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Abstract: In this paper, we examine stacky structures in certain Einstein gravity theories. In brief, using the classical4

formulation of (vacuum) gravity, with vanishing cosmological constant, we first construct the stack of solutions to Einstein5

field equations on any given fixed manifold. Using a similar approach and setup, we also study Einstein’s gravity on6

families of manifolds and define another stack encoding this situation. Later on, we focus on the gauge theoretical7

interpretation of 3D gravity and provide a natural stack associated with that interpretation. Finally, in a particular8

setup, we give a natural morphism between the two stacks arising from different descriptions of 3D gravity.9
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1. Introduction11

Stacks are interesting higher spaces that appear in geometry and physics. Regarding physics-related problems,12

for example, [8] studies gauge theories and factorization algebras in the context of derived algebraic geometry13

(DAG), which is a handy framework that combines algebraic geometry with homotopy theory using a higher14

categorical dictionary. In that respect, it offers new ways of organizing information for various purposes [1, 15].15

Let us go back to the examples of interest: [3] describes a stacky formulation of Yang–Mills fields on Lorentzian16

manifolds; [2] examines higher structures in algebraic quantum field theory; and [12] studies geometric functorial17

field theories. This is, of course, not a complete list. There are many other interesting examples on stacks and18

neighboring subjects in the literature.19

The current work is centered around the fact that the phase spaces of our interest have the structure of20

a groupoid, rather than a set. To be more specific, for ordinary field theories, the collection of fields have the21

structure of a set, and hence two fields f, f ′ are said to be the same if and only if the equation f = f ′ holds22

set theoretically. However, for gauge theories, two gauge fields A,A′ are the “same” if there exists a gauge23

transformation g : A→ A′ relating them.24

Due to the extra data mentioned above, points in the corresponding phase space naturally form a25

groupoid. I.e. the data should include the points (the fields of our theory), along with invertible (gauge)26

transformations between them. Consequently, the phase space of a gauge theory turns out to be a “higher27

space” (called a stack) rather than an “ordinary space”. More details can be found in [2, 3].28
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Of course, one can naturally ask for similar kinds of relations between gauge transformations themselves.1

For instance, if there are gauge transformations between gauge transformations, then the underlying structure2

of the collection of points will be encoded by “2-groupoids”. One can play the same game for these “2nd level3

transformations” and ends up with 3-groupoids, and so on...Using a higher categorical dictionary, this essentially4

leads to the notion of an infinite tower of equivalences. Therefore, if we allow higher symmetries in gauge theory,5

the natural framework will be encoded by ∞ -groupoids, and hence the corresponding phase space becomes a6

higher stack. For details, we again refer to [2, 3].7

It should be clear by now why it is natural to investigate similar structures in Einstein’s theory of general8

relativity: Once symmetries are involved as a part of the data, one should interpret phase spaces as higher9

spaces, rather than just ordinary spaces. This slogan can eventually lead to a new way of formalizing the data10

and make certain higher algebraic tools available. In this paper, we only consider “first” level symmetries of11

the theory. Therefore, stacks naturally enter the picture, and they are good enough to encode the underlying12

structure of the phase space. In short, stacks are good enough for our purposes, and so we concentrate on stacky13

constructions for Einstein’s theory of gravity.14

Main results and summary. In this paper, we give some non-trivial “stacky” constructions in the case of15

certain gravity theories and investigate their possible consequences. In short, we define the stacks of Ricci-flat16

metrics on a fixed manifold and on families of manifolds; a gauge theoretical stack of 3D gravity; and a natural17

transformation between the two stacks arising from the different models of 3D gravity.18

Let us report our results in detail. Using the homotopy theory of stacks (cf. §2.1), we first give an19

elementary construction of the so-called moduli stack of vacuum Einstein gravity on a Lorentzian spacetime20

with vanishing cosmological constant. More precisely, we prove:21

Theorem 1.1 Given a Lorentzian n-manifold M , let C be the category of open subsets of M that are

diffeomorphic to Rn , with morphisms being canonical inclusions between open subsets whenever U ⊂ V . Then

the presheaf E ∈ PSh(C, Grpds)

Cop −→ Grpds, U 7→ E(U)

is a stack of Ricci-flat Lorentzian metrics on C , where for an object U of C , E(U) is a groupoid such that the22

objects of E(U) form the set Ob(E(U)) :=
{
g ∈ Γ(Sym2(T ∗U)) : Ric(g) = 0

}
, and a morphism in E(U) is23

determined by an automorphism of Sym2(T ∗U) .24

Here, Grpds denotes the 2-category of groupoids. Roughly speaking, E is a prestack (a presheaf of groupoids)25

that preserves certain structures and possesses the descent property. The precise description of E , as a prestack,26

is given in Lemma 3.1, while the descent property and the site structure are discussed in §3.1.27

Theorem 1.1 provides a suitable stack that in fact captures the contravariance and locality behaviors of28

the Ricci-flat geometric structure on the underlying manifold M . On the other hand, in the context of moduli29

theory, it is natural to study smoothly varying families of manifolds as well. Therefore, we also investigate30

Ricci-flat Lorentzian metrics on families of manifolds and define a new stack encoding this situation.31

To be more specific, we require geometric structures to vary in families, parametrized over cartesian32

spaces. In brief, this can be achieved by replacing the category C in Theorem 1.1 by the site Famn of families33

of manifolds, where its objects are submersions π : M → S, with n -dimensional fibers, and morphisms are34

fiberwise open embeddings. With this modification, we prove the following result (cf. §3.2).35
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Theorem 1.2 Let Famn be the site of families of manifolds (with n-dimensional fibers). Denote an object of

Famn by M/S . Then the presheaf Efam on Famn

Famop
n −→ Grpds, M/S 7→ Efam(M/S),

is a stack, where for each object M/S in Famn , Efam(M/S) is a groupoid such that its objects form1

a set {g ∈ Γ(Sym2(T ∗(M/S))) : Ric(g) = 0} , with morphisms determined by certain automorphisms of2

Sym2(T ∗(M/S)) . Note that T ∗(M/S) denotes the relative cotangent bundle T ∗(M/S) = Coker(T ∗S → T ∗M).3

Last but not least, we also examine the so-called “equivalence” of 3D gravity with gauge theory. Our setup4

consists of vacuum 3D Einstein gravity (with vanishing cosmological constant Λ) on Lorentzian spacetimes of5

the form M := Σ× R , where Σ is a closed Riemann surface of genus g > 1.6

Let us denote the aforementioned gravity theory by GR3D
Λ=0(M) and the corresponding gauge theory by

CS3D
ISO(2,1)(M). By equivalence, we essentially mean the existence of an isomorphism between the phase spaces

of these theories (i.e. moduli spaces of solutions to the corresponding field equations)

Mod(GR3D
Λ=0(M))

∼−→Mod(CS3D
ISO(2,1)(M)),

which sends a flat pseudo-Riemannian metric [g] to the corresponding flat gauge field [Ag] . More details will be7

discussed in §2.2.3, but the upshot is that once there exists such an equivalence on the classical level, one can8

construct a natural stack morphism between the stacks of these theories. Here, by a stack of a theory, we mean9

the stack of solutions to the corresponding field equations of the theory under consideration. This approach10

essentially encodes non-trivial stacky structures on top of the näıve moduli spaces of solutions and then provides11

a stacky extension for the map between these moduli spaces. In this regard, we prove the following result.12

Theorem 1.3 Suppose that M = Σ× (0,∞) is a Lorentzian 3-manifold, where Σ is a closed Riemann surface13

of genus g > 1 . Let E and M denote the moduli stacks of GR3D
Λ=0(M) and CS3D

ISO(2,1)(M) , respectively. Then14

there exists an induced natural transformation Φ :M⇒ E (cf. Construction (3.13)).15

Outline. Now, let us outline the remainder of this paper. §2 includes preliminaries. It begins by16

reviewing Hollander’s work [9] on the homotopy theory of stacks. In §2.2, we discuss different formulations of17

3D gravity and their consequences. In §3.1, we first present an elementary construction of the moduli prestack18

of Einstein gravity (cf. Lemma 3.1). Then we give the proof of Theorem 1.1 using the homotopy theory of19

stacks. In §3.2, we explain the content of Theorem 1.2 in more detail and give a sketch of the proof. Finally,20

§3.3 provides the proof of Theorem 1.3. We also have two Appendices A & B to support some ideas in the text.21

2. Recollection22

2.1. Background from the homotopy theory of stacks23

It is very well-known that by Yoneda’s embedding, one can consider spaces as functors in addition to the24

standard ringed-space formulation [15]. In this paper, we follow the same approach to define stacks. More25

precisely, we work within the context of Hollander’s theory of stacks [9]. In what follows, we present some key26

notions and constructions. We mostly follow [3, 9].27
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Groupoids. Recall that a groupoid is a category in which all morphisms are isomorphisms. Since each1

groupoid is a category itself (i.e. it has own objects and morphisms between any pair of objects with a list of2

axioms), the collection of groupoids has the structure of a 2-category.3

By a 2-category C , we mean a category enriched over the cartesian monoidal category Cat , where Cat4

is the category with small categories as objects and with functors as morphisms. Thus, C has a collection of5

objects, and for each pair of objects A,B , the mapping space Hom(A,B) has the structure of a category,6

rather than a set! In that case, we call the objects of Hom(A,B) 1-morphisms of C , and call the morphisms7

of Hom(A,B) 2-morphisms of C ; and all relations are up to 2-isomorphisms*. Then we have:8

