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Abstract: This study, re-evaluates the published Total Inorganic Carbon (TIC) and Total 10 

Organic Carbon (TOC) percentages of 695 seafloor sediment samples collected from the 11 

continental margins of the Black Sea, Sea of Marmara, Aegean Sea and Mediterranean 12 

Sea between 1984-1996. An inverse relationship is observed between the average TIC 13 

and TOC percentages in the four seas surrounding Turkiye. The explanation for this 14 

phenomenon is closely connected to the terrestrial, marine, climatic, and environmental 15 

factors of the continental margins from which the samples were collected.  16 

Key words: Turkish seas, organic carbon, inorganic carbon, sediments, continental 17 

margins 18 

1. Introduction 19 

Organic and inorganic matters are one of the most basic and important components of 20 

continental shelf sediments and can provide useful information for reconstructing past 21 
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environmental changes (e.g., Meyers, 1997). It is important to monitor the temporal and 22 

spatial changes in total organic (TOC) and inorganic carbon (TIC) amounts in seafloor 23 

sediments to monitor the time-dependent changes of environmental factors. In Berner 24 

(1982), it is emphasized that to model the global carbon cycle, it is necessary to first 25 

understand the dynamics of the carbon cycle in productive environments. It has been 26 

emphasized that approximately 90% of TOC in marine environments is deposited 27 

(accumulated or conserved) along continental shelf sediments, while the remaining 10% 28 

is stored (accumulated or preserved) on the deep ocean floor. Therefore, it should be 29 

known that the most productive environments for TIC and TOC storage areas in marine 30 

environments are the continental margins.  31 

The TIC and TOC content of the continental shelves sediments is of both terrestrial and 32 

marine origins. In these areas, coastal riverine inputs and aerosol deposition are the main 33 

sources of terrestrial organic and inorganic inputs (Turner and Rabalais, 1991; Redalje et 34 

al., 1994; Hedges and Keil, 1995). On the other hand, the TIC content of marine sediments 35 

is closely related to the amount of carbonate minerals in biogenic and lithogenic forms in 36 

the sediment. The TOC content of marine sediments depends on the primary productivity, 37 

rate of sedimentation, grain size distribution of sediments, composition of sediments, 38 

oxygen content of water column, depth of water and terrestrial organic matter input 39 

(Müller and Suess, 1979; Demaison and Moore, 1980; Thunell et al., 1984; Peterson and 40 

Calvert, 1990; Calvert et al., 1992). The TIC and TOC concentrations of sea floor 41 

sediments are used as reliable data to investigate changes in temperature and precipitation 42 

from past to present. An increase in the TIC concentration implies an increase in 43 

temperature whereas higher TOC concentrations reflect greater precipitation rates (Xiao 44 

et al., 2006). 45 
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In this study, the distribution characteristics of TIC and TOC parameters obtained from 46 

seafloor sediments sampled from the continental margins of Turkiye between 1984-1996 47 

were compiled and processed in order to use them as background values in future studies 48 

to determine environmental changes. 49 

2. Material Methods  50 

In this study, the published TOC, TIC and TC data of 695 surficial sediment samples from 51 

the continental margin of Turkish seas (Black Sea, Sea of Marmara, Aegean Sea and 52 

Mediterranean Sea) were compiled (Figure 1). 53 

The samples were recovered by grab samplers on board the research vessels (RV) Bilim, 54 

Lamas and Erdemli during various projects of the IMS-METU between 1984 and 1996. 55 

The results of the data obtained within the scope of the projects carried out by IMS-56 

METU, used in this study (IMS-METU 1984; IMS-METU 1985 a, b; IMS-METU 1986), 57 

have been published in many different international journals (Ediger, 1987; Bodur and 58 

Ergin, 1988; Alavi et al., 1989; Ergin and Yörük, 1990; Ergin et al., 1990; Ergin et al., 59 

1991; Yücesoy and Ergin, 1992; Ergin et al., 1992; Ergin et al., 1993; Ergin et al., 1994; 60 

Bodur and Ergin, 1994; Ergin et al., 1996). The continental margin sediment data were 61 

analysed by dividing into 22 different zones (taking into account their location, coastal 62 

geometry, oceanography and data distribution patterns) and the depth of the continental 63 

margins from 0 m to 500 m were examined by dividing them into 50 m intervals (Figure 64 

