The flow-geodesic curvature and the flow-evolute of spherical curves December 14, 2023

Mircea CRASMAREANU*

¹Faculty of Mathematics, University "Al. I. Cuza", Iasi, 700506, Romania, http://www.math.uaic.ro/~mcrasm ORCID iD: https://orcid.org/0000-0002-5230-2751

Received: December 14, 2023	٠	Accepted/Published Online: .202	٠	Final Version:202
-----------------------------	---	---------------------------------	---	-------------------

5 Abstract: We introduce and study a deformation of the geodesic curvature for a given spherical curve γ . Also, we 6 define a new type of evolute and two Fermi-Walker type derivatives for γ . Some concrete examples are detailed with a 7 special attention towards space curves with a constant torsion.

⁸ Key words: spherical curve; flow-geodesic curvature; flow-evolute.

9 1. Introduction

1

2

3

The subject of curves on a given Euclidean surface $S \subset \mathbb{R}^3$ is a classical one but still preserves the flavor of a charming framework. Even more so if the given surface is a remarkable one, e.g. the unit sphere; recently, the curve shortening flow was studied on S^2 in [6]. The purpose of this work is to contribute to this setting with a deformation of the well-known geodesic curvature, somehow in the spirit of [9].

Recall that the geodesic curvature k_g of a curve $\gamma \subset S \subset \mathbb{R}^3$ is provided by an orthonormal frame 14 $\mathcal{F}(\gamma, S)$ adapted to both γ and S; for S^2 we denote by \mathcal{F}_s with s from "spherical". Our idea is to rotate this 15 frame in the normal-radial bundle $\gamma^{\perp} := \{(x, v) \in (Im \ \gamma) \times S^2; v \perp x = \gamma(t) \in \mathbb{R}^3, t \in I\}$ (the notations are 16 explained below) with an angle equal exactly with the parameter t of γ . Then we call *flow-frame* this new one 17 and since we use an orthogonal transformation, i.e. a matrix from SO(3), this frame yields a new curvature, 18 called *flow-geodesic curvature*; for the case of plane curves this notion is already studied in [4]. In turn, this 19 new function gives a new evolute for the given curve. As new tools in studying spherical curves we introduce 20 a spherical as well as a flow-spherical Fermi-Walker derivative and both these derivatives are computed for our 21 main vector fields along γ . 22

The contents of the paper is as follows. The first section is a short survey on spherical curves and we point out the relationship between k_g and the pair (curvature, torsion) of the given spherical curve γ considered as a space curve. The second section gives the new curvature and the new evolute; a main result establishes the computational expression of the new curvature. The third section concerns with several examples and some related remarks; a special attention is devoted to find flow-flat curves i.e. spherical curves having a vanishing

^{*}Correspondence: mcrasm@uaic.ro

²⁰¹⁰ AMS Mathematics Subject Classification: 53A04; 53A45; 53A55.

flow-geodesic curvature. Our study is connected through two examples with the subject of space curves having a constant torsion, a theme of great interest in contemporary differential geometry of curves. 2

2. Preliminaries: spherical curves 3

The setting of this section is provided by the space \mathbb{R}^3 which is an Euclidean vector space with respect to the canonical inner product: 5

$$\langle u, v \rangle = u^1 v^1 + u^2 v^2 + u^3 v^3, u = (u^1, u^2, u^3), v = (v^1, v^2, v^3) \in \mathbb{R}^3, 0 \le ||u||^2 = \langle u, u \rangle.$$

$$(2.1)$$

Let $S^2 = SO(3)/SO(2) = SO(4)/U(2)$ be the unit sphere of $\mathbb{E}^3 := (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ and fix a smooth regular 6 space curve which is a spherical one, $\gamma: I \subseteq \mathbb{R} \to S^2 \subset \mathbb{R}^3$. Its spherical Frenet frame is:

7

$$\mathcal{F}_s := \begin{pmatrix} \gamma \\ \mathbf{t} \\ \mathbf{n} \end{pmatrix}, \quad \mathbf{t}(t) := \frac{\gamma'(t)}{\|\gamma'(t)\|}, \quad \mathbf{n}(t) := \gamma(t) \times \mathbf{t}(t), \tag{2.2}$$

and the corresponding *spherical Frenet equation* is provided by, [11, p. 338]: 8

$$\frac{d}{dt}\mathcal{F}_s(t) = \|\gamma'(t)\| \begin{pmatrix} 0 & 1 & 0\\ -1 & 0 & k_g(t)\\ 0 & -k_g(t) & 0 \end{pmatrix} \mathcal{F}_s(t).$$
(2.3)

The smooth real function $k_g: I \to \mathbb{R}$ is called the geodesic curvature of γ and its computational formula is: 9

$$k_g(t) := \frac{\langle \mathbf{t}'(t), \mathbf{n}(t) \rangle}{\|\gamma'(t)\|} = \frac{\det(\gamma(t), \gamma'(t), \gamma''(t))}{\|\gamma'(t)\|^3}.$$
(2.4)

Moreover, the usual curvature k of γ as a space curve is $k = \sqrt{k_g^2 + 1} \ge 1$ and the torsion of γ is $\tau = \frac{k'_g}{k_g^2 + 1}$. Recall also that γ is convex if $k_g > 0$ and if $k_g = 0$ we say that γ is a spherical-flat curve. Sometimes, another adapted frame is used, namely the Darboux-Ribaucour frame, which is connected to \mathcal{F}_s through a cubic root of the unit matrix I_3 :

$$\begin{pmatrix} \mathbf{t} \\ \mathbf{n} \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \mathcal{F}_s(t), \quad R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in SO(3), \quad R^3 = I_3$$

The rotation matrix R is denoted \hat{q} at the page 276 of [1]. The evolute of γ is a new spherical curve: 10

$$Ev(\gamma)(t) := \frac{k_g(t)}{k(t)}\gamma(t) + \frac{1}{k(t)}\mathbf{n}(t) \in S^2.$$
(2.5)

An important tool in dynamics along curves is the Fermi-Walker derivative. Let \mathcal{X}_{γ} be the set of vector 11 fields along the curve γ . Then the Fermi-Walker derivative is the map ([5]) $\nabla_C^{FW} : \mathcal{X}_{\gamma} \to \mathcal{X}_{\gamma}$: 12

$$\nabla_{\gamma}^{FW}(X) := \frac{d}{dt}X + \|\gamma'(\cdot)\|k[\langle X, N\rangle \mathbf{t} - \langle X, \mathbf{t}\rangle N]$$
(2.6)

¹ for (\mathbf{t}, N, B) the usual Frenet frame of γ . Inspired by this expression we introduce a *spherical* Fermi-Walker ² derivative:

$$\nabla_{\gamma}^{s}(X) := \frac{d}{dt}X + \|\gamma'(\cdot)\|k_{g}[\langle X, \mathbf{n}\rangle\mathbf{t} - \langle X, \mathbf{t}\rangle\mathbf{n}].$$
(2.7)

³ The Fermi-Walker derivative for our main vector fields is:

$$\begin{cases} \nabla_{\gamma}^{FW}(\gamma)(t) = \gamma'(t), \quad \nabla_{\gamma}^{FW}(\mathbf{t}) = 0, \quad \nabla_{\gamma}^{FW}(N)(t) = \|\gamma'(t)\|\tau(t)B(t), \\ \nabla_{\gamma}^{FW}(Ev(\gamma))(t) = \frac{d}{dt} \left(\frac{k_g(t)}{k(t)}\right)\gamma(t) + \|\gamma'(t)\|k(t)\langle \mathbf{n}(t), N(t)\rangle\mathbf{t}(t) + \frac{d}{dt} \left(\frac{1}{k(t)}\right)\mathbf{n}(t). \end{cases}$$
(2.8)