Example 2.1 ( 2-category of groupoids Grpds) Objects of Grpds are just groupoids; 1-morphisms in Grpds9

are functors F : G → H between two groupoids; and 2-morphisms are natural transformations η : F ⇒ G of10

functors, where F ,G ∈ Fun(G,H) . In this example, there are no non-trivial higher n-morphisms for n > 2 .11

Once we allow such types of morphisms, we land in the territory of higher categories.12

Groupoids form a model category. The other important feature of Gpds is that one can do homotopy13

theory with groupoids. This is possible because Gpds has a suitable structure, the model structure, which makes14

it a model category. In brief, a model structure� consists of three distinguished classes of morphisms, namely15

weak equivalences, fibrations, and cofibrations with a big list of axioms, see [9, 10]. Then we have:16

Theorem 2.2 The 2-category Gpds admits a model structure, where17

1. A morphism F : C → D in Gpds is a weak equivalence if it is fully faithful and essentially surjective.18

2. A morphism F : C → D in Gpds is a fibration if for each object A in C and and each morphism19

ϕ : F(A)
∼−→ D in D , there exist an object B and a morphism f : A

∼−→ B in C such that F(f) = ϕ. A20

morphism F : C → D is a cofibration if it is injective on objects.21

Homotopy limits in groupoids. [9] provides simple and tractable models for the homotopy limits of a22

cosimplicial diagram in Grpds . The key observation of [9] is that the homotopy approach encodes the classical23

descent conditions for stacks in a compact way. Let us start with some terminology.24

Definition 2.3 Denote by ∆ the category of finite ordered sets, where objects are finite ordered sets [n] :=25

{0 < 1 < 2 < · · · < n} and morphisms are f : [n] → [m] non-decreasing functions. Given a category C , a26

cosimplicial object in a category C is a functor X• : ∆ −→ C , Denote the image by X•([n]) =: Xn .27

Definition 2.4 Given a cosimplicial object X• in C , one obtains a sequence of objects {Xn} in C , together28

with the morphisms X•(d
n
i ) : Xn−1 −→ Xn and X•(s

n
i ) : Xn+1 −→ Xn, where dni and sni are the usual coface29

and codegeneracy maps, respectively. Then by abusing the notation and omitting the codegeneracy maps, we30

define the cosimplicial diagram in C by31

X• =
(
X0
→→ X1

→→→ X2

→→→→
· · ·
)
. (2.1)

*That is, a 2-category is a higher category, where on top of the objects and morphisms, there are also 2-morphisms.
�With a model structure, which was originally defined by Quillen, one can localize the given category C by formally inverting

a special class of morphisms, the weak equivalences, and define the homotopy category of C .
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In the case of Grpds , from [9, Corollary 2.11], we have the following result regarding the homotopy1

limits of a cosimplicial diagram in Grpds , which will be useful to formulate the classical definition of stack in2

the language of homotopy theory.3

Lemma 2.5 (Homotopy limits in groupoids) Given a cosimplicial diagram X• in Grpds

X• =

(
X0
→→ X1

→→→ X2

→→→→
· · ·
)
,

where each Xi is a groupoid, then the homotopy limit holimGrpds(X•) of a cosimplicial diagram X• is a4

groupoid for which5

(i) objects are the pairs (x, h) , where x is an object in X0 , h : d1
1(x) → d1

0(x) is a morphism in X1 such

that

(a) s0
0(h) = idx, (2.2)

(b) d2
0 ◦ d2

2(h) = d2
1(h). (2.3)

Note that x and h can be realized as 0- and 1-simplicies in X•, respectively, such that, by using the

properties of dni and snj , those conditions correspond to the commutativity of the diagram

d2
2 ◦ d1

1(x) d2
2 ◦ d1

0(x) = d2
0 ◦ d1

1(x) d2
0 ◦ d1

0(x)

d2
1 ◦ d1

1(x) d2
1 ◦ d1

0(x),

“ = ”

d2
2(h) d2

0(h)

d2
1(h)

“ = ”

and hence we geometrically have

rd2
0 ◦ d1

0(x)

r
d2

2 ◦ d1
1(x)

r
d2

2 ◦ d1
0(x)

�
�
�
�
��

A
A
A
A
AA

d2
2(h)

d2
1(h) d2

0(h)
•

x

-

�

�

s0
0

Q
Q
Q
Q
QQ

h

d1
1(x)r

d1
0(x)r R

d2
1

(ii) morphisms are the arrows of pairs (x, h) → (x′, h′) that consist of a morphism f : x → x′ in X0 such

that the following diagram commutes.

d1
1(x) d1

1(x′)

d1
0(x) d1

0(x′)

h

d1
1(f)

d1
0(f)

h′

Here, dni ’s are in fact covariant functors between groupoids.6
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Stacks as homotopy sheaves. Classically, stacks were defined either as categories fibered in groupoids or1

lax presheaves satisfying the descent conditions.2

Denote by PSh(C, Grpds) the category of presheaves of groupoids on C . Instead of the classical definitions3

above, [9] first proved that it is enough to work with actual objects in PSh(C, Grpds). Then it was proven in4

[9] that the homotopy sheaf condition is equivalent to the descent conditions and hence, stacks can be described5

as homotopy sheaves.6

The desired sheaf condition is in fact based on the model structure on PSh(C, Grpds). It has been shown7

in [9] that there exists a suitable model structure on PSh(C, Grpds) such that stacks arise as the fibrant objects8

in the model structure on PSh(C, Grpds). More precisely, we have the following definitions/theorems [9]:9

Definition 2.6 Let C be a category with a Grothendieck topology, a site. An object X ∈ PSh(C, Grpds) in the10

model structure is fibrant if for each covering family {Ui → U} of U in C , the canonical morphism11

X (U) −→ holimGrpds

(
X (U•)

)
(2.4)

is a weak equivalence in Grpds , where X (U•) is the cosimplicial diagram in Grpds

X (U•) :=

(∏
i

X (Ui)→→
∏
ij

X (Uij)
→→→
∏
ijk

X (Uijk)
→→→→
· · ·
)
,

such that holimGrpds is the homotopy limit in Lemma 2.5; and Ui1i2...im is the fibered product of Uin ’s in U .12

Definition 2.7 Let C be a site. A presheaf of groupoids X on C is called a stack if it is fibrant.13

Example 2.8 (Manifolds as stacks) Denote by Cart the category of cartesian spaces, where an object is an

open subset of Rn that is diffeomorphic to Rn , and morphisms are smooth maps. To turn Cart into a site, we

use open covers for which every intersection of those open subsets Ui ’s in U is either empty or diffeomorphic

to Rn . Let C = Mann , the category of n-manifolds, then any manifold M can be considered as a functor

FM : Cartop → Sets ⊂ Grpds, U 7→ FM (U) := C∞(U,M),

where the set C∞(U,M) is a groupoid with objects being the elements of C∞(U,M) and morphisms being just14

identities. Since C∞(−,M) is a sheaf on Cart , the functor F(−) : Mann → PSh(Cart,Grpds) is fully faithful15

and takes values in stacks. Thus, manifolds can be seen as particular stacks. For details, see [3, §2.3].16

Example 2.9 (Classifying stack of G-bundles) Given a Lie group G , define an object BG in PSh(Cart,Grpds)17

as the functor BG : Cartop → Grpds, U 7→ BG(U) , such that BG(U) is a groupoid with one object {∗} and18

morphisms are from C∞(U,G) . The composition in BG(U) is given as the pointwise product. Using similar19

arguments as before, BG becomes a stack. For details, see [3, §2.3].20

Example 2.10 (Quotient stacks) Let X be a stack and G a group object in stacks acting on X . Then we can21

define the quotient stack of X by G as the following (homotopy) colimit of the simplicial diagram:22

[
X/G

]
= colim

(
X ←← X ×G←←← X ×G×G

←←←←
· · ·
)

(2.5)

where the maps are given by the action and projection. When X = {∗} , the classifying stack in Example 2.923

can be recovered as BG = [{?}/G] with the simplicial diagram coming from the nerve of the groupoid BG({∗}) .24
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2.2. Overview of different formulations of 3D gravity1

In this section, we briefly outline different formulations 3D Einstein gravity: the metric formalism; a geometric2

description via model spacetimes; and the Cartan formalism. We also study infinitesimal symmetries (see3

Appendix A) and a relation between 3D gravity and gauge theory. We essentially follow [6, 7, 14].4

2.2.1. The metric formalism of 3D gravity and a geometrical description5

Definition 2.11 Let M be a manifold. A classical field theory on M , in the sense of Lagrangian formalism,6

consists of a piece of data (FM ,S, G; crit(S)) , where FM denotes the space of fields on the base manifold M ;7

S is a smooth action functional on FM ; G is a certain group encoding the symmetries of the system; and8

crit(S) is the critical locus crit(S) of S . We call the defining equations for crit(S) the field equations.9

In the sense of Definition 2.11, 3D gravity with vanishing cosmological constant consists of the following10

data. The metric tensor is the fundamental field of study. Given a 3-manifold M , we have G := ISO(M),11

with the usual pullback action; and the Einstein-Hilbert action for the metric is given as12

IEH [g] := κ

∫
M

dx3R
√
−det(g). (2.6)

