The flow-geodesic curvature and the flow-evolute of spherical curves December 14, 2023

Mircea CRASMAREANU*
${ }^{1}$ Faculty of Mathematics, University "Al. I. Cuza", Iasi, 700506, Romania, http://www.math.uaic.ro/~mcrasm
ORCID iD: https://orcid.org/0000-0002-5230-2751

Received: December 14, 2023 • Accepted/Published Online: . 202 • Final Version: .. 202

Abstract

We introduce and study a deformation of the geodesic curvature for a given spherical curve γ. Also, we define a new type of evolute and two Fermi-Walker type derivatives for γ. Some concrete examples are detailed with a special attention towards space curves with a constant torsion.

Key words: spherical curve; flow-geodesic curvature; flow-evolute.

1. Introduction

The subject of curves on a given Euclidean surface $S \subset \mathbb{R}^{3}$ is a classical one but still preserves the flavor of a charming framework. Even more so if the given surface is a remarkable one, e.g. the unit sphere; recently, the curve shortening flow was studied on S^{2} in [6]. The purpose of this work is to contribute to this setting with a deformation of the well-known geodesic curvature, somehow in the spirit of [9].

Recall that the geodesic curvature k_{g} of a curve $\gamma \subset S \subset \mathbb{R}^{3}$ is provided by an orthonormal frame $\mathcal{F}(\gamma, S)$ adapted to both γ and S; for S^{2} we denote by \mathcal{F}_{s} with s from "spherical". Our idea is to rotate this frame in the normal-radial bundle $\gamma^{\perp}:=\left\{(x, v) \in(\operatorname{Im} \gamma) \times S^{2} ; v \perp x=\gamma(t) \in \mathbb{R}^{3}, t \in I\right\}$ (the notations are explained below) with an angle equal exactly with the parameter t of γ. Then we call flow-frame this new one and since we use an orthogonal transformation, i.e. a matrix from $S O(3)$, this frame yields a new curvature, called flow-geodesic curvature; for the case of plane curves this notion is already studied in [4]. In turn, this new function gives a new evolute for the given curve. As new tools in studying spherical curves we introduce a spherical as well as a flow-spherical Fermi-Walker derivative and both these derivatives are computed for our main vector fields along γ.

The contents of the paper is as follows. The first section is a short survey on spherical curves and we point out the relationship between k_{g} and the pair (curvature, torsion) of the given spherical curve γ considered as a space curve. The second section gives the new curvature and the new evolute; a main result establishes the computational expression of the new curvature. The third section concerns with several examples and some related remarks; a special attention is devoted to find flow-flat curves i.e. spherical curves having a vanishing
*Correspondence: mcrasm@uaic.ro
2010 AMS Mathematics Subject Classification: 53A04; 53A45; 53A55.

MIRCEA CRASMAREANU/Turk J Math

flow-geodesic curvature. Our study is connected through two examples with the subject of space curves having a constant torsion, a theme of great interest in contemporary differential geometry of curves.

2. Preliminaries: spherical curves

The setting of this section is provided by the space \mathbb{R}^{3} which is an Euclidean vector space with respect to the canonical inner product:

$$
\begin{equation*}
\langle u, v\rangle=u^{1} v^{1}+u^{2} v^{2}+u^{3} v^{3}, u=\left(u^{1}, u^{2}, u^{3}\right), v=\left(v^{1}, v^{2}, v^{3}\right) \in \mathbb{R}^{3}, 0 \leq\|u\|^{2}=\langle u, u\rangle . \tag{2.1}
\end{equation*}
$$

Let $S^{2}=S O(3) / S O(2)=S O(4) / U(2)$ be the unit sphere of $\mathbb{E}^{3}:=\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$ and fix a smooth regular space curve which is a spherical one, $\gamma: I \subseteq \mathbb{R} \rightarrow S^{2} \subset \mathbb{R}^{3}$. Its spherical Frenet frame is:

$$
\mathcal{F}_{s}:=\left(\begin{array}{c}
\gamma \tag{2.2}\\
\mathbf{t} \\
\mathbf{n}
\end{array}\right), \quad \mathbf{t}(t):=\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|}, \quad \mathbf{n}(t):=\gamma(t) \times \mathbf{t}(t),
$$

and the corresponding spherical Frenet equation is provided by, [11, p. 338]:

$$
\frac{d}{d t} \mathcal{F}_{s}(t)=\left\|\gamma^{\prime}(t)\right\|\left(\begin{array}{ccc}
0 & 1 & 0 \tag{2.3}\\
-1 & 0 & k_{g}(t) \\
0 & -k_{g}(t) & 0
\end{array}\right) \mathcal{F}_{s}(t)
$$