1). TOC and TIC contents of the sediment samples were analysed in the IMS-METU 65 

geochemistry laboratory. TIC as total carbonate weigh percentage was determined by the 66 

gasometric method after treatment of the grounded dry bulk samples with dilute (10%) 67 
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HCI acid (Müller, 1967). Total inorganic carbon (TIC %) values were calculated by using 68 

the atomic weights (weight %) of each element in CaCO3.  69 

TOC measurements were made using the modified Walkley-Black method (Gaudette et 70 

al., 1974), which is based on the exothermic heating and oxidation of organic matter with 71 

potassium dichromate and sulphuric acid. Total Carbon (TC) was calculated by adding 72 

the percentages of TIC and TOC values to each other. Absolute precision for total 73 

carbonate and total organic carbon determinations were, ±0.5% and ±0.2% respectively 74 

(Ergin et al., 1996). 75 

2.1. Oceanographic Setting of the Turkish Seas  76 

Turkiye is surrounded by four distinct seas, each possessing unique atmospheric, 77 

oceanographic, and sedimentological characteristics. These seas are the Black Sea (BS), 78 

Sea of Marmara (SM), Aegean Sea (AS), and Mediterranean Sea (MS), from north to 79 

south (as depicted in Figure 1). 80 

Located in northern Turkiye, the Black Sea is a semi-enclosed anoxic inland basin fed by 81 

several large rivers that carry significant amounts of nutrients and pollutants (Tuğrul et 82 

al., 1992). The Black Sea is interconnected with the Sea of Marmara via the Bosphorus 83 

(Istanbul Strait) and is also linked to the Aegean Sea and Mediterranean Sea through the 84 

Dardanelles (Çanakkale Strait) (Murray et al., 1991). High salinity seawater (38 ‰) of 85 

Mediterranean origin enters through the İstanbul Strait and partially ventilates the western 86 

Black Sea at intermediate and deeper depths (Ovchinnikov, 1984; Murray et al., 1991). 87 

The surface water salinity remains around 18 ‰ due to constant freshwater input from 88 

coastal rivers.  This causes a permanent and strong halocline that inhibits vertical mixing 89 

in the sea (Sorokin, 1983; Lyons et al., 1993; Oğuz et al., 2006). This permanent halocline 90 
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makes the Black Sea a semi-enclosed marine basin with net estuarine circulation and 91 

anoxic, sulphide rich, deep water (Oğuz et al., 2006). The stratification is generated by 92 

coastal freshwater input and the Mediterranean inflow of water of a higher salinity. 93 

Seasonal fluctuations in sea surface temperature (SST) span 8°C to 26°C, while deep-sea 94 

temperature remains stable at approximately 8.5°C. The upper layer of the Black Sea is 95 

dominated by a meandering Rim-Current system cyclonically encircling the basin, 96 

creating a cyclonic gyre within the eastern and western parts of the interior, and additional 97 

anticyclonic eddies along the Rim Current (Oğuz et al., 2006).  98 

Over the past two decades, increasing nutrient and organic matter input from land via 99 

rivers, along with waste discharge, have induced significant changes in the Black Sea 100 

ecosystem (Mee, 1992; Cociasu et al., 1996, 1997). The Black Sea is a biologically 101 

productive and the largest anoxic marine environment. While open waters exhibit 102 

relatively modest primary production, coastal regions flourish due to the influence of 103 

freshwater inflow (Yılmaz et al., 2006; Yunev et al., 2002). 104 

In addition to pollution originating from coastal cities, the Danube River, which drains 105 

substantial parts of central and eastern Europe, serves as a primary pollutant source in the 106 

shelf and upper slope regions of the Black Sea. The Danube water is transported along 107 

the coastal areas by the cyclonic rim current. Another pollutant source is the 108 

Mediterranean inflow that transports domestic and industrial pollutants from Marmara 109 

Sea (Sarı et al., 2018). 110 

The Sea of Marmara is a restricted depression between the world’s largest anoxic basin, 111 

(Black Sea) in the northeast and the saline Aegean Sea in the southwest (Beşiktepe et al., 112 