Here, κ is some constant, R is the Ricci scalar, g is the metric tensor field, and det(g) denotes the determinant13

of the metric tensor matrix. Then the vacuum Einstein field equations, with cosmological constant Λ = 0, are14

given as�15

Rµν −
1

2
gµνR = 0. (2.7)

Observe that after contracting with gµν , one has R = 0. Therefore, from substituting this back into Equation16

(2.7), we get Rµν = 0. Then we define:17

Definition 2.12 Denote by EH(M) the moduli space of solutions to the field equations above, then EH(M) is18

the moduli space of Ricci-flat Lorentzian metrics on M (i.e. Rµν = 0).19

Remark 2.13 It should also be noted that, Weyl tensor in 3D is identically zero. Thus, the curvature tensor of20

a 3-manifold is determined completely by its Ricci tensor. Therefore, any solution of the vacuum Einstein field21

equations (2.7) in 3D, with vanishing cosmological constant, is locally flat. In physics, we then say 3D gravity22

is a theory without local gravitational degrees of freedom. It means it has curvature only where there is matter,23

and there are no gravitational waves [11].24

By Remark 2.13, the critical locus EH(M) can be seen as the moduli space of flat geometric structures25

on M . We will not formally discuss the notion of a geometric structure in detail, but with this interpretation26

in hand, one can equivalently say that for each vacuum solution g to 3D Einstein field equations, (M, g) is27

locally modeled on (ISO(2, 1),R2,1 ), where R2,1 denotes the usual Minkowski spacetime. In fact, we have a28

one-to-one correspondence (cf. [6])29

ζ : EH(M) −→
{

(ISO(2, 1),R2,1) structures on M
}
. (2.8)

�More generally, the Einstein-Hilbert action for gravity coupled to matter, with non-vanishing cosmological constant Λ is of the

form IEH [g] := κ
∫
M dx3(R−2Λ)

√
−det(g)+

∫
matter with a constant κ . Then the field equations are Rµν− 1

2
gµν(R−2Λ) = −`Tµν

for some constant ` and Tµν the energy-momentum tensor.

7
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More precisely, the map (2.8) sends (equivalence classes) of flat Lorentzian metrics to the induced flat geometric1

structure (ISO(2, 1),R2,1 ) on M . The converse map is clear since such structure carries a locally flat metric.2

In this paper, we are mostly interested in Lorentzian vacuum 3D-gravity with Λ = 0.3

In general, the geometric description of (vacuum) 3D gravity can be given by (quotients of) certain model4

spacetimes [6]. When Λ 6= 0, the vacuum field equations are5

Rµν = 2Λgµν . (2.9)

In that case, Remark 2.13 also implies that any vacuum solution to the Einstein equations with general6

cosmological constant (2.9) will give a geometric structure of constant curvature. In this regard, the symmetry7

groups of gravitational interest and the corresponding model spacetimes are as follows:8

(G,XΛ) :=


(SO(3, 1), dSΛ), Λ > 0 (de Sitter)

(ISO(2, 1),R2,1), Λ = 0 (Minkowski)

(SO(2, 2), AdSΛ), Λ < 0 (Anti de Sitter),

(2.10)

where the stabilizer group in each case is the Lorentz group H = SO(2, 1). We then define:9

Definition 2.14 (Geometric description for 3D gravity) Let Λ ∈ R and M be a base manifold. A Lorentzian10

(vacuum) 3D gravity for Λ is a classical field theory on M in the sense of Definition 2.11 such that the space11

EH(M,Λ) of vacuum solutions to 3D Einstein field equations is equivalent to the space of geometric structures12

on M w.r.t the models in (2.10). Note that when Λ = 0 , we have the map ζ in (2.8) and EH(M, 0) =: EH(M) .13

Note that the geometric description of 3D gravity in Definition 2.14 is in fact an example of Thurston’s14

geometric structures in the case of a (ISO(2, 1),R2,1) structure [6]. In general, a (G,X)-manifold is an n -15

dimensional manifold M locally modeled on X , the model space equipped with a G -action, just as an ordinary16

manifold is modeled on Rn equipped with a GLn -action. For details, we refer to [6, 7].17

2.2.2. The first-order formalism of 3D Gravity18

The action functional of gravity was originally given as a functional on the space of Lorentzian metrics as we19

introduced in Section 2.2.1. Later, it was shown that the action may alternatively be given in a more general20

form as a functional on the space of connections with values in the Poincaré Lie algebra iso(2, 1). This version21

is called the Eintein-Cartan gravity, which also has the advantage of being interpreted as a gauge theory. In22

what follows, we discuss the basics of Eintein-Cartan gravity in the context of Cartan geometry.23

Some background material on Cartan geometry can be found in [16]. For the gravitational interpretation,24

let us assume w.l.o.g that the underlying 3-manifold M has a topology of the form R × Σ, with Σ a closed25

oriented surface, and G = ISO(2, 1) = SO(2, 1) nR2,1 . Then we have:26

Definition 2.15 Let M,G be as above. The Eintein-Cartan theory of gravity for the pair (M,G) consists27

of a G-frame bundle LM
π−→M over M , a Cartan connection A ∈ Ω1(LM, iso(2, 1)), and the action in (2.11),28

such that A is expressed uniquely as a decomposition A = ω + e, where ω ∈ Ω1(LM, so(2, 1)) is the so(2, 1)-29

valued Ehresmann 1-form on LM (the spin connection) and e ∈ Ω1(LM,R2,1) is the coframe field (or triad).30

8
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The Einstein-Hilbert action in triad-spin-connection language can be defined as1

I ′EH [e, ω] =

∫
M

ea ∧
(

dωa +
1

2
εabcω

b ∧ ωc
)
. (2.11)

Here ea = eaµdxµ and ωa = 1
2ε
abcωµbcdx

µ , where µ, ν, . . . label the space indices with respect to a local chart;

and the others a, b, . . . are the Lorentz indices. Let P a and Ja , for a = 0, 1, 2, be the generators of iso(2, 1)

corresponding to translations and Lorentz generators, respectively, with the structure relations

[Ja, Jb] = εabcJc, [Ja, Jb] = εabcPc, [P a, P b] = 0.

Then we can write ω = ωaJa and e = eaPa such that A = ω + e . Notice that the action (2.11) is invariant2

under both local SO(2, 1) transformations3

δea = εabcebτc and δωa = dτa + εabcωbτc, (2.12)

and local translations4

δea = dρa + εabcωbρc and δωa = 0. (2.13)

Now, Einstein field equations in triad-spin-connection language are obtained as

T a = deb + εabcωb ∧ ec = 0, (2.14)

Ω[ω]a = dωa +
1

2
εabcωb ∧ ωc = 0. (2.15)

It means any vacuum solutions to Einstein field equations must have vanishing torsion and curvature. In fact,5

these equations have the following consequences [6, 7]:6

1. The triad can be used to define a Lorentzian metric g(e) via g(e)µν = eaµe
b
νηab and g(e)µνeaµe

b
ν = ηab,7

where η denotes the usual Minkowski metric.8

2. We can obtain ω as a function ω[e] of e by solving Equation (2.14). If we substitute ω[e] into Equation9

(2.15), the resulting equations will be equal to the ordinary vacuum Einstein field equations Rµν [g(e)] = 010

for the Lorentzian metric g(e) defined by the triad. As discussed before, such metrics in 3D are flat.11

Therefore, the space of solutions to the field equations for I ′EH [e, ω] can thus be identified with the set of12

flat Lorentzian metrics on M .13

3. (3D Gravity as a Chern-Simons gauge theory) It has been shown in [17] that the pair (e, ω) can

be combined into an actual gauge field A , a Lie algebra-valued connection 1-form, with the gauge group

ISO(2, 1). Note that using the generators P a, Ja of iso(2, 1), for a = 0, 1, 2, given as above, we can

define an invariant non-degenerate, bilinear form 〈·, ·〉 on iso(2, 1) by

〈Ja, Pb〉 = ηab 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0,

and introduce the gauge field A as A := Pae
a + Jaω

a. [17] shows that the action in (2.11) is equal to the14

Chern-Simons action ICS for A , with the gauge group G = ISO(2, 1) and the bilinear form 〈·, ·〉 above,15

where16

ICS [A] =

∫
M

〈A,dA+
2

3
A ∧A〉. (2.16)

9
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The gauge group acts naturally on the space of ISO(2, 1)-connections: For ρ ∈ G and a connection A ,

we have A • ρ := ρ−1 ·A · ρ+ ρ−1 · dρ. The corresponding field equation in this case turns out to be

FA = dA+A ∧A = 0.