⁴ Also, the spherical Fermi-Walker derivative of our main vector fields is:

$$\begin{cases} \nabla_{\gamma}^{s}(\gamma)(t) = \gamma'(t), \quad \nabla_{\gamma}^{s}(\mathbf{t})(t) = -\|\gamma'(t)\|\gamma(t), \quad \nabla_{\gamma}^{s}(\mathbf{n}) = 0, \\ \nabla_{\gamma}^{s}(Ev(\gamma))(t) = \frac{d}{dt} \left(\frac{k_{g}(t)}{k(t)}\right)\gamma(t) + \|\gamma'(t)\|\frac{k_{g}(t)}{k(t)}\mathbf{t}(t) + \frac{d}{dt} \left(\frac{1}{k(t)}\right)\mathbf{n}(t). \end{cases}$$
(2.9)

5 3. The flow-geodesic curvature and the flow-evolute of a spherical curve

⁶ The aim of this short note is to introduce a new curvature in order to find possible new features of spherical ⁷ curves; our model is the case of plane curves studied in [4]. More precisely, we introduce firstly a new frame ⁸ along γ , denoted \mathcal{F}^f and called *the flow-spherical frame*, through:

$$\mathcal{F}_{s}^{f}(t) := \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos t & -\sin t\\ 0 & \sin t & \cos t \end{pmatrix} \mathcal{F}_{s}(t) = \begin{pmatrix} \gamma\\ E_{1}^{f}\\ E_{2}^{f} \end{pmatrix} (t)$$
(3.1)

⁹ and the 3×3 matrix above being an element of the subgroup $\{1\} \times SO(2)$ of the special orthonormal group ¹⁰ SO(3) we have that \mathcal{F}_s^f is also a positive oriented frame for γ . It follows that its moving equation:

$$\frac{d}{dt}\mathcal{F}_s^f(t) = \|\gamma'(t)\| \begin{pmatrix} 0 & \cos t & \sin t \\ -\cos t & 0 & k_g^f(t) \\ -\sin t & -k_g^f(t) & 0 \end{pmatrix} \mathcal{F}_s^f(t)$$
(3.2)

defines a new smooth function $k_g^f: I \to \mathbb{R}$ which we call the flow-geodesic curvature of γ and then if $k_g^f = 0$ we say that γ is a flow-flat spherical curve. We introduce the flow-evolute of γ as another spherical curve:

$$Ev^{f}(\gamma)(t) := \frac{k_{g}^{f}(t)}{\sqrt{[k_{g}^{f}(t)]^{2} + 1}}\gamma(t) + \frac{1}{\sqrt{[k_{g}^{f}(t)]^{2} + 1}}E_{2}^{f}(t) \in S^{2}.$$
(3.3)

- ¹³ We point out that \mathbf{t} , \mathbf{n} , E_1^f and E_2^f are also spherical curves.
- ¹⁴ A straightforward computation yields:
- ¹⁵ **Theorem 3.1** The expression of the flow-geodesic curvature is:

$$k_g^f(t) = k_g(t) - \frac{1}{\|\gamma'(t)\|} = \frac{\det(\gamma(t), \gamma'(t), \gamma''(t)) - \|\gamma'(t)\|^2}{\|\gamma'(t)\|^3} < k_g(t).$$
(3.4)

3

¹ Therefore, γ is a flow-flat spherical curve if and only if:

$$\det(\gamma(t), \mathbf{t}(t), \gamma''(t)) = \|\gamma'(t)\|.$$
(3.5)

² In particular, if γ is parametrized by the arc-length s and is flow-flat then we have the conservation law: ³ det($\gamma(s), \mathbf{t}(s) = \gamma'(s), \gamma''(s)$) = constant = 1.

⁴ A setting where flow-flat curves may appear interesting is as follows: fix a remarkable map $\varphi : M^n \to S^2$ ⁵ from a smooth *n*-dimensional manifold M^n , and a smooth curve $\Gamma : I \to M$. Then we call Γ as being φ -⁶ flow-flat if its imagine through φ is a flow-flat spherical curve. For example, any harmonic map from a simply ⁷ connected Riemann surface Σ to S^2 gives rise to a spherical surface with singularities, called *spherical frontals*; ⁸ here *spherical surface* means a surface in \mathbb{R}^3 with constant and positive Gaussian curvature, see the excellent ⁹ survey [3].