1994). The Sea of Marmara, together with the İstanbul (Bosporus) and Çanakkale 113 
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(Dardanelles) straits, is called Turkish Straits System (TSS). This system provides the 114 

connection between the less salty Black Sea waters and the salty Mediterranean waters 115 

(Beşiktepe et al., 1994). A sharp halocline of 15-25 m thick separates the upper and lower 116 

waters throughout the basin. The surface layer of the Sea of Marmara is composed of 117 

brackish waters (22–26 ‰) originating from the Black Sea, while the lower layer consists 118 

of saline Mediterranean waters (38.5–38.6 ‰) (Ünlüata et al., 1990). Temperature 119 

variations within the Sea of Marmara exhibit seasonal fluctuations, with upper layer 120 

temperatures ranging from approximately 7°C to 26°C, and lower layer temperatures 121 

spanning 14°C to 16°C. The coastal areas and semi-enclosed inlets in the Sea of Marmara 122 

are generally exposed to considerable anthropogenic inputs and industrial discharges 123 

(Okay et al., 1996; Morkoç et al., 2001; Tolun et al., 2001; Yaşar et al., 2001; Alpar et 124 

al., 2003; Algan et al., 2004; Balkıs 2003; Ediger et al., 2016; Sarı et al., 2020; Arslan 125 

Kaya et al., 2022; Arslan Kaya et al., 2023; Özen et al., 2023). 126 

The Aegean Sea, which is part of the Eastern Mediterranean Sea, is bounded to the east 127 

by the Turkish coastline, to the north and west by the Greek mainland and to the south by 128 

the island of Crete. Its coastline exhibits significant irregularities, featuring numerous 129 

small and large bays, peninsulas, and islands (Soukissian, et al., 2017). The surface water 130 

circulation pattern of the Aegean Sea is complex, showing temporal and seasonal 131 

variations. This sea establishes connections to the Levantine and Ionian Seas to the south 132 

through the Cretan Straits, while its northern link lies with the Sea of Marmara-Black Sea 133 

via the Çanakkale Strait. Across the Aegean, sea surface temperature spans 134 

approximately 8 to 26°C, accompanied by salinity levels ranging from 31 to 39 ‰.  These 135 

parameters exhibit variations influenced by both location and time of year (Poulos et al., 136 

1997). 137 
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The Aegean open sea displays oligotrophic properties. However, eutrophication risk has 138 

developed in some semi-enclosed bays of the NE Aegean Sea, which are subject to large 139 

loads of domestic and industrial waste waters (Küçüksezgin, 2011; Bizsel et al. 2001; 140 

Kontas et al. 2004; Talas et al., 2023). Sarı and Çağatay (2001) documented that the 141 

coastal regions of the northeastern Aegean Sea have experienced the influence of both 142 

anthropogenic and natural discharges from coastal rivers. 143 

The Mediterranean is a semi-enclosed sea characterized by high salinities and 144 

temperatures. The characteristics water masses within the NE-Mediterranean Sea 145 

(Levantine Basin) are the Levantine Surface Water, the Modified Atlantic Water, the 146 

Levantine Intermediate Water and the Levantine Deep Water (Özsoy et al., 1989; 1991; 147 

1993; Brenner et al., 1991). The Levantine Basin is the easternmost part of the 148 

Mediterranean. The Eastern Mediterranean basin is connected to the North Atlantic Ocean 149 

through the Western Mediterranean and Ionian Basin as well as to the Black Sea through 150 

the Turkish Straits System and Aegean Sea. Salinity and temperature levels within this 151 

region range approximately from 36 to 39 ‰ and 16 to 29°C, respectively. The prominent 152 

features of the general surface circulation are the mid-basin jet and the Asia-Minor current 153 

along the Turkish coast, together with quasi-permanent anticyclonic eddies in the Eastern 154 

Mediterranean (Wüst, 1961; Özsoy et al., 1993; Akpınar et al., 2015). 155 

The Eastern Mediterranean is known as one of the oligotrophic seas over the world due 156 

to limited nutrient input to its surface waters from external and internal sources (Krom et 157 

al., 1991; Ediger and Yılmaz 1996; Yılmaz and Tuğrul 1998). Notably, semi-enclosed 158 

shallow coastal zones, which receive wastewater and riverine inflows, represent potential 159 

areas susceptible to eutrophication (Tuğrul et al. 2011).  160 
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3. Results 161 