In brief, the field equations now reduce to the requirement for A to be flat, and the gauge transfor-1

mations (2.12)-(2.13) can be identified with standard ISO(2, 1) transformations. Note that spacetime2

diffeomorphisms do not correspond to independent gauge symmetries. Let us explain the situation:3

Remark 2.164

1. I ′EH [e, ω] is also invariant under the action Diff(M) . But, it has been shown by Witten in [17] that5

diffeomorphisms in the connected component of the identity are equivalent to transformations combining6

local Lorentz transformations and local translations mentioned above. In other words, when we identify the7

phase space of 3D gravity with that of the associated 3D Chern-Simons theory, infinitesimal Chern-Simons8

gauge transformations are equivalent to infinitesimal diffeomorphisms.9

2. The aforementioned equivalence does not hold for “large” diffeomorphisms, i.e. those are not infinitesi-10

mally generated. Large diffeomorphisms in fact require different treatment, and they are important for the11

quantum theory [11]. Therefore, when we discuss an equivalence between some transformations, we always12

consider them “infinitesimally generated”. (See also Appendix A.)13

2.2.3. Equivalence of 3D gravity with gauge theory14

In this section, we will establish a relation between a Lorentzian 3D gravity on M for Λ = 0 and the space15

of gauge-equivalence classes of flat ISO(2, 1)-connections on M . For simplicity, assume also that M has a16

topology of the form Σ× R , with Σ a closed oriented surface.17

Observe that given a Lorentzian 3D gravity on M with Λ = 0, there is an induced map18

ϕ : EH(M) −→Mflat,Σ,ISO(2,1), (2.17)

sending a (equivalence class of) flat Lorentzian metric [g] to the corresponding (equivalence class of) flat gauge19

connection, denoted by [Ag] . For details, see Appendix B and the composition (B.4).20

The moduli space Mflat,Σ,ISO(2,1) in (2.17) can be seen as the phase space of the Chern-Simons gauge21

theory, with gauge group ISO(2, 1). As we discussed in Section 2.2.2, this theory can be equivalently obtained22

by using the first order formulation of 3D gravity in the language of triad-spin-connection. In that case, a23

flat connection on the frame bundle of M is determined by its holonomies; and holonomies are determined by24

(ISO(2, 1),R2,1)-structures, and so on...(see Appendix B). Thus, our previous constructions fit into the current25

discussion.26

Remark 2.17 There is a more general version of the map ϕ in (2.17), denoted by27

ϕΛ : EH(M,Λ) −→Mflat,Σ,GΛ
, (2.18)

where GΛ is one of the symmetry groups in (2.10). That is, any (equivalence class of) vacuum solution [g]28

(either flat or of constant curvature) of the Einstein equations determines a (class of) flat GΛ -connection [Ag] .29

This is because the composition (B.4) will still be valid for any symmetry group in (2.10) and any manifold30

topologically of the form Σ× R , with Σ a closed oriented surface.31

10
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Note also that the map ϕΛ in (2.18) relates the vacuum 3D gravity for the pair (M,GΛ) to the Chern-1

Simons theory with the gauge group GΛ . However, we end up with the following question: Are the resulting2

theories equivalent (in some sense)? This leads to:3

Definition 2.18 We say that 3D gravity is equivalent to gauge theory in the sense of the canonical formalism4

if the map ϕΛ in (2.18) is an isomorphism§.5

Remark 2.19 It should be noted that ϕΛ need not to be invertible in the first place. We may have two possible6

approaches to that problem.7

1. If we adopt the first order formalism in Section 2.2.2, the map ϕΛ in (2.18) happens to be invertible if8

every such flat connection can be transformed into a form in which the triad is invertible (uniquely up to9

a diffeomorphism/local Lorentz transformation) [18, §6.1].10

2. If we adopt the geometric description in Section 2.2.1, we then ask whether the holonomy group of a11

(G,X) structure is sufficient to determine a geometry. The answer is no, in general. But there are some12

positive answers. In fact, we address this issue in Remark B.1.13

In this regard, combining the terminology in Definition 2.18 with [13, Prop. 2] (cf. Thm. B.2), we get the14

following important result, which will be central for us in §3.3.15

Theorem 2.20 For vacuum Einstein gravity on M = Σ × (0,∞) , with Λ = 0 , and Σ a closed Riemann16

surface of genus g > 1 , there exists an equivalence of gravity with gauge theory in the sense of Definition17

2.18. In that case, the map ϕΛ in (2.18) reduces to the map ϕ in (2.17), and hence we have the identification18

EH(M) 'Mflat,Σ,ISO(2,1).19

3. Proofs of the main results20

In what follows, we give more explanations about the contents of Theorems 1.1, 1.2 & 1.3 and the proofs of21

these results.22

3.1. Proof of Theorem 1.123

In this section, we will present the proof of Theorem 1.1. Inspired by [3], we first prove the following result24

encoding the pre-stacky part of the construction of interest.25

Lemma 3.1 Given a Lorentzian n-manifold M , let C be the category of open subsets of M that are diffeo-26

morphic to Rn , with morphisms being canonical inclusions between open subsets whenever U ⊂ V . Then the27

functor E : Cop → Grpds described below is a prestack.28

1. The action of E on the objects of C. For each object U of C , we have a groupoid E(U) of Ricci-flat

pseudo-Riemannian metrics on U , where objects of E(U) form the set

FMet(U) :=
{
g ∈ Γ(Sym2(T ∗U)) : Ric(g) = 0

}
.

§We could have asked for the invertibility of the map (B.5) with a general 3-manifold M , instead. But in 3D gravity, we mostly
consider M = Σ× R with Σ a closed oriented surface, and hence the map (B.5) reduces to ϕΛ .

11
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Morphisms in E(U). Let Aut(Sym2(T ∗U)) be the group of automorphisms of the bundle Sym2(T ∗U)1

over U , and ·ϕ denotes the action of ϕ on the sections. We may sometimes use ϕ∗ for the action as well2

because of the natural motivation coming from the pulling-back operation.3

By the action of ϕ , we mean that ϕ is a bundle isomorphism making the diagram

Sym2(T ∗U) Sym2(T ∗U)

U

ϕ

ππ
g g′

commute such that it acts on each fiber isomorphically; that is, for each p ∈ U there is an isomorphism4

ϕp : Sym2(T ∗pU)
∼−→ Sym2(T ∗pU) such that5

g′p = ϕp(gp). (3.1)

In the context of GR, we consider particular automorphisms that are induced from infinitesimal diffeo-

morphisms of the underlying spacetime. Following Remarks A.1 and 2.16, we consider the infinitesimal

diffeomorphisms acting on the metric g as

gµν(p) −→ gµν(p) + LXgµν(p),

where X ∈ Γ(TU) is a vector field over U , p ∈ U , and LX is the Lie derivative operator along X . Here,6

LXg serves as a variation δg of g as in Remark A.1.7

Since any combinations of infinitesimal diffeomorphisms are also meaningful for our construction, consid-8

ering the C∞ -module generated by these infinitesimal generators over U , we formally define9

L(U) =
〈
LX : [LX ,LY ] = L[X,Y ], X, Y ∈ Γ(TU)

〉
(3.2)

as an algebra over C∞(U). Then we also have the following definition.10

Definition 3.2 Let g ∈ E(U) . By an infinitesimal diffeomorphism ϕ , we mean a transformation de-11

termined by an element ϕ̂ ∈ L(U) such that for each p ∈ U , g transforms under this infinitesimal12

diffeomorphism as13

gµν(p)
ϕ−→ gµν(p) + ϕ̂(gµν)(p). (3.3)

In this case, we also use ·ϕ to denote the action of this infinitesimal transformation on the space of14

metrics. As mentioned before, if gµν satisfies the corresponding Einstein field equations, so does its15

variation gµν · ϕ.16

Definition 3.3 We define a morphism g → g′ in E(U) if there exists an infinitesimal diffeomorphism ϕ

such that g′ = g · ϕ . Then the set of morphisms is given by

HomE(U)(g, g
′) =

{
ϕ ∈ Aut(Sym2(T ∗U)) : g′ = g · ϕ in E(U)

}
.

12
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We denote a morphism g → g′ in HomE(U)(g, g
′) by (g, ϕ) or just by ϕ if the meaning is clear from the1

context. It is also clear from the construction that all morphisms in HomE(U)(g, g
′) are invertible.2

Compositions in E(U) . Given two morphisms g
ψ−→ g′ and g′

ϕ−→ g′′ in E(U), using Equation (3.3), the

composition of two morphisms is given as the standard composition

(g · ψ) · ϕ : g → g′′,

where ϕ̂, ψ̂ ∈ L(U) representing the corresponding operators. More precisely, w.l.o.g, we assume ϕ̂ ≡ LX
and ψ̂ ≡ LY for some vector fields X,Y on U . Then one obtains

g′′µν(p) = g′µν(p) · ϕ

= g′µν(p) + LXg′µν(p)

= gµν(p) + LY gµν(p) + LX
(
gµν(p) + LY gµν(p)

)
= gµν(p) +

(
LY + LX + LXLY

)
gµν(p),

where
(
LY + LX + LXLY

)
∈ L(U), and we get a morphism g → g′′ represented by the element3

ψ + ϕ + (ϕ ◦ ψ). Following our notation, we use “ϕ ◦ ψ” to represent the composition, by which we4

mean g · (ϕ ◦ ψ) = (g · ψ) · ϕ.5

2. The action of E on the morphisms in C. To each morphism U
f−→ V in C , it assigns a functor of6

categories E(f) : E(V )→ E(U), whose action on both objects and morphisms of E(V ) is given as follows.7

(a) For any object g ∈ Ob(E(V )) = FMet(V ), we set g
E(f)−−−→ f∗g, where

f∗g = g ◦ f = g|U ∈ FMet(U).

