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Abstract: We introduce and study a deformation of the geodesic curvature for a given spherical curve γ . Also, we5

define a new type of evolute and two Fermi-Walker type derivatives for γ . Some concrete examples are detailed with a6

special attention towards space curves with a constant torsion.7
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1. Introduction9

The subject of curves on a given Euclidean surface S ⊂ R3 is a classical one but still preserves the flavor of a10

charming framework. Even more so if the given surface is a remarkable one, e.g. the unit sphere; recently, the11

curve shortening flow was studied on S2 in [6]. The purpose of this work is to contribute to this setting with a12

deformation of the well-known geodesic curvature, somehow in the spirit of [9].13

Recall that the geodesic curvature kg of a curve γ ⊂ S ⊂ R3 is provided by an orthonormal frame14

F(γ, S) adapted to both γ and S ; for S2 we denote by Fs with s from ”spherical”. Our idea is to rotate this15

frame in the normal-radial bundle γ⊥ := {(x, v) ∈ (Im γ) × S2; v⊥x = γ(t) ∈ R3, t ∈ I} (the notations are16

explained below) with an angle equal exactly with the parameter t of γ . Then we call flow-frame this new one17

and since we use an orthogonal transformation, i.e. a matrix from SO(3), this frame yields a new curvature,18

called flow-geodesic curvature; for the case of plane curves this notion is already studied in [4]. In turn, this19

new function gives a new evolute for the given curve. As new tools in studying spherical curves we introduce20

a spherical as well as a flow-spherical Fermi-Walker derivative and both these derivatives are computed for our21

main vector fields along γ .22

The contents of the paper is as follows. The first section is a short survey on spherical curves and we23

point out the relationship between kg and the pair (curvature, torsion) of the given spherical curve γ considered24

as a space curve. The second section gives the new curvature and the new evolute; a main result establishes25

the computational expression of the new curvature. The third section concerns with several examples and some26

related remarks; a special attention is devoted to find flow-flat curves i.e. spherical curves having a vanishing27
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flow-geodesic curvature. Our study is connected through two examples with the subject of space curves having1

a constant torsion, a theme of great interest in contemporary differential geometry of curves.2

2. Preliminaries: spherical curves3

The setting of this section is provided by the space R3 which is an Euclidean vector space with respect to the4

canonical inner product:5

〈u, v〉 = u1v1 + u2v2 + u3v3, u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3, 0 ≤ ‖u‖2 = 〈u, u〉. (2.1)

Let S2 = SO(3)/SO(2) = SO(4)/U(2) be the unit sphere of E3 := (R3, 〈·, ·〉) and fix a smooth regular6

space curve which is a spherical one, γ : I ⊆ R→ S2 ⊂ R3 . Its spherical Frenet frame is:7

Fs :=

 γ
t
n

 , t(t) :=
γ′(t)

‖γ′(t)‖
, n(t) := γ(t)× t(t), (2.2)

and the corresponding spherical Frenet equation is provided by, [11, p. 338]:8

d

dt
Fs(t) = ‖γ′(t)‖

 0 1 0
−1 0 kg(t)
0 −kg(t) 0

Fs(t). (2.3)

The smooth real function kg : I → R is called the geodesic curvature of γ and its computational formula is:9

kg(t) :=
〈t′(t),n(t)〉
‖γ′(t)‖

=
det(γ(t), γ′(t), γ′′(t))

‖γ′(t)‖3
. (2.4)

Moreover, the usual curvature k of γ as a space curve is k =
√
k2
g + 1 ≥ 1 and the torsion of γ is τ =

k′g
k2g+1 .

Recall also that γ is convex if kg > 0 and if kg = 0 we say that γ is a spherical-flat curve. Sometimes, another

adapted frame is used, namely the Darboux-Ribaucour frame, which is connected to Fs through a cubic root of

the unit matrix I3 : t
n
γ

 =

 0 1 0
0 0 1
1 0 0

Fs(t), R =

 0 1 0
0 0 1
1 0 0

 ∈ SO(3), R3 = I3.