${ }^{9}$ The smooth real function $k_{g}: I \rightarrow \mathbb{R}$ is called the geodesic curvature of γ and its computational formula is:

$$
\begin{equation*}
k_{g}(t):=\frac{\left\langle\mathbf{t}^{\prime}(t), \mathbf{n}(t)\right\rangle}{\left\|\gamma^{\prime}(t)\right\|}=\frac{\operatorname{det}\left(\gamma(t), \gamma^{\prime}(t), \gamma^{\prime \prime}(t)\right)}{\left\|\gamma^{\prime}(t)\right\|^{3}} \tag{2.4}
\end{equation*}
$$

Moreover, the usual curvature k of γ as a space curve is $k=\sqrt{k_{g}^{2}+1} \geq 1$ and the torsion of γ is $\tau=\frac{k_{g}^{\prime}}{k_{g}^{2}+1}$. Recall also that γ is convex if $k_{g}>0$ and if $k_{g}=0$ we say that γ is a spherical-flat curve. Sometimes, another adapted frame is used, namely the Darboux-Ribaucour frame, which is connected to \mathcal{F}_{s} through a cubic root of the unit matrix I_{3} :

$$
\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\gamma
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \mathcal{F}_{s}(t), \quad R=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \in S O(3), \quad R^{3}=I_{3}
$$

The rotation matrix R is denoted \hat{q} at the page 276 of [1]. The evolute of γ is a new spherical curve:

$$
\begin{equation*}
E v(\gamma)(t):=\frac{k_{g}(t)}{k(t)} \gamma(t)+\frac{1}{k(t)} \mathbf{n}(t) \in S^{2} \tag{2.5}
\end{equation*}
$$

An important tool in dynamics along curves is the Fermi-Walker derivative. Let \mathcal{X}_{γ} be the set of vector fields along the curve γ. Then the Fermi-Walker derivative is the map ([5]) $\nabla_{C}^{F W}: \mathcal{X}_{\gamma} \rightarrow \mathcal{X}_{\gamma}$:

$$
\begin{equation*}
\nabla_{\gamma}^{F W}(X):=\frac{d}{d t} X+\left\|\gamma^{\prime}(\cdot)\right\| k[\langle X, N\rangle \mathbf{t}-\langle X, \mathbf{t}\rangle N] \tag{2.6}
\end{equation*}
$$

for (\mathbf{t}, N, B) the usual Frenet frame of γ. Inspired by this expression we introduce a spherical Fermi-Walker derivative:

$$
\begin{equation*}
\nabla_{\gamma}^{s}(X):=\frac{d}{d t} X+\left\|\gamma^{\prime}(\cdot)\right\| k_{g}[\langle X, \mathbf{n}\rangle \mathbf{t}-\langle X, \mathbf{t}\rangle \mathbf{n}] . \tag{2.7}
\end{equation*}
$$

3

4

5
6

7
8

9

3. The flow-geodesic curvature and the flow-evolute of a spherical curve

The aim of this short note is to introduce a new curvature in order to find possible new features of spherical curves; our model is the case of plane curves studied in [4]. More precisely, we introduce firstly a new frame along γ, denoted \mathcal{F}^{f} and called the flow-spherical frame, through:

$$
\mathcal{F}_{s}^{f}(t):=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3.1}\\
0 & \cos t & -\sin t \\
0 & \sin t & \cos t
\end{array}\right) \mathcal{F}_{s}(t)=\left(\begin{array}{c}
\gamma \\
E_{1}^{f} \\
E_{2}^{f}
\end{array}\right)(t)
$$

and the 3×3 matrix above being an element of the subgroup $\{1\} \times S O(2)$ of the special orthonormal group $S O(3)$ we have that \mathcal{F}_{s}^{f} is also a positive oriented frame for γ. It follows that its moving equation:

$$
\frac{d}{d t} \mathcal{F}_{s}^{f}(t)=\left\|\gamma^{\prime}(t)\right\|\left(\begin{array}{ccc}
0 & \cos t & \sin t \tag{3.2}\\
-\cos t & 0 & k_{g}^{f}(t) \\
-\sin t & -k_{g}^{f}(t) & 0
\end{array}\right) \mathcal{F}_{s}^{f}(t)
$$