Notice that the pullback of a Ricci-flat metric, in general, may no longer be Ricci-flat. But, in the8

case of particular canonical inclusions f : U ↪→ V , with U, V open subsets, if a metric g is Ricci-flat9

on V , so is f∗g on U . This is because f∗g is just the restriction g|U of g to the open subset U .10

(b) For any morphism (g, ϕ) ∈ HomE(V )(g, g
′), by the definition of ϕ , there exists an isomorphism

gµν(p) → g′µν(p) = gµν(p) + ϕ̂(gµν)(p) for all p ∈ U ⊂ V as well. Therefore, due to the fiberwise

action given in Equation (3.3), ϕ induces an isomorphism ϕp : Sym2(T ∗pU)
∼−→ Sym2(T ∗pU), and

hence a subbundle isomorphism. Thus, we get the desired transformation over the smaller open

subset U in V . We denote this induced isomorphism by ϕ|U (or f∗ϕ), and write(
g

∼−−−→
(g,ϕ)

g′
)
E(f)−−−→

(
g|U

∼−−−−−−→
(g|U ,ϕ|U )

g′|U
)
.

3. Given a composition of morphisms U
f−→ V

h−→ W in C , there exists an invertible natural transformation

(arising naturally from properties of the action)

ϕh◦f : E(h ◦ f)⇒ E(f) ◦ E(h),

together with the compatibility condition.11

13
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Proof of Lemma 3.1. It is enough to prove the following two statements:1

(i) Given a composition of morphisms in C2

U V W ,

h ◦ f

f h

there is an invertible natural transformation

E(W ) E(U).

E(h ◦ f)

E(f) ◦ E(h)

ψh,f

(ii) Given a composition of morphisms U
f−→ V

h−→W
p−→ Z in C , the associativity condition holds in the sense

that the following diagram commutes:

E(p ◦ h ◦ f) E(h ◦ f) ◦ E(p)

E(f) ◦ E(p ◦ h) E(f) ◦ E(h) ◦ E(p)

ψp◦h,f

ψp,h◦f

idE(f) ? ψp,h

ψh,f ? idE(p)

Proof of (i). First, we need to analyze objectwise: For any object g ∈ FMet(W ), we have the following strong3

condition by which the rest of the proof will become rather straightforward.4

E(h ◦ f)(g) = (h ◦ f)∗g = f∗h∗g =
(
E(f) ◦ E(h)

)
(g) ∈ FMet(U). (3.4)

As we have identical metrics E(h ◦ f)(g) = E(f) ◦ E(h)(g) for any g ∈ FMet(W ), there is, by construction, a

unique identity morphism

(
E(h ◦ f)(g), id

)
∈ HomFMet(U)

(
E(h ◦ f)(g), E(f) ◦ E(h)(g)

)
such that

E(h ◦ f)(g)
∼−−−−−−−−−→(

E(h◦f)(g),id
) E(f) ◦ E(h)(g) =

(
E(h ◦ f)(g)

)
· id = E(h ◦ f)(g).

Thus, one has the natural choice of a collection of morphisms{
mg : E(h ◦ f)(g) −→ E(f) ◦ E(h)(g)

}
,

where mg =
(
E(h ◦ f)(g), id

)
for all g ∈ FMet(W ).5

14
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Just for the sake of notational simplicity, we let

F := E(h ◦ f) and G := E(f) ◦ E(h).

Then for each morphism g
∼−−−→

(g,ϕ)
g′ in E(W ), we get

F((g, ϕ)) = E(h ◦ f)((g, ϕ))

=
(
(h ◦ f)∗g, (h ◦ f)∗ϕ

)
=
(
f∗ ◦ h∗(g), f∗ ◦ h∗(ϕ)

)
=
(
E(f) ◦ E(h)(g), f∗ ◦ h∗(ϕ)

)
= E(f) ◦ E(h)((g, ϕ))

= G((g, ϕ)).

The computation above implies the commutativity of the diagram1

F(g) F(g′)

G(g) G(g′)

mg

F((g, ϕ))

G((g, ϕ))

mg′

Furthermore, it is clear from Equation (3.4) and from the construction that ψh,f : E(h◦ f)⇒ E(f)◦E(h)2

is in fact invertible. In other words, we have E(h ◦ f) ∼= E(f) ◦ E(h) up to invertible natural transformation.3

This completes the proof of (i).4

Proof of (ii). If U
f−→ V

h−→W in C is a composition, then we have

(1) F(g) = G(g) for any g ∈ Ob(E(W )), (3.5)

(2) F((g, ϕ)) = G((g, ϕ)) for any g
∼−−−→

(g,ϕ)
g′ in E(W ), (3.6)

where F := E(h ◦ f) and G := E(f) ◦ E(h).5

Now, let U
f−→ V

h−→ W
p−→ Z be a composition of morphisms in C , then it suffices to show that the6

associativity condition holds both objectwise and morphismwise.7

� Let g ∈ Ob(E(Z)), then we have

E(p ◦ (h ◦ f))(g) = E(h ◦ f) ◦ E(p)(g) from Eqn.(3.5) with ψp,h◦f

= E(f) ◦ E(h) ◦ E(p) from Eqn.(3.5) with ψh,f ? idE(p)

= E(f) ◦ E(p ◦ h)(g) from Eqn.(3.5) with idE(f) ? ψp,h

= E((p ◦ h) ◦ f)(g) from Eqn.(3.5) with ψp◦h,f

This gives the commutativity of the diagram objectwise.8
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� Let g
∼−−−→

(g,ϕ)
g′ in E(Z), then we have

E(p ◦ (h ◦ f))((g, ϕ)) = E(h ◦ f) ◦ E(p)((g, ϕ)) from Eqn.(3.6) with ψp,h◦f

= E(f) ◦ E(h) ◦ E(p)((g, ϕ)) from Eqn.(3.6) with ψh,f ? idE(p)

= E(f) ◦ E(p ◦ h)((g, ϕ)) from Eqn.(3.6) with idE(f) ? ψp,h

= E((p ◦ h) ◦ f)((g, ϕ)) from Eqn.(3.6) with ψp◦h,f .

This completes the proof of (ii), and hence that of Lemma 3.1.1

�2

Let E : Cop → Grpds be the prestack defined in Lemma 3.1. Now, introducing a suitable site structure3

on C , we give the proof of Theorem 1.1.4

Proof of Theorem 1.1. As in the case of [3], we first endow C with an appropriate Grothendieck topology5

τ by defining the covering families {Ui → U} of U in C to be “good” open covers {Ui ⊆ U} meaning that the6

fibered products Ui1i2...im := Ui1 ×U Ui2 ×U · · · ×U Uim corresponding to the intersection of those open subsets7

Ui ’s in U are either empty or open subsets diffeomorphic to Rn . Here each morphism Ui ↪→ U is the canonical8

inclusion (and hence a morphism in C ).9

Let U be an object in C . Given {Ui ⊆ U} a covering family for U , one has the following cosimplicial

diagram in Grpds

E(U•) :=

(∏
i

E(Ui)→→
∏
ij

E(Uij)
→→→
∏
ijk

E(Uijk)
→→→→
· · ·
)
,

where Ui1i2...im denotes the fibered product of Uin ’s in U as above. Note that for a family

{gi} in
∏
i

E(Ui),

where E(Ui) = FMet(Ui), the coface maps d1
0 and d1

1 correspond to the suitable restrictions of each component10

gi|Uij and gj |Uij , respectively.11

Now, it follows from the Lemma 2.5 that holimGrpds(E(U•)) is indeed a particular groupoid and can be12

defined as follows.13

1. Objects are the pairs (x, h), where x := {gi} ∈
∏
i E(Ui). That is, it is a family of Ricci-flat pseudo-14

Riemannian metrics on Ui ’s, along with the diagram15

r{gk|Uijk}

r
{gi|Uijk}

r
{gj |Uijk}

�
�
�
�
��

A
A
A
A
AA

ϕij

∃ ϕjk
•

{gi}

-

�

Q
Q
Q
Q
QQ

∼

{gi|Uij}r
{gj |Uij}r R

d2
1

16
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where gj |Uij = gi|Uij · ϕij for some ϕij ∈ Aut(Sym2(T ∗Uij)). The “triangle” on the RHS of the diagram

above implies that for all i, j, k , we have

gk|Uijk = gj |Uijk · ϕjk

= (gi|Uijk · ϕij) · ϕjk

= gi|Uijk · (ϕjk ◦ ϕij). (3.7)

It means that there exists a morphism ϕik : gi|Uijk
∼−→ gk|Uijk . Therefore, we define the morphism h in∏

E(Uij) as a family{
gi|Uij

∼−−−−−−−→
(gi|Uij ,ϕij)

gj |Uij : gj |Uij = gi|Uij · ϕij & ϕij ∈ Aut(Sym2(T ∗Uij))
}
,

where gk|Uijk = gi|U(Uij
· (ϕjk ◦ ϕij) and s0

0(h) : {gi} → {gi} , which is just the identity morphism.1

As a remark, the conditions in the definition of the family {h} correspond to those in Lemma 2.5 (Eqns.2

(2.2) and (2.3)). Therefore, an object of holimGrpds(E(U•)) is of the form3

(x, h) =
(
{gi ∈ FMet(Ui)}, {ϕij ∈ Aut(Sym2(T ∗Uij))}

)
, (3.8)

where {gi} is an object in
∏
E(Ui), and for each i, j , ϕij := (gi|Uij , ϕij) is a morphism in

∏
E(Uij)

satisfying

(i) gj |Uij = gi|Uij · ϕij , with ϕij ∈ Aut(Sym2(T ∗Uij)),

(ii) On Uijk, ϕij ◦ ϕjk = ϕik (the cocycle condition),

(iii) s0
0(h) : {gi} → {gi}, the identity morphism.