Turkiye is surrounded from north to south by the Black Sea (BS), the Marmara Sea (SM), 162 

the Aegean Sea (AS) and the Mediterranean (MS), which have unique atmospheric, 163 

oceanographic, sedimentological and anthropogenic characteristics and are 164 

interconnected by the strait systems (Figure 1). Within the scope of this study, the 165 

previously published TIC and TOC percentages of the continental margins of the Turkish 166 

seas were grouped in 22 different areas, the average percentage values for each area were 167 

calculated and the results were interpreted. 168 

3.1. Black Sea  169 

The average values of 57 different TIC (%) and TOC (%) data collected from the Black 170 

Sea continental margin were grouped in four different areas and the results were 171 

interpreted in Figure 2 and 3.  172 

It is observed that TIC percentages decrease from BS-1 to BS-2 in the Eastern Black Sea 173 

Region and from BS-3 to BS-4 in the Western Black Sea Region. There was a noticeable 174 

rise in TOC percentages within the same directions and areas (Figure 3). The reason for 175 

the average TOC values exceeding TIC values in BS-2 and BS-4 can be attributed to the 176 

Black Sea's marginal current system and the intensity of terrestrial inputs affecting these 177 

regions. Remarkably, the BS-2 and BS-4 areas stand out as rare areas observed in the 178 

continental margins of Turkiye. The BS-4 area in the Black Sea is situated within the 179 

influence zones of both the Danube River and the subcurrent of the Istanbul Strait.  180 

High Total Organic Carbon (TOC) levels in this region can potentially be attributed to 181 

these factors. 182 
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Sarı et al. (2018) have reported that the Danube waters influence, combined with cyclonic 183 

rim currents, affects the region. Additionally, they have indicated that the area is impacted 184 

by the subcurrent of the Marmara Sea, carrying waste materials from the city of Istanbul. 185 

On the other hand, BS-2, located within the influence zones of the Kızılırmak and 186 

Yeşilırmak Rivers, may experience increased TOC levels due to the effects of these 187 

rivers. 188 

3.2. Sea of Marmara 189 

The average values of 316 different TIC (%) and TOC (%) data collected from the 190 

Marmara Sea continental margin were grouped in nine different areas (Figure 4) and the 191 

results were interpreted in Figure 5. 192 

The TIC (%) and TOC (%) values of the Marmara Sea were divided into nine different 193 

regions and their average values were calculated and analysed.  Notably, the most 194 

remarkable observation was that average TOC percentages exceeded TIC percentages 195 

only in the Golden Horn and İzmit Bay, among the areas in the entire Marmara Sea. This 196 

is due to the high anthropogenic inputs entering these areas. Industrial and domestic 197 

activities in the Marmara Region influence mainly coastal areas and semi-enclosed inlets 198 

of the Marmara Sea. Izmit Bay (Tolun et al., 2001; Morkoç et al., 2001; Okay et al., 1996; 199 

Yaşar et al., 2001) and the Golden Horn (Ergin et al., 1991) are well-defined polluted 200 

coastal inlets of the Marmara Sea.  201 

The regions with the highest average TIC values were found to be the Bosphorus and 202 

Bosphorus-Marmara Junction areas. The erosion effect of the lower layer current system 203 

along the Bosphorus, coupled with the geological formations surrounding the terrestrial 204 

areas of the Bosphorus, likely play a significant role. Additionally, the less saline Black 205 



 

10 

Sea waters may have precipitated some of their suspended solids because of flocculation 206 

upon encountering the Marmara Sea waters at the Bosphorus-Marmara junction. The 207 

suspended solids, stored due to flocculation, could have been subsequently carried back 208 

to the bottom of the Bosphorus by the lower layer current. Lateral offshore transport in 209 

surface waters and biological activities in the water column are believed to be important 210 

factors resulting in the decrease of particulate organic carbon fluxes to the sediments in 211 

this sea (Ergin et al., 1994). 212 

3.3. Aegean Sea 213 

The average values of 87 different TIC (%) and TOC (%) data collected from the Aegean 214 