defines a new smooth function $k_{g}^{f}: I \rightarrow \mathbb{R}$ which we call the flow-geodesic curvature of γ and then if $k_{g}^{f}=0$ we say that γ is a flow-flat spherical curve. We introduce the flow-evolute of γ as another spherical curve:

$$
\begin{equation*}
E v^{f}(\gamma)(t):=\frac{k_{g}^{f}(t)}{\sqrt{\left[k_{g}^{f}(t)\right]^{2}+1}} \gamma(t)+\frac{1}{\sqrt{\left[k_{g}^{f}(t)\right]^{2}+1}} E_{2}^{f}(t) \in S^{2} \tag{3.3}
\end{equation*}
$$

We point out that $\mathbf{t}, \mathbf{n}, E_{1}^{f}$ and E_{2}^{f} are also spherical curves.
A straightforward computation yields:

Theorem 3.1 The expression of the flow-geodesic curvature is:

$$
\begin{equation*}
k_{g}^{f}(t)=k_{g}(t)-\frac{1}{\left\|\gamma^{\prime}(t)\right\|}=\frac{\operatorname{det}\left(\gamma(t), \gamma^{\prime}(t), \gamma^{\prime \prime}(t)\right)-\left\|\gamma^{\prime}(t)\right\|^{2}}{\left\|\gamma^{\prime}(t)\right\|^{3}}<k_{g}(t) \tag{3.4}
\end{equation*}
$$

MIRCEA CRASMAREANU/Turk J Math

Therefore, γ is a flow-flat spherical curve if and only if:

$$
\begin{equation*}
\operatorname{det}\left(\gamma(t), \mathbf{t}(t), \gamma^{\prime \prime}(t)\right)=\left\|\gamma^{\prime}(t)\right\| \tag{3.5}
\end{equation*}
$$

In particular, if γ is parametrized by the arc-length s and is flow-flat then we have the conservation law: $\operatorname{det}\left(\gamma(s), \mathbf{t}(s)=\gamma^{\prime}(s), \gamma^{\prime \prime}(s)\right)=$ constant $=1$.

A setting where flow-flat curves may appear interesting is as follows: fix a remarkable map $\varphi: M^{n} \rightarrow S^{2}$ from a smooth n-dimensional manifold M^{n}, and a smooth curve $\Gamma: I \rightarrow M$. Then we call Γ as being φ -flow-flat if its imagine through φ is a flow-flat spherical curve. For example, any harmonic map from a simply connected Riemann surface Σ to S^{2} gives rise to a spherical surface with singularities, called spherical frontals; here spherical surface means a surface in \mathbb{R}^{3} with constant and positive Gaussian curvature, see the excellent survey [3].

Example 3.2 Another remarkable example of a map with the 2 -sphere as target is the Hopf map, $H: \mathbb{C}^{2} \backslash\{0\} \rightarrow$ $S^{2} \subset \mathbb{C} \times \mathbb{R}$:

$$
\begin{equation*}
H(u, v)=\left(\frac{2 u \bar{v}}{|u|^{2}+|v|^{2}}, \frac{|u|^{2}-|v|^{2}}{|u|^{2}+|v|^{2}}\right) \tag{3.6}
\end{equation*}
$$

and then a curve in $\mathbb{C}^{2} \backslash\{0\}$ will be Hopf-flow-flat if its image through H is a flow-flat spherical curve.

Following the approach of the first section we define now a flow-spherical Fermi-Walker derivative:

$$
\begin{equation*}
\nabla_{\gamma}^{f s}(X):=\frac{d}{d t} X+\left\|\gamma^{\prime}(\cdot)\right\| k_{g}^{f}[\langle X, \mathbf{n}\rangle \mathbf{t}-\langle X, \mathbf{t}\rangle \mathbf{n}] . \tag{3.7}
\end{equation*}
$$