In short, an object g :=
(
{gi}, {ϕij}

)
in holimGrpds(E(U•)) is a collection {gi} of Ricci-flat metrics over4

covering open subset Ui of U , together with the transition maps {ϕij} on the overlaps that satisfy the5

cocycle condition above.6

2. A morphism (x, h)→ (x′, h′) in holimGrpds(E(U•)) consists of the following data:7

(a) A morphism x
f−→ x′ in

∏
E(Ui), such that {gi}

∼−→ {g′i}, where gi, g
′
i ∈ FMet(Ui) with g′i = gi · ϕi8

for some ϕi ∈ Aut(Sym2(T ∗Ui)).9

(b) For each i, j , a commutative diagram10

gi|Uij g′i|Uij

gj |Uij g′j |Uij

h = ϕij

ϕi|Uij

ϕj |Uij

h′ = ϕ′ij

(3.9)
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In fact, it follows from the fact that gj |Uij = gi|Uij · ϕij and g′j |Uij = g′i|Uij · ϕ′ij , we have(
gi|Uij · ϕi|Uij

)
· ϕ′ij = g′j |Uij .

On the other hand, one also has (
gi|Uij · ϕij

)
· ϕj |Uij = g′j |Uij ,

which imply the commutativity of the diagram, and hence one can also deduce the following relation:(
gi|Uij · ϕij

)
· ϕj |Uij =

(
gi|Uij · ϕi|Uij

)
· ϕ′ij ∀i, j

⇐⇒

gi|Uij ·
(
ϕj |Uij ◦ ϕij

)
= gi|Uij ·

(
ϕ′ij ◦ ϕi|Uij

)
∀i, j

⇐⇒

ϕ′ij = ϕj |Uij ◦ ϕij ◦ ϕ−1
i |Uij ∀i, j

Thus, a morphism in holimGrpds(E(U•)) from g =
(
{gi}, {ϕij}

)
to g′ =

(
{g′i}, {ϕ′ij}

)
is a family1

{
ϕi ∈ Aut(Sym2(T ∗Ui)) : g′i = gi · ϕi & ϕ′ij = ϕj |Uij ◦ ϕij ◦ ϕ−1

i |Uij
}

(3.10)

In short, a morphism ϕ : g → g′ in holimGrpds(E(U•)) is a collection {ϕi} of morphisms, with2

ϕi ∈ MorE(Ui)(gi, g
′
i), such that the action is compatible with the corresponding transition maps in the sense3

of Diagram 3.9.4

Now, for a covering family {Ui ⊆ U} of U , the canonical morphism5

Ψ : E(U) −→ holimGrpds(E(U•)) (3.11)

is defined as a functor of groupoids, where6

� for each object g in FMet(U), g
Ψ−→
(
{g|Ui}, {ϕij = id}

)
, together with the trivial cocyle condition.7

� for each morphism g
∼−−−→

(g,ϕ)
g · ϕ , with ϕ ∈ Aut(Sym2(T ∗U)), it assigns

(
g

∼−−−→
(g,ϕ)

g · ϕ
) Ψ−→

(
{ϕi := ϕ|Ui}

)
,

where ϕ|Ui trivially satisfies the desired relation (3.10) for being a morphism in holimGrpds(E(U•)).8

Lemma 3.4 Ψ is a fully faithful and essentially surjective functor.9

Proof Ψ is essentially surjective: Let g :=
(
{gi}, {ϕij}

)
be an object in holimGrpds(E(U•)). Then we10

have a family of objects {gi} , with the family of transition functions {ϕij} satisfying the cocycle condition11

ϕij ◦ ϕjk = ϕik on Uijk , such that gj |Uij = gi|Uij · ϕij .12

18



BERKTAV/Turk J Math

We need to show that these are patched together to form a metric g ∈ FMet(U). In fact, our site1

structure on C consists of good covers for which the intersection of open subsets Ui ’s in U are either empty2

or open subsets diffeomorphic to Rn . Also, Sym2(T ∗U) is a locally free sheaf over U . In this regard, the3

following fact is useful: All cocycles are trivializable on manifolds diffeomorphic to Rn . Therefore, we conclude4

that {ϕij = id} for all i, j .5

Now, we have a trivial cocycle condition with ϕij = id . It follows that gi is a section of the sheaf6

Sym2(T ∗Ui) over Ui satisfying gj |Uij = gi|Uij for all i, j . So, gi ’s are glued together by transition functions7

ϕij , along with the trivial cocycle condition, to form g ∈ FMet(U) so that g|Ui = gi and ϕ|Ui = ϕi for all i.8

Therefore, Ψ is essentially surjective.9

Ψ is fully faithful: We need to show that the induced map

Ψ : HomE(U)(g, g
′) −→ HomholimGrpds(E(U•))(Ψ(g),Ψ(g′))

is a bijection of sets. To this end, we consider the corresponding sheaf-Hom Hom(S,S ′), with S = S ′ =10

Sym2(T ∗U), where Hom(S,S ′) is the collection of the data Hom(S,S ′)(V ) := Mor(S|V ,S ′|V ). Here S|V11

denotes the restriction of the sheaf to the open subset V ⊂ U . Then, both injectivity and surjectivity of Ψ12

follow from the fact that the sheaf-Hom Hom(S,S ′) is a sheaf over U . Let us explain the details below.13

If we assume Ψ(ϕ) = id , then it means, by definition, ϕi := ϕ|Ui = id for all i . By construction, it14

implies that each ϕ|Ui ∈ Hom(Sym2(T ∗U), Sym2(T ∗U))(Ui). Because sheaf-Hom is a sheaf over U , we obtain15

ϕ = id , and hence injectivity of Ψ.16

Now, let ϕ : Ψ(g) → Ψ(g′) be a a morphism in holimGrpds(E(U•)). Then it can be viewed as a17

collection {ϕi} of morphisms such that the action is compatible with the corresponding transition maps in18

the sense of Diagram 3.9. Here both Ψ(g) and Ψ(g′) are collections of Ricci-flat metrics {g|Ui} and {g′|Ui} ,19

respectively, along with the trivial transition maps. Therefore, Diagram 3.9 with ϕij = ϕ′ij = id implies that20

ϕj |Uij = ϕi|Uij , where each ϕi ∈ Hom(Sym2(T ∗U), Sym2(T ∗U))(Ui). Because sheaf-Hom is a sheaf over U ,21

we conclude that there exists ϕ ∈ Hom(Sym2(T ∗U), Sym2(T ∗U))(U) such that ϕ|Ui = ϕi . Equivalently, it22

means ϕ ∈ HomE(U)(g, g
′), with Ψ(ϕ) = {ϕi} . This proves the desired surjectivity and completes the proof.23

224

From Lemma 3.4, we conclude that the canonical morphism Ψ in Equation (3.11) is a weak equivalence25

in Grpds , and this completes the proof of Theorem 1.1. Then we obtain:26

Definition 3.5 The stack E : Cop → Grpds constructed above is called the moduli stack of solutions to the27

vacuum Einstein field equations on M , with Λ = 0 . We sometimes call it directly the stack of Einstein gravity.28

3.2. Proof of Theorem 1.229

In this section, we provide a sketch of the proof of Theorem 1.2. In fact, after fixing our notation and giving30

the explicit definitions, the result follows from Theorem 1.1 with some natural modifications.31

Note also that in the proof of Theorem 1.1, morphisms in the source category are all canonical inclusions,32

and hence pullbacks of (Ricci-flat) metrics by these morphisms are just restrictions to some smaller open subsets,33

and hence still Ricci-flat. Therefore, for a “family version” of this category, (fiberwise) open embeddings can34

be viewed as suitable substitutes.35
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Moreover, we require our geometric structure (Lorentzian, Ricci-flat) to vary in families parametrized over1

cartesian spaces¶. Therefore, throughout this subsection, we work with sheaves on the site Famn of families2

of manifolds with n -dimensional fibers, together with fiberwise open embeddings. More precisely, we have:3

Definition 3.6 Let Famn be the site, where an object, denoted by M/U , is a submersion π : M → U with4

n-dimensional fibers and U an object in Cart , and a morphism M/U →M ′/U ′ is a smooth bundle map that5

is a fiberwise open embedding.6

Moreover, the site structure is determine by the covering families that are a collection of morphisms7

{Mi/Ui →M/U} such that {Mi} is an open cover of M.8

A sketch of the proof of Theorem 1.2 Denote by Efam the presheaf on Famn

Famop
n −→ Grpds, M/U 7→ Efam(M/U),

where Ob(Efam(M/U)) := {g ∈ Γ(Sym2(T ∗(M/U))) : Ric(g) = 0} .9

Here T ∗(M/S) is the relative cotangent bundle T ∗(M/U) = Coker(T ∗U → T ∗M), which allows us10

to define fiberwise versions (or “families”) of many familiar structures. Indeed, we are currently interested in11

(pseudo) Riemannian structures.12

In this regard, a pseudo-Riemannian metric g on M/U is a section of the relative bundle Sym2(T ∗(M/U)).13