Sea continental margin were grouped in three different areas (Figure 6) and the results 215 

were interpreted in Figure 7.  216 

Observations reveal that TIC values reach the highest in the north of the Aegean Sea, 217 

while TOC values reach their highest in the central region. This pattern highlights an 218 

inverse relationship between the average TIC and TOC percentages within the three 219 

Aegean Sea regions.  220 

High TIC levels in the Northern Aegean Margins may result from significant deposition 221 

of suspended solids, mainly composed of limestone particles, transported by coastal 222 

rivers. The central region of the Aegean Sea exhibits high TOC (%) values compared to 223 

the northern and southern regions. This can be attributed to the intensified anthropogenic 224 

pressure in the central region, where large cities are situated. 225 

 226 

 227 
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3.4.Mediterranean Sea 228 

The average values of 231 different TIC (%) and TOC (%) data collected from the NE 229 

Mediterranean Sea continental margin were grouped in six different areas (Figure 8) and 230 

the results were interpreted in Figure 9. 231 

When investigating the TIC (%) and TOC (%) distribution along six different areas along 232 

the Mediterranean continental margin from east to west, the highest TIC (%) value was 233 

observed in MS-4, whereas the highest TOC (%) value was found in MS-1 (Figure 9). 234 

The high percentage of TIC in the MS-4 region can be attributed to the influence of the 235 

Göksu River, which has a significant flow rate. In contrast, the high percentage of TOC 236 

in the MS-1 region can be attributed to its geographical location; This region, under the 237 

influence of the Rhodes cyclonic circulation, shows high productivity levels. It is 238 

observed that the noticeable decrease in TOC (%) values while the TIC (%) values 239 

increase from the MS-1 to MS-4 area. Thus, it is clearly observed that there is an inverse 240 

relationship in the distribution of the average TIC (%) and TOC (%) values of these areas 241 

(MS-1, -2, -3).  242 

According to Ergin et al., 1996 the total organic carbon contents of the surface sediments 243 

in the Mediterranean Sea vary regionally depending on the complex interaction of 244 

biogenic, terrigenic, anthropogenic and hydrodynamic factors. 245 

4. Discussion 246 

The continental margin of Turkiye has been analysed comparatively by dividing it into 247 

22 different areas from the SE Black Sea to the NE Mediterranean. Figure 10 shows the 248 

variation in average TIC and TOC percentage values across these 22 regions. The mean 249 
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TIC percentage exhibited a range from 6.30% (AS-1) to 1.04% (BS-4), while the mean 250 

TOC values ranged from 4.72% (SM-3) to 0.37% (BS-1) (Figure 10). 251 

Despite generally higher TIC percentages than TOC percentages across all areas, TOC 252 

values exceed TIC values in specific regions. Notably, this occurs in BS-2 and BS-4 in 253 

the Black Sea, SM-3 and SM-4 in the Marmara Sea, and MS-1 in the Mediterranean Sea 254 

(Figure 10). Among the 22 zones, the Golden Horn (SM-3) sediment exhibits the highest 255 

TOC percentages. The high TOC content in this area is probably attributed to significant 256 

domestic and industrial wastewater input combined with inadequate regeneration 257 

processes in the water column in estuarine sediments (Kanat et al., 2018). 258 

The distinct elevation of TOC percentages compared to TIC percentages in these regions 259 

arises from variations in sediment sources and diverse oceanographic and environmental 260 

conditions. For instance, in SM-3 (Golden Horn) and SM-4 (İzmit Bay), intense 261 

anthropogenic inputs play a significant role, while MS-1 (Western Mediterranean), 262 

situated in the Mediterranean-Aegean Junction, may experience partial influence from 263 

the Rhodes upwelling area known for its high productivity. In the Black Sea (BS-2 and 264 

BS-4), high primary production and anaerobic seabed conditions can influence higher 265 

percentages of total organic carbon (TOC) levels.  266 

Yemenicioğlu and Tunç (2013) noted that the surface sediments' texture in the Cilician 267 

Basin is largely shaped by the irregular bottom topography and terrigenic inputs from 268 

coastal rivers. The complex wave and current system, encompassing local eddies and 269 

coastal filaments, also play a crucial role in governing sediment composition in the NE 270 