Example 3.2 Another remarkable example of a map with the 2-sphere as target is the Hopf map, $H : \mathbb{C}^2 \setminus \{0\} \to S^2 \subset \mathbb{C} \times \mathbb{R}$:

$$H(u,v) = \left(\frac{2u\bar{v}}{|u|^2 + |v|^2}, \frac{|u|^2 - |v|^2}{|u|^2 + |v|^2}\right)$$
(3.6)

and then a curve in $\mathbb{C}^2 \setminus \{0\}$ will be Hopf-flow-flat if its image through H is a flow-flat spherical curve. \Box

Following the approach of the first section we define now a *flow-spherical Fermi-Walker derivative*:

$$\nabla_{\gamma}^{fs}(X) := \frac{d}{dt}X + \|\gamma'(\cdot)\|k_g^f[\langle X, \mathbf{n}\rangle \mathbf{t} - \langle X, \mathbf{t}\rangle \mathbf{n}].$$
(3.7)

¹⁴ The flow-spherical Fermi-Walker derivative of our main vector fields is:

$$\begin{cases} \nabla_{\gamma}^{fs}(\gamma)(t) = \gamma'(t), \quad \nabla_{\gamma}^{fs}(\mathbf{t})(t) = -\|\gamma'(t)\|\gamma(t) + \mathbf{n}(t), \quad \nabla_{\gamma}^{fs}(\mathbf{n})(t) = -\mathbf{t}(t), \\ \nabla_{\gamma}^{fs}(Ev(\gamma))(t) = \frac{d}{dt} \left(\frac{k_g(t)}{k(t)}\right)\gamma(t) + \|\gamma'(t)\|\frac{k_g^f(t)}{k(t)}\mathbf{t}(t) + \frac{d}{dt} \left(\frac{1}{k(t)}\right)\mathbf{n}(t). \end{cases}$$
(3.8)

¹⁵ and then the flow-spherical Fermi-Walker derivative for the elements of the flow-spherical frame is:

$$\nabla_{\gamma}^{fs}(E_1^f)(t) = -(\|\gamma'(t)\|\cos t)\gamma(t), \quad \nabla_{\gamma}^{fs}(E_2^f)(t) = -(\|\gamma'(t)\|\sin t)\gamma(t).$$
(3.9)

¹⁶ 4. Examples and remarks

¹⁷ In what follows we are interested in computing this new function for some remarkable spherical curves.

Example 4.1 Recall the spherical coordinates $(u, v) \in [0, 2\pi) \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ giving the well-known parametrization of S^2 :

$$S^2: \bar{r}(u,v) = (\cos u \cos v, \sin u \cos v, \sin v).$$

$$\tag{4.1}$$

Fix $m \in \mathbb{R}$ and the corresponding *Clelia curve*, [7, p. 60]:

$$\gamma_m(t) = (\cos t \cos(mt), \sin t \cos(mt), \sin(mt)) = \bar{r}(u = t, v = mt), \quad t \in \mathbb{R}.$$
(4.2)

MIRCEA CRASMAREANU/Turk J Math

1 Then:

$$\begin{cases} \gamma'_m(t) = (-\sin t \cos(mt) - m \cos t \sin(mt), \cos t \cos(mt) - m \sin t \sin(mt), m \cos(mt)), \\ \|\gamma'_m(t)\| = \sqrt{m^2 + \cos^2(mt)} \ge \max\{|m|, 1\} > 0 \end{cases}$$
(4.3)