In other words, for an object π : M → U in Famn , g is a (Ricci-flat) pseudo-Riemannian metric on the vertical14

tangent bundle ker(π∗) ⊂ TM . Thus, for any parameter u ∈ U and p ∈ Mu := π−1(u), g|p is a metric on15

ker(π∗,p) ⊂ TpM .16

Using the fact that an object of Efam(M/U) is a (Ricci-flat) pseudo-Riemannian metric on the vertical17

tangent bundle ker(π∗) ⊂ TM , morphisms in the groupoid Efam(M/U) can be defined via particular automor-18

phisms of Sym2(T ∗(M/U)) induced by infinitesimal transformations as in Lemma 3.1. Likewise, composition19

can be defined by using similar arguments in Lemma 3.1.20

Functoriality follows from the fiberwise nature of the current construction. Given a map F : N/V →M/U

in Famn , we have a commutative diagram

N M

V U

πV

F

f

πU

such that for each v ∈ V , Fv : Nv →Mf(v) is an open embedding. If g is a Ricci-flat metric on T (M/U), so is21

its pullback under fiberwise open embeddings. Therefore, using the diagram above, F ∗g gives a Ricci-flat metric22

on T (N/V ), and hence an object in Efam(N/V ). Likewise, a morphism ϕ in Efam(M/U) can be pulled-back23

via F , and due to the fiberwise action of the morphisms, F ∗ϕ gives a morphism in Efam(N/V ). The other24

compatibility conditions are straightforward to check by following similar arguments in Lemma 3.1.25

¶More details on geometric structures via stacks and on geometries in families can be found in [12]
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Finally, one can achieve the stackification of the prestack Efam by following more or less the same1

arguments in the proof of Theorem 1.1 “fiberwisely”, with some modifications (using families, fiberwise open2

embeddings, and the site structure above, etc.).3

3.3. Proof of Theorem 1.34

As discussed in §2.2.3, we say that there is an equivalence between 3D gravity and gauge theory if the phase5

spaces of gravity and the associated gauge theory can be identified (cf. Definition 2.18). In fact, Mess proved6

in [13] that this equivalence occurs for a particular setup (cf. Remark 2.19, Theorem 2.20).7

Now, we would like to show that once it exists, the equivalence induces a morphism between the8

corresponding stacks. To this end, we shall first revisit [3] and introduce a particular stack similar to BGcon9

given in [3, Example 2.11]. This helps us to extend the moduli space Mflat,M,G of flat G -connections to a10

non-trivial stack, denoted by M . Later on, we provide the desired natural 2-morphism Φ :M⇒ E in (3.13).11

The stack of flat connections. We first need to introduce the “flat” counterpart of the classifying stack12

BGcon . Just for simplicity, we again use M for the flat case whose construction is the same as that of BGcon .13

Keep also in mind that for the gravitational interpretation (with Λ = 0), one requires to consider the case of14

G = ISO(2, 1). In this regard, we start with the following lemma.15

Lemma 3.7 Let C be the category in Lemma 3.1 such that M is a Lorentzian 3-manifold of the form Σ × R16

with Σ a closed Riemann surface of genus g > 1 . The functor M : Cop → Grpds defined below is a stack.17

1. For each object U of C , M(U) is a groupoid of flat G-connections on U , where objects are the elements18

of the set Ω1(U, g)flat of Lie algebra-valued 1-forms on U , with FA = 0 , and morphisms form the set19

HomM(U)(A,A
′) = {ρ ∈ G : A′ = A • ρ}, where the action of the gauge group on Ω1(U, g)flat is defined20

as follows: Over U , for all ρ ∈ G = C∞(U,G) and A ∈ Ω1(U, g)flat , we set A • ρ := ρ−1 ·A · ρ+ ρ−1 ·dρ.21

We denote a morphism A
∼−→ A′ = A • ρ in HomM(U)(A,A

′) by (A, ρ) , or just by ρ when the meaning22

is clear from the context.23

The composition A
(A,ρ)−−−→ A • ρ (A•ρ,σ)−−−−−→ A • ρ • σ = A • (ρσ) is given by (A, ρσ) , with σ ◦ ρ := ρσ.24

2. To each morphism U
f−→ V in C , i.e. f : U ↪→ V with U ⊂ V , one assigns M(V )

M(f)−−−−→ M(U). Here25

M(f) is a functor of categories whose action on objects and on morphisms of M(V ) is given as follows.26

(a) For any object A ∈ M(V ) = Ω1(V, g)flat , we have M(f) : A 7→ f∗A (= A|U ). Here we use the fact27

that the pullback under f (indeed the restriction to an open subset U in our case) of a flat connection28

is also flat.29

(b) For any morphism (A, ρ) ∈ HomM(V )(A,A
′) with ρ ∈ G = C∞(V,G) such that A′ = A • ρ , it30

follows from the fact that31

f∗(A • ρ) = f∗A • f∗ρ, (3.12)

where f∗ρ = ρ ◦ f ∈ C∞(U,G) , we conclude that f∗(A • ρ) lies in the orbit space of f∗A . Hence we

get (
A

∼−−−→
(A,ρ)

A′ = A • ρ
)
M(f)−−−−→

(
f∗A

∼−−−−−−→
(f∗A,ρ◦f)

f∗(A • ρ) = f∗A • f∗ρ
)
.
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That is, M(f)(A, ρ) := (f∗A, f∗ρ) is a morphism in M(U). Note that Equation (3.12) can be proven1

via the local computations of the pullback of a connection A together with the action A • ρ.2

Proof This is similar to the proofs of Lemma 3.1 and Theorem 1.1, with the special setup, where n = 3 and3

M as above. For a complete treatment to the generic case (i.e. without flatness requirement), see [3, Examples4

2.10 and 2.11]. For the flat case, on the other hand, one has exactly the same proof with Ω1(U, g)flat instead5

of Ω1(U, g) thanks to the fact that the pullback of a flat connection by a canonical inclusion U ↪→ V between6

open subsets is also flat. We leave details to the reader. 27

Let us summarize our progress so far.8

1. Before (non-trivial) stacky constructions, we already have an isomorphism EH(M)
∼−→Mflat,Σ,G between9

the phase spaces of gravity and the associated gauge theory for the case of vacuum 3D gravity on10

M = Σ × (0,∞), with Λ = 0 and G = ISO(2, 1), where Σ is a closed Riemann surface of genus11

g > 1 (cf. Remark 2.19, Theorem 2.20). Notice that both spaces EH(M),Mflat,Σ,G are essentially the12

set of equivalence classes. Since any set can be seen as a groupoid with the elements as objects and13

identity morphisms, we have a trivial stacky structure only.14

2. We define the stack E of Einstein gravity (cf. Theorem 1.1, Definition. 3.5) providing a non-trivial stacky15

structure on top of the näıve moduli space EH(M).16

3. From Lemma 3.7, we give the stack M of G-bundles with flat connections on M := Σ× (0,∞). Likewise,17

M gives a non-trivial stacky structure on top of the moduli space Mflat,M,G.18

What is next: Let E ,M, and the category C be as above and G = ISO(2, 1). Suppose that the underlying19

manifold M is of the form Σ× (0,∞), with Σ a closed Riemann surface of genus g > 1. Then we prove:20

Claim. There exists a natural transformation21

Cop Grpds,

M

E

Φ

(3.13)

between the stacks E and M . It thus provides a stacky extension of the isomorphism Mflat,Σ,G
∼−→ EH(M).22

Construction of the natural 2-morphism Φ in (3.13). Recall from §2.2.2 that given a flat ISO(2, 1)-23

connection A with a unique decomposition A = ω + e in terms of the spin connection and triad, we can24

construct a flat metric g(e) with g(e)µν = ηabe
a
µe
b
ν , where η denotes the Minkowski metric. Note also that this25

construction naturally relates infinitesimal gauge transformations to infinitesimal diffeomorphisms (cf. Remark26

2.16). Thus, for any object U in C , we have a natural map27

ΦU :M(U) −→ E(U), (3.14)

which is indeed a functor of groupoids and defined as follows:28
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1. To each flat ISO(2, 1)-connection A = ωA + eA in Ω1(U, iso(2, 1))flat, it assigns the corresponding flat1

metric g ∈ FMet(U), described by the triad over U . That is, on objects of M(U), it maps2

ΦU : A 7→ gA := g(eA) = ηabe
a
A ⊗ ebA. (3.15)

2. Due to the equivalence of gravity with gauge theory (cf. Theorem 2.20), the gauge equivalence classes of3

connections [A] correspond to the equivalence classes of the associated flat Lorentzian metrics [gA] , and4

vice versa. This will allow us to form the following diagrams in (3.16) & (3.20).5

Note that, from Remark 2.16, we only consider diffeomorphisms in the connected component of the identity6

to ensure the desired equivalence. In brief, for any A′ ∈ [A] over an open subset U , i.e. A′ = A • ρ7

for some ρ ∈ G = C∞(U, ISO(2, 1)), the corresponding metrics, say gA and gA•ρ , are also equivalent,8

and hence lie in the same equivalence class (and vice versa). That is, there exists an automorphism ϕρ9

of Sym2(T ∗U), an infinitesimal diffeomorphism associated to ρ (cf. Definitions 3.2 & 3.3), such that10

gA•ρ = gA ·ϕρ. In other words, such a correspondence can also be expressed as the commutative diagram11

gA gA · ϕρ

A A • ρ

ΦU

∃ ϕρ

ρ

ΦU

(3.16)

together with the maps (relating infinitesimal diffeomorphisms to infinitesimal gauge transformations)