Mediterranean. 271 
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The average TIC percentages calculated for 22 distinct areas along the continental 272 

margins of the Turkish Seas, it is evident that 6 areas exhibit TIC percentages higher than 273 

5 percent. Notably, the first two regions, SM-1 and SM-2, correspond to the Bosphorus 274 

and the Bosphorus-Marmara Junction. The two-layer current system within the 275 

Bosphorus is considered a significant factor contributing to the storage of high TIC 276 

percentages in these areas. 277 

The high TIC percentages observed in the Northern Aegean (AS-1) region can be 278 

attributed to the flow of the Meriç River and the Çanakkale Strait and the coastal geology 279 

affecting the region. Sarı and Çağatay (2001) reported that the main freshwater and 280 

sediment sources of the Northeast Aegean Sea are the Meriç River in the northwest and 281 

the Kavak Stream in the east. 282 

The high TIC percentage in the MS-3 and MS-4 areas, which are adjacent to each other, 283 

is primarily influenced by the coastal zones geological composition on the foothills of the 284 

Taurus Mountains, comprising limestone, and the presence of the Göksu River. Akçay et 285 

al., 2022 note that the wide shelf areas of the Cilician Basin are exposed to substantial 286 

amounts of suspended matter transported by the regional rivers (Akçay et al., 2022). 287 

Figure 11 presents bar graphs depicting Total Carbon (TC) percentages, calculated by 288 

summing TIC and TOC percentages, for 22 distinct areas from the SE Black Sea to the 289 

NE Mediterranean. Excluding areas SM-1 (Bosphorus), SM-2 (Bosphorus-Marmara 290 

Junction), SM-3 (Golden Horn), AS-1, AS-3 (North and South Aegean), and MS-6 (Gulf 291 

of Iskenderun), the TC percentage values show a clear increasing trend from BS-1 to MS-292 

4, as illustrated in Figure 11. 293 
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Upon examining the 50 m intervals of the continental margins at depths between 0-500 294 

m in the seas surrounding Turkiye, significant findings have been observed (Figure 12). 295 

The TIC percentages in the depth zones of the continental margins show a range from the 296 

lowest value (2.01%) in the 350-400 m depth zone and the highest value (4.11%) in the 297 

250-300 m depth zone. As expected, the variation of TIC percentage along the continental 298 

margin decreases consistently with depth, from 0 m to 250 m. However, contrary to the 299 

anticipated gradual decrease in TIC (%) values from 0-500m depth, higher values were 300 

observed in the 250-300m and 400-450m zones. This occurrence can be attributed to the 301 

geological, tectonic, and topographic characteristics of the seas. 302 

The TOC percentages along the 0-500 m depth zone of the continental margin exhibited 303 

an expected variation, ranging between 1.6% and 0.8% in the 0-50 m and 250-300 m 304 

depth zones, respectively. The TIC (%) and TC (%) values along the continental margin 305 

(0-500 m) showed a similar distribution along the depth zones, mainly due to the 306 

substantial contribution of TIC (%) values in this context. 307 

Figure 13 presents the distribution of the average TIC and TOC percentages in the bottom 308 

sediments of the four seas surrounding Turkiye (Black Sea, Marmara Sea, Aegean Sea, 309 

and Mediterranean). A notable observation from Figure 13 is the evident inverse 310 

relationship between TIC (%) and TOC (%) values along the continental margins of these 311 

seas, from north to south. This phenomenon can be attributed to the dilution effect of 312 

carbonates on the TOC content. 313 

5. Conclusions  314 

The comprehensive model (Figures 14 and 15) outlines crucial parameters influencing the 315 

deposition of TIC and TOC on the continental margins of Turkiye. These key factors 316 
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encompass atmospheric effects, depth of the environment, distance from the shore, water 317 

column temperature, current characteristics, primary production, presence of benthic 318 

organism, anthropogenic inputs, coastal lithology, lithology of drainage basins, coastal 319 

riverine inputs, coastal geometry, seafloor morphology and the oxic/anoxic characteristics 320 

of the environment.  321 

These parameters control the distribution and abundance of TIC and TOC in the marine 322 