 $_{2}$ $\,$ which says that γ_{m} is a regular curve. It follows:

$$\begin{cases} \mathbf{n}(t) = \frac{1}{\sqrt{m^2 + \cos^2(mt)}} \left(m \sin t - \frac{1}{2} \cos t \sin(2mt), -m \cos t - \frac{1}{2} \sin t \sin(2mt), \cos^2(mt) \right), \\ k_g(t) = \frac{\sin(mt)[2m^2 + \cos^2(mt)]}{(m^2 + \cos^2(mt))^{\frac{3}{2}}} \end{cases}$$
(4.4)

and hence the arc $t \in (0, \frac{\pi}{m})$ is convex. The flow-geodesic curvature is:

$$k_g^f(t) = \frac{\sin(mt)[2m^2 + \cos^2(mt)]}{(m^2 + \cos^2(mt))^{\frac{3}{2}}} - \frac{1}{(m^2 + \cos^2(mt))^{\frac{1}{2}}}.$$
(4.5)

4

Example 4.2 A spherical curve with prescribed constant geodesic curvature $k_g = K$ and parametrized by the arc-length s is:

$$\gamma_K(s) = \frac{1}{\sqrt{1+K^2}} \left(\cos(\sqrt{1+K^2}s), \sin(\sqrt{1+K^2}s), K \right) = \frac{1}{k} \left(\cos(ks), \sin(ks), K \right), s \in \mathbb{R}$$
(4.6)

with the spherical coordinates $(u = u(s) = ks, v = constant = \arcsin\left(\frac{K}{k}\right))$; its evolute is the constant unit vector $Ev(\gamma_K) = (0,0,1) = \bar{k}$ and its binormal is also constant B = k(0,0,1). Then the flow-geodesic curvature of γ_K is the constant $k_g^f = K - 1$. It follows that γ_1 is a flow-flat convex spherical curve, $\gamma_1(s) = \frac{1}{\sqrt{2}}(\cos(\sqrt{2}s), \sin(\sqrt{2}s), 1)$, having the flow-evolute:

$$Ev^{f}(\gamma_{1})(s) = E_{2}^{f}(s) = (\sin s) \cdot (-\sin(\sqrt{2}s), \cos(\sqrt{2}s), 0) - \frac{\cos s}{\sqrt{2}} \cdot (\cos(\sqrt{2}s), \sin(\sqrt{2}s), -1).$$
(4.7)

The stereographic projection from the North Pole N(0,0,1) (respectively from the South Pole S(0,0,-1)) of the parallel $\gamma_1 \in S^2$ is the plane circle centered in the origin (0,0) and having the radius $2 + \sqrt{2}$ (respectively the radius $2 - \sqrt{2}$). Concerning the example 2.2 the hypercone $H^{-1}(\gamma_1)$ of $\mathbb{C}^2 \setminus \{0\}$ is given by: $|u| = (\sqrt{2}+1)|v|$ and then any curve in this hypersurface will be a Hopf-flow-flat curve. \Box

Example 4.3 The *tangent indicatrix of* the given γ is exactly the map $t \in I \to t(t) \in S^2$. Its spherical Frenet frame is:

$$\mathcal{F}_{s}^{t} := \begin{pmatrix} \mathbf{t} \\ \mathbf{t}^{t} \\ \mathbf{n}^{t} \end{pmatrix}, \mathbf{t}^{t}(t) := \frac{1}{k(t)} [-\gamma(t) + k_{g}(t)\mathbf{n}(t)], \quad \mathbf{n}^{t}(t) := \frac{1}{k(t)} [k_{g}(t)\gamma(t) + \mathbf{n}(t)].$$
(4.8)

¹⁷ Since $\|\mathbf{t}'(t)\| = k(t)\|\gamma'(t)\|$ we get the geodesic curvature of this new spherical curve:

$$k_g^t(t) = \frac{k_g'(t)}{\|\gamma'(t)\|k^3(t)}$$
(4.9)

5

Figure 1. The flow-flat curve γ_1 of the example 4.2

¹ and then the flow-geodesic curvature of the tangent indicatrix is:

$$k_g^{tf}(t) = \frac{k_g'(t) - (1 + k_g^2(t))}{\|\gamma'(t)\|k^3(t)}.$$
(4.10)