Aut(Sym2(T ∗U)) −→ C∞(U,G), ϕ 7→ ρϕ, (3.17)

C∞(U,G) −→ Aut(Sym2(T ∗U)), ρ 7→ ϕρ. (3.18)

Note that Aut(Sym2(T ∗U)) is endowed with the usual composition, and the group operation on C∞(U,G)12

is given by the pointwise multiplication.13

3. To each morphism (A, ρ) : A −→ A′ in HomM(U)(A,A
′), ΦU assigns a morphism14

gA
∼−−−−−→

(gA,ϕρ)
gA · ϕρ (= gA′), (3.19)

where ϕρ ∈ L(U) is an infinitesimal diffeomorphism corresponding to ρ in accordance with Diagram15

3.16. Therefore, for any morphism f : U ↪→ V in C , using the map in (3.18), one also has the following16

commutative diagram.17

Aut(Sym2(T ∗V )) Aut(Sym2(T ∗U))

C∞(V, ISO(2, 1)) C∞(U, ISO(2, 1))

f∗

f∗
(3.20)
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4. Functoriality. Given a composition of morphisms in M(U)

A A • ρ (A • ρ) • σ ,

A • (ρσ) =: A • (σ ◦ ρ)

(A, ρ) (A • ρ, σ)

we have the commutative diagram

gA gA · ϕρ (g · ϕρ) · ϕσ =: g · (ϕσ ◦ ϕρ)

A A • ρ (A • ρ) • σ = A • (ρσ),

ϕρ ϕσ

ρ σ

where the vertical maps are ΦU . Using the commutativity, observe

gA · ϕρσ = gA•(ρσ) = gA•ρ · ϕσ = (gA · ϕρ) · ϕσ.

Then we obtain gA · ϕρσ = (gA · ϕρ) · ϕσ for any A , and hence ϕρσ = ϕρ · ϕσ . This gives the desired

functoriality on compositions:

ΦU (A, ρσ) = ϕρσ = ϕρ · ϕσ = ΦU (A, ρ) · ΦU (A, σ).

Now, we need to show that for each morphism f : U → V in C , i.e. f : U ↪→ V with U ⊂ V , we have1

the following commutative diagram.2

M(V ) E(V )

M(U) E(U)

M(f)

ΦV

ΦU

E(f)

(3.21)

In fact, the commutativity follows from the definition of ΦU : Let A ∈ Ω1(V, iso(2, 1))flat , then we get,3

from the construction and from the restriction functor ·|U , the natural diagram4

A gA

A|U gA|U = (gA)|U .
(3.22)
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Hence, for an object A ∈M(V ), a direct computation yields(
E(f) ◦ ΦV

)
(A) = f∗gA

= (gA)|U

= gA|U from (3.22)

= gf∗A

= ΦU (f∗A)

=
(
ΦU ◦M(f)

)
(A), (3.23)

which gives an “objectwise” commutativity of Diagram (3.21). Similarly, for any morphism

(A, ρ) : A −→ A • ρ = A′ in HomM(V )(A,A
′),

and for each morphism f : U ↪→ V , one has another natural diagram again from the definition and from the1

restriction functor as above:2

ρ ϕρ

ρ|U ϕρ|U = (ϕρ)|U
(3.24)

Therefore, for a morphism (A, ρ) in M(V ), we obtain(
E(f) ◦ ΦV

)
(A, ρ) = (f∗gA, f

∗ϕρ) where f∗gA = (gA)|U

= (gA|U , (ϕρ)|U ) from (3.22)

= (gA|U , ϕρ|U ) from (3.24)

= (gf∗A, ϕf∗ρ)

= ΦU (f∗A, f∗ρ)

=
(
ΦU ◦M(f)

)
(A, ρ), (3.25)

which implies the desired “morphismwise” commutativity in Diagram (3.21).3

Conclusion. We then conclude that Φ in (3.13) defines a natural transformation between M and E via4

the collection {ΦU}U∈C of the maps described in (3.14). This completes the proof of Theorem 1.3.5

26

Acknowledgment7
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A. Symmetries in the context of Lagrangian formalism1

In what follows, we summarize basic ideas about symmetries of a theory. For more details, we refer to [4].2

In brief, Hamilton’s action principle allows us to study identities and conserved quantities from the3

symmetries of the corresponding Lagrangian, and hence invariance properties of the action under certain4

transformations. This approach applies not only to the trajectories of individual particles in classical mechanics,5

but also works for continuous fields like gµν . For the case of Einstein-Hilbert action, we consider its change6

under transformations of the form7

gµν(x)→ gµν(x) + δgµν(x). (A.1)

The Lagrangian in this case is chosen so that the action IEH [g] is invariant under the transformation above for8

the metrics satisfying Einstein field equations.9

It should be noted that the variations above are not necessarily generated by diffeomorphisms. How-10

ever, to capture the diffeomorphis-invariant nature of GR, we consider certain types of variations induced by11

infinitesimally generated diffeomorphisms, by which we mean diffeomorphisms that are generated by a vector12

field X . In that case, we call X the infinitesimal generator of the corresponding transformation.13

Remark A.1 Recall that any vector field defines a one-parameter group of diffeomorphisms via its local flow.14

Using an infinitesimal diffeomorphism ϕX (and hence the corresponding flow), one can examine how the metric15

tensor field gµν changes when it is pulled back along the integral curves of X . Notice that this is exactly what16

the Lie derivative LXgµν measures! We then introduce:17

Definition A.2 By a variation induced from an infinitesimal diffeomorphism ϕX , we actually mean18

δgµν := LXgµν , (A.2)

with the transformation gµν(x)→ gµν(x) + LXgµν(x).19

B. Vacuum solutions vs. flat connections20

Given a 3D gravity theory on M in the sense of Definition 2.14 with G := GΛ in (2.10), we define the space of21

holonomies by22

HM := Hom(π1(M), G)/ ∼, (B.1)

where the quotient is given by the conjugate action of G . It follows that a (flat or constant curvature) spacetime23

structure s defines a holonomy ρs ∈ HM . So, we have a well-defined map24

Hol :
{

(GΛ, XΛ) structures on M
}
−→ HM , s 7→ Hol(s) := ρs. (B.2)

25

Remark B.1 The converse is not true in general, meaning that the holonomy may not enough to determine26

the whole geometry. However, there are important results for some special cases. For instance, when M has27

a topology of the form Σ × R , with Λ = 0 (corresponding to G = ISO(2, 1) with X = R2,1 ), and Σ a closed28

Riemann surface of genus g > 1 , then it has been shown by Mess [13] that the holonomy group determines a29

unique “maximal” spacetime M . This result will also be relevant for our purposes. In brief, we have:30
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Theorem B.2 ([13], Prop. 2) Given a Fuchsian representation� ρ : π1(Σ) → PSL(2;R) with Σ a closed1

Riemann surface of genus g > 1 , there exists a flat Lorentzian manifold M of the form Σ × (0,∞) and2

holonomy ψ : π1(Σ)→ ISO(2, 1) such that ψ = ρ.3

Notice that Theorem B.2 above implies the desired map Mflat,Σ,G
∼−→ EH(M) between the corresponding4

classical phase spaces, and hence the equivalence of gravity with gauge theory in the sense of Definition 2.185

(cf. Theorem 2.20).6

Holonomy representation vs. flat G-bundles. There is an important interpretation of the elements of7

Hom(π1(M), G)/ ∼ , which leads to defining the induced map EH(M)→Mflat,Σ,G between the corresponding8

classical phase spaces (cf. the map in (2.17)).9

Let Σ be a Riemann surface. It has been shown in [5] that there is a one-to-one correspondence10

between the moduli space Mflat,Σ,G of (gauge equivalence classes of) flat G -connections on Σ and the moduli11

space Hom(π1(Σ), G)/G of (holonomy) representations of the surface group π1(Σ) in G , where G acts on12

Hom(π1(Σ), G) by conjugation. That is, we have13

Mflat,Σ,G ' Hom(π1(Σ), G)/G, (B.3)

which means that flat connections can be equivalently seen as representations of π1(Σ).14

For simplicity, we now assume that M has a topology of the form Σ × R , with Σ a closed oriented15

surface. Consider Lorentzian 3D gravity on M for Λ = 0 described as a (ISO(2, 1),R2,1) structure on M .16

Then we obtain the composition17

EH(M)
'−→
{

(ISO(2, 1),R2,1) strucs. on M
} Hol−−→ HM

'−→ Hom
(
π1(Σ), ISO(2, 1)

)
/ ∼ '−→Mflat,Σ,G, (B.4)

where the first map is equal to (2.8); the second map is the one defined in (B.2); the third one is induced by18

the isomorphism π1(M) ' π1(Σ) as M ' Σ× R; and the last map is (B.3).19

In general, for a 3D gravity theory on a generic M in the sense of Definition 2.14 with G := GΛ in (2.10),20

it is also possible to obtain the induced map (see [6, 7])21

EH(M,Λ) '
{

(GΛ, XΛ) strucs. on M
}
−→Mflat,M,GΛ , (B.5)

which assigns to an equivalence class of (flat or constant curvature) vacuum solution to the field equations a22

gauge equivalence class of flat GΛ -connection of the corresponding GΛ -bundle, where Mflat,M,GΛ denotes the23

moduli space of flat GΛ -connections over M .24
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