ecosystem along the Turkish continental margins. It is important to note that these factors 323 

exhibit temporal variations, dependent on climate and environmental characteristics. TIC 324 

and TOC values is one of the important parameters measured in sediment to detect the 325 

temporal changes of environmental features. 326 

The primary finding of this study is the established inverse relationship between the 327 

average TIC and TOC percentages in samples collected from 22 different continental 328 

margins of the Turkish seas. This inverse relationship may be attributed to the dilution 329 

effect of carbonates on the TOC content. Haolin 2020 reported that the deposition of 330 

organic matter in sediments is typically governed by a combination of bioefficiency, 331 

preservation of organic matter in the sediment, and the dilution effect of other inorganic 332 

substances present in the sediments. 333 

Numerous investigations have focused on TOC, however, research into TIC from the 334 

Turkish continental margin remains limited. To our current understanding this study is 335 

the first to evaluate both TOC and TIC in the surface sediment of the Turkish continental 336 

margin. Organic and inorganic carbon data for Turkish continental margin between 1984 337 

and 1996 have been compiled, processed, and evaluated first time in this study. These 338 

archival datasets hold notable importance for the Turkish seas, which have experienced 339 
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diverse environmental pressures over the past three decades. Furthermore, these data can 340 

establish fundamental reference points for future investigation in the area. 341 
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 614 
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FİGURES 616 

 617 

Figure 1. Map showing the distribution density of seafloor sediment samples along the 618 

continental margins of the Turkish Seas and coastal rivers. 619 

 620 

 621 
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Figure 2. The map illustrates sediment sampling locations along the continental margin 622 

of the Black Sea, highlighting four distinct regions, indicating sediment samples per area, 623 

and the main coastal river locations.  624 

 625 

Figure 3: Average TIC and TOC percentages in the Black Sea 626 

 627 

 628 

 629 
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Figure 4: The map illustrates sediment sampling locations of the Sea of Marmara, 630 

highlighting nine distinct regions, indicating sediment samples per area, and main coastal 631 

river locations. 632 

 633 

Figure 5: Average TIC and TOC percentages in the Sea of Marmara. 634 
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Figure 6: The map illustrates sediment sampling locations along the continental margin 646 

of the Aegean Sea, highlighting three distinct regions, indicating sediment samples per 647 

area, and the main coastal river locations. 648 

 649 

 650 

Figure 7: Average TIC and TOC percentages in the Aegean Sea. 651 

 652 

 653 
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 654 

Figure 8: The map illustrates sediment sampling locations along the continental margin 655 

of the NE Mediterranean Sea, highlighting six distinct regions, indicating sediment 656 

samples per area, and the main coastal river locations. 657 

 658 

Figure 9: Average TIC and TOC percentages in the NE Mediterranean Sea. 659 

 660 

 661 

 662 
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 663 

Figure 10: TIC and TOC percentage values and bar graph for areas in sequential order 664 

from the East of the Black Sea to the East of the Mediterranean. 665 

 666 

Figure 11: Sequentially ordered, TC percentage values for regions spanning from the 667 

south eastern Black Sea to the northeastern Mediterranean and the statistical outcomes. 668 

TC data from areas SM-1, SM-2, SM-3, AS-1, AS-3, MS-5, and MS-6 were excluded 669 

from the statistical analysis. 670 
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 671 

 672 

 673 

 674 

 675 

 676 

 677 

Figure 12. The mean percentages of TIC, TOC, and TC throughout the depth of the 678 

continental margin within the Turkish Seas 679 
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 680 

Figure 13. Mean TIC and TOC percentages along the continental margins of the 681 

Turkish Seas (from North to South).  682 

 683 

Figure 14. Schematic cross section model of wave and current dominated oxic and anoxic 684 

depositional environments and sources of Inorganic Carbon (IC) and Organic Carbon 685 

(OC) deposits.  686 
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 687 

Figure 15: Coastal rivers, karstic regions and continental margin currents of the Turkish 688 

Seas and coastal rivers (adapted from Beşiktepe et al., 1994; Nazik, 2004; Stanev, 2005; 689 

and El-Geziry and Bryden, 2010 and Tartaron, 2013).  690 