Suppose now that γ is parametrized by arc-lenght. Then the tangent indicatrix is a flow-flat curve if and only if γ has the geodesic curvature $k_g(s) = \tan s$, equivalently the curvature $k(s) = \frac{-1}{\cos s}$ for $s \in (\frac{\pi}{2}, \frac{3\pi}{2})$; it follows the evolute $Ev(\gamma)(t) = -[\sin t\gamma(t) + \cos t\mathbf{n}(t)]$. But this curvature corresponds exactly to the expression (5) of [8, p. 363] for the constant torsion $\tau = 1$ and an explicit formula for γ involving hypergeometric functions is provided by the cited paper. The functions total curvature and total flow-geodesic curvature (on $(\frac{\pi}{2}, \frac{3\pi}{2})$) of γ are:

$$\int k(t)dt = -\ln\frac{\cos\frac{t}{2} + \sin\frac{t}{2}}{\cos\frac{t}{2} - \sin\frac{t}{2}}, \quad \int k_g(t)dt = -\ln(-\cos t).$$
(4.11)

8

Remark 4.4 In the paper [10] the Delaunay variational problem defined by the arc-length functional acting on the space of curves with constant torsion $\tau = 1$ is studied. A main characterization is that a biregular curve is a critical point of the Delaunay functional if and only if the associated binormal curve γ is an elastic spherical curve i.e. there exists $\lambda \in \mathbb{R}$ such that:

$$(k_g)_{ss} + \frac{3}{2}k_g^3 + (1-\lambda)k_g = 0.$$
(4.12)

¹³ Then we define the λ -elastic curvature k_e^{λ} of the spherical curve γ through the left-hand-side of the equation ¹⁴ above. For our example 4.3 with $k_g(s) = \frac{\cos s}{\sin s}$ we have:

$$k_g^f(s) = \frac{\cos s}{\sin s} - 1, \quad k_e^\lambda(s) = \frac{\cos s(4 - 3\cos^2 s)}{2\sin^3 s} + (1 - \lambda)\frac{\cos s}{\sin s}$$
(4.13)

and then a zero of k_g^f is provided by the angle $\frac{3\pi}{4}$. \Box

Remark 4.5 Since we arrive at the subject of curves with constant torsion we connect our study with the proposition 1.1 from [2, p. 216]. Fix γ a spherical curve parametrized by arc-length and a constant $\tau \neq 0$. Using the pair (γ, τ) a new space curve is considered:

$$\Gamma(\gamma,\tau) := \frac{1}{\tau} \int \gamma \times \gamma' ds \tag{4.14}$$

and the cited theorem gives that the curvature k_{Γ} and torsion $\tau_{\Gamma} = \tau$ are related to the geodesic curvature of γ through: $k_g = k_{\Gamma} \cdot \tau$; then the flow-geodesic curvature of γ is $k_g^f = k_{\Gamma} \cdot \tau - 1$. Hence, we return to the curve γ_K of the previous example and the corresponding Γ is:

$$\Gamma_K(s) = \frac{1}{k\tau} \left(-\frac{K}{k} \sin(ks), \frac{K}{k} \cos(ks), s \right)$$
(4.15)

⁴ satisfying then $k_{\Gamma_K} = \frac{K}{\tau}$ and $\|\Gamma'_K(s)\| = \frac{1}{|\tau|} = \text{constant}$. Having both curvature and torsion as constants Γ_K is ⁵ a helix lying on the cylinder $C: x^2 + y^2 = \frac{K^2}{k^2 |\tau|}$. Its arc-length parametrization is:

$$\Gamma_K(u) = \frac{1}{k\tau} \left(-\frac{K}{k} \sin(k\tau u), \frac{K}{k} \cos(k\tau u), \tau u \right).$$
(4.16)