The flow-spherical Fermi-Walker derivative of our main vector fields is:

$$
\left\{\begin{array}{l}
\nabla_{\gamma}^{f s}(\gamma)(t)=\gamma^{\prime}(t), \quad \nabla_{\gamma}^{f s}(\mathbf{t})(t)=-\left\|\gamma^{\prime}(t)\right\| \gamma(t)+\mathbf{n}(t), \quad \nabla_{\gamma}^{f s}(\mathbf{n})(t)=-\mathbf{t}(t), \tag{3.8}\\
\nabla_{\gamma}^{f s}(E v(\gamma))(t)=\frac{d}{d t}\left(\frac{k_{g}(t)}{k(t)}\right) \gamma(t)+\left\|\gamma^{\prime}(t)\right\| \frac{k_{g}^{f}(t)}{k(t)} \mathbf{t}(t)+\frac{d}{d t}\left(\frac{1}{k(t)}\right) \mathbf{n}(t) .
\end{array}\right.
$$

and then the flow-spherical Fermi-Walker derivative for the elements of the flow-spherical frame is:

$$
\begin{equation*}
\nabla_{\gamma}^{f s}\left(E_{1}^{f}\right)(t)=-\left(\left\|\gamma^{\prime}(t)\right\| \cos t\right) \gamma(t), \quad \nabla_{\gamma}^{f s}\left(E_{2}^{f}\right)(t)=-\left(\left\|\gamma^{\prime}(t)\right\| \sin t\right) \gamma(t) \tag{3.9}
\end{equation*}
$$

4. Examples and remarks

In what follows we are interested in computing this new function for some remarkable spherical curves.
Example 4.1 Recall the spherical coordinates $(u, v) \in[0,2 \pi) \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ giving the well-known parametrization of S^{2} :

$$
\begin{equation*}
S^{2}: \bar{r}(u, v)=(\cos u \cos v, \sin u \cos v, \sin v) \tag{4.1}
\end{equation*}
$$

Fix $m \in \mathbb{R}$ and the corresponding Clelia curve, [7, p. 60]:

$$
\begin{equation*}
\gamma_{m}(t)=(\cos t \cos (m t), \sin t \cos (m t), \sin (m t))=\bar{r}(u=t, v=m t), \quad t \in \mathbb{R} \tag{4.2}
\end{equation*}
$$

MIRCEA CRASMAREANU/Turk J Math

1 Then:

$$
\left\{\begin{array}{l}
\gamma_{m}^{\prime}(t)=(-\sin t \cos (m t)-m \cos t \sin (m t), \cos t \cos (m t)-m \sin t \sin (m t), m \cos (m t)) \tag{4.3}\\
\left\|\gamma_{m}^{\prime}(t)\right\|=\sqrt{m^{2}+\cos ^{2}(m t)} \geq \max \{|m|, 1\}>0
\end{array}\right.
$$

2 which says that γ_{m} is a regular curve. It follows:

$$
\left\{\begin{array}{l}
\mathbf{n}(t)=\frac{1}{\sqrt{m^{2}+\cos ^{2}(m t)}}\left(m \sin t-\frac{1}{2} \cos t \sin (2 m t),-m \cos t-\frac{1}{2} \sin t \sin (2 m t), \cos ^{2}(m t)\right) \tag{4.4}\\
k_{g}(t)=\frac{\sin (m t)\left[2 m^{2}+\cos ^{2}(m t)\right]}{\left(m^{2}+\cos ^{2}(m t)\right)^{\frac{3}{2}}}
\end{array}\right.
$$

and hence the $\operatorname{arc} t \in\left(0, \frac{\pi}{m}\right)$ is convex. The flow-geodesic curvature is:

$$
\begin{equation*}
k_{g}^{f}(t)=\frac{\sin (m t)\left[2 m^{2}+\cos ^{2}(m t)\right]}{\left(m^{2}+\cos ^{2}(m t)\right)^{\frac{3}{2}}}-\frac{1}{\left(m^{2}+\cos ^{2}(m t)\right)^{\frac{1}{2}}} . \tag{4.5}
\end{equation*}
$$

Example 4.2 A spherical curve with prescribed constant geodesic curvature $k_{g}=K$ and parametrized by the arc-length s is:

$$
\begin{equation*}
\gamma_{K}(s)=\frac{1}{\sqrt{1+K^{2}}}\left(\cos \left(\sqrt{1+K^{2}} s\right), \sin \left(\sqrt{1+K^{2}} s\right), K\right)=\frac{1}{k}(\cos (k s), \sin (k s), K), s \in \mathbb{R} \tag{4.6}
\end{equation*}
$$

with the spherical coordinates $\left(u=u(s)=k s, v=\right.$ constant $\left.=\arcsin \left(\frac{K}{k}\right)\right)$; its evolute is the constant unit vector $\operatorname{Ev}\left(\gamma_{K}\right)=(0,0,1)=\bar{k}$ and its binormal is also constant $B=k(0,0,1)$. Then the flow-geodesic curvature of γ_{K} is the constant $k_{g}^{f}=K-1$. It follows that γ_{1} is a flow-flat convex spherical curve, $\gamma_{1}(s)=\frac{1}{\sqrt{2}}(\cos (\sqrt{2} s), \sin (\sqrt{2} s), 1)$, having the flow-evolute:

$$
\begin{equation*}
E v^{f}\left(\gamma_{1}\right)(s)=E_{2}^{f}(s)=(\sin s) \cdot(-\sin (\sqrt{2} s), \cos (\sqrt{2} s), 0)-\frac{\cos s}{\sqrt{2}} \cdot(\cos (\sqrt{2} s), \sin (\sqrt{2} s),-1) \tag{4.7}
\end{equation*}
$$

The stereographic projection from the North Pole $N(0,0,1)$ (respectively from the South Pole $S(0,0,-1)$) of the parallel $\gamma_{1} \in S^{2}$ is the plane circle centered in the origin $(0,0)$ and having the radius $2+\sqrt{2}$ (respectively the radius $2-\sqrt{2})$. Concerning the example 2.2 the hypercone $H^{-1}\left(\gamma_{1}\right)$ of $\mathbb{C}^{2} \backslash\{0\}$ is given by: $|u|=(\sqrt{2}+1)|v|$ and then any curve in this hypersurface will be a Hopf-flow-flat curve.

Example 4.3 The tangent indicatrix of the given γ is exactly the map $t \in I \rightarrow \mathbf{t}(t) \in S^{2}$. Its spherical Frenet frame is:

$$
\mathcal{F}_{s}^{t}:=\left(\begin{array}{c}
\mathbf{t} \tag{4.8}\\
\mathbf{t}^{t} \\
\mathbf{n}^{t}
\end{array}\right), \mathbf{t}^{t}(t):=\frac{1}{k(t)}\left[-\gamma(t)+k_{g}(t) \mathbf{n}(t)\right], \quad \mathbf{n}^{t}(t):=\frac{1}{k(t)}\left[k_{g}(t) \gamma(t)+\mathbf{n}(t)\right]
$$

Since $\left\|\mathbf{t}^{\prime}(t)\right\|=k(t)\left\|\gamma^{\prime}(t)\right\|$ we get the geodesic curvature of this new spherical curve:

$$
\begin{equation*}
k_{g}^{t}(t)=\frac{k_{g}^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\| k^{3}(t)} \tag{4.9}
\end{equation*}
$$

MIRCEA CRASMAREANU/Turk J Math

Figure 1. The flow-flat curve γ_{1} of the example 4.2
and then the flow-geodesic curvature of the tangent indicatrix is:

$$
\begin{equation*}
k_{g}^{t f}(t)=\frac{k_{g}^{\prime}(t)-\left(1+k_{g}^{2}(t)\right)}{\left\|\gamma^{\prime}(t)\right\| k^{3}(t)} \tag{4.10}
\end{equation*}
$$

Suppose now that γ is parametrized by arc-lenght. Then the tangent indicatrix is a flow-flat curve if and only if γ has the geodesic curvature $k_{g}(s)=\tan s$, equivalently the curvature $k(s)=\frac{-1}{\cos s}$ for $s \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$; it follows the evolute $E v(\gamma)(t)=-[\sin t \gamma(t)+\cos t \mathbf{n}(t)]$. But this curvature corresponds exactly to the expression (5) of [8, p. 363] for the constant torsion $\tau=1$ and an explicit formula for γ involving hypergeometric functions is provided by the cited paper. The functions total curvature and total flow-geodesic curvature (on $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$) of γ are:

$$
\begin{equation*}
\int k(t) d t=-\ln \frac{\cos \frac{t}{2}+\sin \frac{t}{2}}{\cos \frac{t}{2}-\sin \frac{t}{2}}, \quad \int k_{g}(t) d t=-\ln (-\cos t) \tag{4.11}
\end{equation*}
$$

Remark 4.4 In the paper [10] the Delaunay variational problem defined by the arc-length functional acting on the space of curves with constant torsion $\tau=1$ is studied. A main characterization is that a biregular curve is a critical point of the Delaunay functional if and only if the associated binormal curve γ is an elastic spherical curve i.e. there exists $\lambda \in \mathbb{R}$ such that:

$$
\begin{equation*}
\left(k_{g}\right)_{s s}+\frac{3}{2} k_{g}^{3}+(1-\lambda) k_{g}=0 \tag{4.12}
\end{equation*}
$$