The rotation matrix R is denoted q̂ at the page 276 of [1]. The evolute of γ is a new spherical curve:10

Ev(γ)(t) :=
kg(t)

k(t)
γ(t) +

1

k(t)
n(t) ∈ S2. (2.5)

An important tool in dynamics along curves is the Fermi-Walker derivative. Let Xγ be the set of vector11

fields along the curve γ . Then the Fermi-Walker derivative is the map ([5]) ∇FWC : Xγ → Xγ :12

∇FWγ (X) :=
d

dt
X + ‖γ′(·)‖k[〈X,N〉t− 〈X, t〉N ] (2.6)
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for (t, N,B) the usual Frenet frame of γ . Inspired by this expression we introduce a spherical Fermi-Walker1

derivative:2

∇sγ(X) :=
d

dt
X + ‖γ′(·)‖kg[〈X,n〉t− 〈X, t〉n]. (2.7)

The Fermi-Walker derivative for our main vector fields is:3 {
∇FWγ (γ)(t) = γ′(t), ∇FWγ (t) = 0, ∇FWγ (N)(t) = ‖γ′(t)‖τ(t)B(t),

∇FWγ (Ev(γ))(t) = d
dt

(
kg(t)
k(t)

)
γ(t) + ‖γ′(t)‖k(t)〈n(t), N(t)〉t(t) + d

dt

(
1
k(t)

)
n(t).

(2.8)

Also, the spherical Fermi-Walker derivative of our main vector fields is:4 {
∇sγ(γ)(t) = γ′(t), ∇sγ(t)(t) = −‖γ′(t)‖γ(t), ∇sγ(n) = 0,

∇sγ(Ev(γ))(t) = d
dt

(
kg(t)
k(t)

)
γ(t) + ‖γ′(t)‖kg(t)

k(t) t(t) + d
dt

(
1
k(t)

)
n(t).

(2.9)

3. The flow-geodesic curvature and the flow-evolute of a spherical curve5

The aim of this short note is to introduce a new curvature in order to find possible new features of spherical6

curves; our model is the case of plane curves studied in [4]. More precisely, we introduce firstly a new frame7

along γ , denoted Ff and called the flow-spherical frame, through:8

Ffs (t) :=

 1 0 0
0 cos t − sin t
0 sin t cos t

Fs(t) =

 γ

Ef1
Ef2

 (t) (3.1)

and the 3 × 3 matrix above being an element of the subgroup {1} × SO(2) of the special orthonormal group9

SO(3) we have that Ffs is also a positive oriented frame for γ . It follows that its moving equation:10

d

dt
Ffs (t) = ‖γ′(t)‖

 0 cos t sin t
− cos t 0 kfg (t)
− sin t −kfg (t) 0

Ffs (t) (3.2)

defines a new smooth function kfg : I → R which we call the flow-geodesic curvature of γ and then if kfg = 011

we say that γ is a flow-flat spherical curve. We introduce the flow-evolute of γ as another spherical curve:12

Evf (γ)(t) :=
kfg (t)√

[kfg (t)]2 + 1
γ(t) +

1√
[kfg (t)]2 + 1

Ef2 (t) ∈ S2. (3.3)

We point out that t , n , Ef1 and Ef2 are also spherical curves.13

A straightforward computation yields:14

Theorem 3.1 The expression of the flow-geodesic curvature is:15

kfg (t) = kg(t)−
1

‖γ′(t)‖
=

det(γ(t), γ′(t), γ′′(t))− ‖γ′(t)‖2

‖γ′(t)‖3
< kg(t). (3.4)

3
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Therefore, γ is a flow-flat spherical curve if and only if:1

det(γ(t), t(t), γ′′(t)) = ‖γ′(t)‖. (3.5)

In particular, if γ is parametrized by the arc-length s and is flow-flat then we have the conservation law:2

det(γ(s), t(s) = γ′(s), γ′′(s)) = constant = 1 .3

A setting where flow-flat curves may appear interesting is as follows: fix a remarkable map ϕ : Mn → S2
4

from a smooth n -dimensional manifold Mn , and a smooth curve Γ : I → M . Then we call Γ as being ϕ-5

flow-flat if its imagine through ϕ is a flow-flat spherical curve. For example, any harmonic map from a simply6

connected Riemann surface Σ to S2 gives rise to a spherical surface with singularities, called spherical frontals;7

here spherical surface means a surface in R3 with constant and positive Gaussian curvature, see the excellent8

survey [3].9

Example 3.2 Another remarkable example of a map with the 2-sphere as target is the Hopf map, H : C2\{0} →10

S2 ⊂ C× R :11

H(u, v) =

(
2uv̄

|u|2 + |v|2
,
|u|2 − |v|2

|u|2 + |v|2

)
(3.6)

and then a curve in C2 \ {0} will be Hopf-flow-flat if its image through H is a flow-flat spherical curve. 212

Following the approach of the first section we define now a flow-spherical Fermi-Walker derivative:13

∇fsγ (X) :=
d

dt
X + ‖γ′(·)‖kfg [〈X,n〉t− 〈X, t〉n]. (3.7)

The flow-spherical Fermi-Walker derivative of our main vector fields is:14

{
∇fsγ (γ)(t) = γ′(t), ∇fsγ (t)(t) = −‖γ′(t)‖γ(t) + n(t), ∇fsγ (n)(t) = −t(t),

∇fsγ (Ev(γ))(t) = d
dt

(
kg(t)
k(t)

)
γ(t) + ‖γ′(t)‖k

f
g (t)

k(t) t(t) + d
dt

(
1
k(t)

)
n(t).

