,

where

k2 =
2 (σ + 2)− κ2g0

κ2g0

7
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and

C1 = −1

4
κ4g0 +

1

2
(σ + 2)κ2g0

(see, [7, 9, 20]). Eq. (4.6) may be solved by integral factor method. The integral factor is calculated as follows1

µ = e
∫ κg

2κ̇g
(σ−κ2

g+2)ds. (4.7)

Then, the solution of Eq. (4.6) is found in the following

κ∗g =
1

µ

[∫
µ

2κ̇g

(
C∗1 − κ2gσ∗

)
ds+ C3

]
,

where C3 is the integration constant. So, any spacelike dual pseudo-spherical EC is determined by the following

dual geodesic curvature:

κg0ksn
(κg0

2
(s− s0) |k

)
+ ξ

1

µ

[∫
µ

2κ̇g

(
C∗1 − κ2gσ∗

)
ds+ C3

]
for κ2g0 < 2 (σ + 2) .2

5. Geometric interpretations of results3

We know that a non-null dual curve γ̂ on S21 corresponds a ruled surface written by a form (2.4) in E3
1. Because4

ES are special ruled surfaces, we can get a relationship between non-null dual EC on S21 and ES with non-null5

base curve in E3
1 in this section.6

ES with non-null base curve in E3
1 is a developable ruled surface (or Minkowski RS) denoted by7

R (t, δ) = γ (t) + δ (ω(t)T (t) +B (t)) (5.1)

if γ is an extremal of the modified Sadowsky functional

Sη(γ) =

`∫
0

(κ2(1 + ω2)2 − η)vdt,

where η is Lagrange multiplier, T is TV, B is BV of γ and ω = τ
κ is the modified torsion of γ such that κ is8

the curvature and τ is the torsion of γ . An ES with non-null base curve γ , parametrized by its arc length s ,9

is characterized by the E-L equations10

r1 = r2 = 0, (5.2)

where

r1 :=
εNd

(
dκ
ds (1+ω2)

2
+2κ(1+ω2)ω dωds

)
ds

+ κ
2

(
κ2
(
1 + ω2

) (
εT + (5εT − 4εB)ω2

)
+ εT η

)
+ ωκ(εBκ

2
(
1 + ω2

)2
ω +

d( 2εN
κ

dκ
ds (1+ω2)ω)
ds +

d2(2εN(1+ω2)ω)
ds2 )

and

r2 := −
d

(
κ2(1+ω2)

2
ω+((εT εB−1)2κ2ω(1+ω2))+

d( 2εNεB
κ

dκ
ds (1+ω2)ω)
ds +

d2(2εNεB(1+ω2)ω)
ds2

)
ds

+ ωκ(dκds
(
1 + ω2

)2
+ 2κ

(
1 + ω2

)
ω dωds ),

8
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where εT , εN and εB are the sign of T , N and B of γ [4, 11–13].1

By applying the E. Study mapping, we now derive the ensuing results2

Conclusion 1. We suppose that a non-null dual curve γ̂ = γ + ξγ∗ on S21 ⊂ D3
1 corresponds to the3

Minkowski RS with non-null base curve γ × γ∗ . Thus, we present the following claims:4

i) If γ̂ is a dual timelike curve and PNV of the curve γ × γ∗ is timelike, consequently, the associated5

Minkowski RS corresponds to a spacelike BS.6

ii) If γ̂ is a dual timelike curve and PNV of the curve γ×γ∗ is spacelike, thus the corresponding spacelike7

Minkowski RS is formed by spacelike cylindirical helix.8

iii) If γ̂ is a dual spacelike curve, so the corresponding Minkowski RS corresponds to a timelike BS.9

Proof. i) Let γ̂ = γ + ξγ∗ be a timelike dual curve on S21 . From E. Study mapping, we know that the

corresponding Minkowski RS is spacelike ruled surface in E3
1. Then Minkowski RS must be in the form of (5.1),

i.e., the parametrization of Minkowski RS is given by

R (t, δ) = γ(t)× γ∗(t) + δ (ω (t)T (t) +B (t)) ,

where ω (t)T (t) +B (t) = γ(t), κ, τ , T and B are the curvature, torsion, TV and BV of γ × γ∗ at the point10

(γ × γ∗) (t), respectively. Since γ̂ is a timelike dual curve on S21 , we have for all t ∈ R11

1 =< γ̂, γ̂ >= ω2 + εB . (5.3)

We may see from (5.3), ω is zero if N of γ× γ∗ is timelike vector field. Also, we may see from (2.3), it is a BS.12

ii) If N of γ × γ∗ is spacelike vector field, then ω2 = 2 and γ × γ∗ is a spacelike cylindiral helix. Therefore,13

spacelike Minkowski RS is formed by spacelike cylindirical helix. Similarly, we can show the condition (iii) .14

As is commonly understood, geodesics frequently serve as prime examples of EC. With that in mind, we15

can present the subsequent finding.16

Conclusion 2. Let γ̂ = γ + ξγ∗ be a non-null dual curve on S21 and R the corresponding Minkowski17

RS with non-null base curve. We present the following claims:18

i) If γ̂ is a timelike dual curve, then the base curve of R is a spacelike EC with timelike PNV in E3
1 .19

ii) If γ̂ is a spacelike dual curve, then the base curve of R is a timelike EC in E3
1 .20

Proof. Suppose that R with spacelike base curve is the spacelike BS corresponding to a timelike dual21

curve γ̂ = γ + ξγ∗ on S21 and PNV of the spacelike curve γ × γ∗ is timelike. Since the base curve of BS is a22

geodesic and any geodesic is EC, the base curve γ × γ∗ of R is a spacelike EC in E3
1 . Similarly, we can show23

the assertion (ii).24

A non-null EC with modified torsion ω = 0 satisfies the E-L equations (5.2), that is a Minkowski RS25

formed by a non-null EC with zero modified torsion is ES with non-null base curve. In such a scenario, we reach26

a certain conclusion, the evidence for which is clear-cut.27

Conclusion 3. A timelike dual curve on S21 corresponds to ES with spacelike base curve formed by28

spacelike EC with the timelike PNV and zero modifed torsion in E3
1 .29

Conclusion 3 shows that a timelike dual EC on S21 corresponds to ES with spacelike base curve formed30

by a spacelike EC with timelike PNV and zero modified torsion in E3
1 .31

Conclusion 4. A spacelike dual curve on S21 corresponds to ES with timelike base curve formed by32

9
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timelike EC with zero modifed torsion in E3
1 . Thus, a spacelike dual pseudo-spherical EC corresponds to ES1

with timelike base curve constituted by a timelike EC in E3
1 .2

The following result can be seen from Conclusion 1 and E-L equations (5.2).3

Conclusion 5. A timelike dual curve on S21 corresponds to ES with spacelike base curve formed by a

spacelike cylindirical helix with the spacelike PNV in which the curvature κ satisfies the differential equation

9
d2κ

ds2
− 9

2
κ3 +

(η
2

+
√

2C4

)
= 0, C4 ∈ R,

in E3
1 .4
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