6

Example 4.6 The *spherical nephroid* is presented in [11, p. 353] as:

$$\gamma(t) = \left(\frac{3}{4}\cos t - \frac{1}{4}\cos 3t, \frac{3}{4}\sin t - \frac{1}{4}\sin 3t, \frac{\sqrt{3}}{2}\cos t\right).$$
(4.17)

⁸ Its geodesic curvature is:

$$k_g(t) = \frac{\cos t}{|\sin t|} \tag{4.18}$$

and then we restrict the parameter to $t \in (0,\pi)$; it results: $k(t) = \frac{1}{\sin t}$, $\tau = -1$. The flow-curvature of γ is:

$$k_g^f(t) = \frac{\cos t}{\sin t} - \frac{1}{\sqrt{3}\sin t}$$
(4.19)

and hence a zero t_0 of k_g^f is exactly the magic angle $t_0 = \arccos\left(\frac{1}{\sqrt{3}}\right) \simeq 0.955$. The total flow-geodesic curvature function is:

$$\int k_g^f(t)dt = \ln(\sin t) + \frac{1}{\sqrt{3}}\ln\cot\frac{t}{2}.$$
(4.20)

12

15

- ¹³ The author declares no conflict of interest.
- ¹⁴ This research received no external funding.

References

[1] Agrachev AA, Sachkov YL. Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences
 87. Control Theory and Optimization II. Berlin: Springer, 2004. https://doi.org/10.1007/978-3-662-06404-7

[2] Bates LM, Melko OM. On curves of constant torsion. I. Journal of Geometry 2013; 104 (2): 213-227.
 https://doi.org/10.1007/s00022-013-0166-2

MIRCEA CRASMAREANU/Turk J Math

- ¹ [3] Brander D. Spherical surfaces. Experimental Mathematics 2016; 25 (3): 257-272.
- ² https://doi.org/10.1080/10586458.2015.1077359
- ³ [4] Crasmareanu M. The flow-curvature of plane parametrized curves. Communications. Faculty of Sciences, University
- of Ankara. Séries A1. 2023; 72 (2): 417-428. https://doi.org/10.31801/cfsuasmas.1165123
- [5] Crasmareanu M, Frigioiu C. Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves. International Journal of Geometric Methods in Modern Physics 2015; 12 (10): Article ID 1550111.
 https://doi.org/10.1142/S021988781550111X
- [6] dos Reis HFS, Tenenblat K. Soliton solutions to the curve shortening flow on the sphere. Proceedings of the American
 Mathematical Society 2019; 147 (11): 4955-4967. https://doi.org/10.1090/proc/14607
- [7] Goemans W, Van de Woestyne I. Clelia curves, twisted surfaces and Plücker's conoid in Euclidean and Minkowski
 3-space, in: Suceavă, Bogdan D. (Ed.) et al., Recent advances in the geometry of submanifolds: dedi cated to the memory of Franki Dillen (1963–2013), AMS Contemporary Mathematics 674, 2016. pp. 59-73.
 https://doi.org/10.1090/conm/674/13550
- [8] Kazaras D, Sterling I. An explicit formula for spherical curves with constant torsion. Pacific Journal of Mathematics
 2012; 259 (2): 361-372. https://doi.org/10.2140/pjm.2012.259.361
- [9] Mazur B. Perturbations, deformations, and variations (and "near-misses") in geometry, physics, and number theory.
 Bulletin of the American Mathematical Society 2004; 41 (3): 307-336. https://doi.org/10.1090/S0273-0979-04 01024-9
- [10] Musso E. Elastic curves and the Delaunay problem for curves with constant torsion. Rendiconti del Circolo
 Matematico di Palermo 2001; 50 (2): 285-298. https://doi.org/10.1007/BF02844983

[11] Takahashi M. Legendre curves in the unit spherical bundle over the unit sphere and evolutes, in: Nabarro, Ana
 Claudia (Ed.) et al., Real and complex singularities, AMS Contemporary Mathematics 675, 2016. pp. 337-355.
 https://doi.org/10.1090/conm/675/13600