(3.8)

and then the flow-spherical Fermi-Walker derivative for the elements of the flow-spherical frame is:15

∇fsγ (Ef1 )(t) = −(‖γ′(t)‖ cos t)γ(t), ∇fsγ (Ef2 )(t) = −(‖γ′(t)‖ sin t)γ(t). (3.9)

4. Examples and remarks16

In what follows we are interested in computing this new function for some remarkable spherical curves.17

Example 4.1 Recall the spherical coordinates (u, v) ∈ [0, 2π)×
[
−π2 ,

π
2

]
giving the well-known parametriza-18

tion of S2 :19

S2 : r̄(u, v) = (cosu cos v, sinu cos v, sin v). (4.1)

Fix m ∈ R and the corresponding Clelia curve, [7, p. 60]:20

γm(t) = (cos t cos(mt), sin t cos(mt), sin(mt)) = r̄(u = t, v = mt), t ∈ R. (4.2)

4
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Then:1 {
γ′m(t) = (− sin t cos(mt)−m cos t sin(mt), cos t cos(mt)−m sin t sin(mt),m cos(mt)),

‖γ′m(t)‖ =
√
m2 + cos2(mt) ≥ max{|m|, 1} > 0

(4.3)

which says that γm is a regular curve. It follows:2 
n(t) = 1√

m2+cos2(mt)

(
m sin t− 1

2 cos t sin(2mt),−m cos t− 1
2 sin t sin(2mt), cos2(mt)

)
,

kg(t) = sin(mt)[2m2+cos2(mt)]

(m2+cos2(mt))
3
2

(4.4)

and hence the arc t ∈
(
0, πm

)
is convex. The flow-geodesic curvature is:3

kfg (t) =
sin(mt)[2m2 + cos2(mt)]

(m2 + cos2(mt))
3
2

− 1

(m2 + cos2(mt))
1
2

. (4.5)

24

Example 4.2 A spherical curve with prescribed constant geodesic curvature kg = K and parametrized5

by the arc-length s is:6

γK(s) =
1√

1 +K2

(
cos(

√
1 +K2s), sin(

√
1 +K2s),K

)
=

1

k
(cos(ks), sin(ks),K) , s ∈ R (4.6)

with the spherical coordinates (u = u(s) = ks, v = constant = arcsin
(
K
k

)
); its evolute is the constant unit7

vector Ev(γK) = (0, 0, 1) = k̄ and its binormal is also constant B = k(0, 0, 1). Then the flow-geodesic8

curvature of γK is the constant kfg = K − 1. It follows that γ1 is a flow-flat convex spherical curve,9

γ1(s) = 1√
2
(cos(

√
2s), sin(

√
2s), 1), having the flow-evolute:10

Evf (γ1)(s) = Ef2 (s) = (sin s) · (− sin(
√

2s), cos(
√

2s), 0)− cos s√
2
· (cos(

√
2s), sin(

√
2s),−1). (4.7)

The stereographic projection from the North Pole N(0, 0, 1) (respectively from the South Pole S(0, 0,−1)) of11

the parallel γ1 ∈ S2 is the plane circle centered in the origin (0, 0) and having the radius 2 +
√

2 (respectively12

the radius 2−
√

2). Concerning the example 2.2 the hypercone H−1(γ1) of C2\{0} is given by: |u| = (
√

2+1)|v|13

and then any curve in this hypersurface will be a Hopf-flow-flat curve. 214

Example 4.3 The tangent indicatrix of the given γ is exactly the map t ∈ I → t(t) ∈ S2 . Its spherical15

Frenet frame is:16

F ts :=

 t
tt

nt

 , tt(t) :=
1

k(t)
[−γ(t) + kg(t)n(t)], nt(t) :=

1

k(t)
[kg(t)γ(t) + n(t)]. (4.8)

Since ‖t′(t)‖ = k(t)‖γ′(t)‖ we get the geodesic curvature of this new spherical curve:17

ktg(t) =
k′g(t)

‖γ′(t)‖k3(t)
(4.9)

5
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Figure 1. The flow-flat curve γ1 of the example 4.2

and then the flow-geodesic curvature of the tangent indicatrix is:1

ktfg (t) =
k′g(t)− (1 + k2

g(t))

‖γ′(t)‖k3(t)
. (4.10)

Suppose now that γ is parametrized by arc-lenght. Then the tangent indicatrix is a flow-flat curve if and only2

if γ has the geodesic curvature kg(s) = tan s , equivalently the curvature k(s) = −1
cos s for s ∈

(
π
2 ,

3π
2

)
; it follows3

the evolute Ev(γ)(t) = −[sin tγ(t) + cos tn(t)] . But this curvature corresponds exactly to the expression (5) of4

[8, p. 363] for the constant torsion τ = 1 and an explicit formula for γ involving hypergeometric functions is5

provided by the cited paper. The functions total curvature and total flow-geodesic curvature (on
(
π
2 ,

3π
2

)
) of γ6

are:7 ∫
k(t)dt = − ln

cos t2 + sin t
2

cos t2 − sin t
2

,

∫
kg(t)dt = − ln(− cos t). (4.11)

28

Remark 4.4 In the paper [10] the Delaunay variational problem defined by the arc-length functional9

acting on the space of curves with constant torsion τ = 1 is studied. A main characterization is that a biregular10

curve is a critical point of the Delaunay functional if and only if the associated binormal curve γ is an elastic11

spherical curve i.e. there exists λ ∈ R such that:12

(kg)ss +
3

2
k3
g + (1− λ)kg = 0. (4.12)

Then we define the λ -elastic curvature kλe of the spherical curve γ through the left-hand-side of the equation13

above. For our example 4.3 with kg(s) = cos s
sin s we have:14

kfg (s) =
cos s

sin s
− 1, kλe (s) =

cos s(4− 3 cos2 s)

2 sin3 s
+ (1− λ)

cos s

sin s
(4.13)

and then a zero of kfg is provided by the angle 3π
4 . 215

Remark 4.5 Since we arrive at the subject of curves with constant torsion we connect our study with16

the proposition 1.1 from [2, p. 216]. Fix γ a spherical curve parametrized by arc-length and a constant τ 6= 0.17

Using the pair (γ, τ) a new space curve is considered:18

Γ(γ, τ) :=
1

τ

∫
γ × γ′ds (4.14)

6
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and the cited theorem gives that the curvature kΓ and torsion τΓ = τ are related to the geodesic curvature of1

γ through: kg = kΓ · τ ; then the flow-geodesic curvature of γ is kfg = kΓ · τ − 1. Hence, we return to the curve2

γK of the previous example and the corresponding Γ is:3

ΓK(s) =
1

kτ

(
−K
k

sin(ks),
K

k
cos(ks), s

)
(4.15)

satisfying then kΓK
= K

τ and ‖Γ′K(s)‖ = 1
|τ |=constant. Having both curvature and torsion as constants ΓK is4

a helix lying on the cylinder C : x2 + y2 = K2

k2|τ | . Its arc-length parametrization is:5

ΓK(u) =
1

kτ

(
−K
k

sin(kτu),
K

k
cos(kτu), τu

)
. (4.16)

26

Example 4.6 The spherical nephroid is presented in [11, p. 353] as:7

γ(t) =

(
3

4
cos t− 1

4
cos 3t,

3

4
sin t− 1

4
sin 3t,

√
3

2
cos t

)
. (4.17)

Its geodesic curvature is:8

kg(t) =
cos t

| sin t|
(4.18)

and then we restrict the parameter to t ∈ (0, π); it results: k(t) = 1
sin t , τ = −1. The flow-curvature of γ is:9

kfg (t) =
cos t

sin t
− 1√

3 sin t
(4.19)

and hence a zero t0 of kfg is exactly the magic angle t0 = arccos
(

1√
3

)
' 0.955. The total flow-geodesic10

curvature function is:11 ∫
kfg (t)dt = ln(sin t) +

1√
3

ln cot
t

2
. (4.20)

212
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of Ankara. Séries A1. 2023; 72 (2): 417-428. https://doi.org/10.31801/cfsuasmas.11651234

[5] Crasmareanu M, Frigioiu C. Unitary vector fields are Fermi-Walker transported along Rytov-Legendre5

curves. International Journal of Geometric Methods in Modern Physics 2015; 12 (10): Article ID 1550111.6

https://doi.org/10.1142/S021988781550111X7

[6] dos Reis HFS, Tenenblat K. Soliton solutions to the curve shortening flow on the sphere. Proceedings of the American8

Mathematical Society 2019; 147 (11): 4955-4967. https://doi.org/10.1090/proc/146079

[7] Goemans W, Van de Woestyne I. Clelia curves, twisted surfaces and Plücker’s conoid in Euclidean and Minkowski10
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