Then we define the λ-elastic curvature k_{e}^{λ} of the spherical curve γ through the left-hand-side of the equation above. For our example 4.3 with $k_{g}(s)=\frac{\cos s}{\sin s}$ we have:

$$
\begin{equation*}
k_{g}^{f}(s)=\frac{\cos s}{\sin s}-1, \quad k_{e}^{\lambda}(s)=\frac{\cos s\left(4-3 \cos ^{2} s\right)}{2 \sin ^{3} s}+(1-\lambda) \frac{\cos s}{\sin s} \tag{4.13}
\end{equation*}
$$

and then a zero of k_{g}^{f} is provided by the angle $\frac{3 \pi}{4}$.
Remark 4.5 Since we arrive at the subject of curves with constant torsion we connect our study with the proposition 1.1 from [2, p. 216]. Fix γ a spherical curve parametrized by arc-length and a constant $\tau \neq 0$. Using the pair (γ, τ) a new space curve is considered:

$$
\begin{equation*}
\Gamma(\gamma, \tau):=\frac{1}{\tau} \int \gamma \times \gamma^{\prime} d s \tag{4.14}
\end{equation*}
$$

MIRCEA CRASMAREANU/Turk J Math

and the cited theorem gives that the curvature k_{Γ} and torsion $\tau_{\Gamma}=\tau$ are related to the geodesic curvature of γ through: $k_{g}=k_{\Gamma} \cdot \tau$; then the flow-geodesic curvature of γ is $k_{g}^{f}=k_{\Gamma} \cdot \tau-1$. Hence, we return to the curve γ_{K} of the previous example and the corresponding Γ is:

$$
\begin{equation*}
\Gamma_{K}(s)=\frac{1}{k \tau}\left(-\frac{K}{k} \sin (k s), \frac{K}{k} \cos (k s), s\right) \tag{4.15}
\end{equation*}
$$

${ }^{4}$ satisfying then $k_{\Gamma_{K}}=\frac{K}{\tau}$ and $\left\|\Gamma_{K}^{\prime}(s)\right\|=\frac{1}{|\tau|}=$ constant. Having both curvature and torsion as constants Γ_{K} is ${ }_{5}$ a helix lying on the cylinder $C: x^{2}+y^{2}=\frac{K^{2}}{k^{2}|\tau|}$. Its arc-length parametrization is:

$$
\begin{equation*}
\Gamma_{K}(u)=\frac{1}{k \tau}\left(-\frac{K}{k} \sin (k \tau u), \frac{K}{k} \cos (k \tau u), \tau u\right) \tag{4.16}
\end{equation*}
$$

6

7

8 Its geodesic curvature is:

$$
\begin{equation*}
k_{g}(t)=\frac{\cos t}{|\sin t|} \tag{4.18}
\end{equation*}
$$

9 and then we restrict the parameter to $t \in(0, \pi)$; it results: $k(t)=\frac{1}{\sin t}, \tau=-1$. The flow-curvature of γ is:

$$
\begin{equation*}
k_{g}^{f}(t)=\frac{\cos t}{\sin t}-\frac{1}{\sqrt{3} \sin t} \tag{4.19}
\end{equation*}
$$

${ }^{10}$ and hence a zero t_{0} of k_{g}^{f} is exactly the magic angle $t_{0}=\arccos \left(\frac{1}{\sqrt{3}}\right) \simeq 0.955$. The total flow-geodesic curvature function is:

$$
\begin{equation*}
\int k_{g}^{f}(t) d t=\ln (\sin t)+\frac{1}{\sqrt{3}} \ln \cot \frac{t}{2} \tag{4.20}
\end{equation*}
$$

Example 4.6 The spherical nephroid is presented in [11, p. 353] as:

$$
\begin{equation*}
\gamma(t)=\left(\frac{3}{4} \cos t-\frac{1}{4} \cos 3 t, \frac{3}{4} \sin t-\frac{1}{4} \sin 3 t, \frac{\sqrt{3}}{2} \cos t\right) \tag{4.17}
\end{equation*}
$$

路

The author declares no conflict of interest.

This research received no external funding.

References

[1] Agrachev AA, Sachkov YL. Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences 87. Control Theory and Optimization II. Berlin: Springer, 2004. https://doi.org/10.1007/978-3-662-06404-7
[2] Bates LM, Melko OM. On curves of constant torsion. I. Journal of Geometry 2013; 104 (2): 213-227. https://doi.org/10.1007/s00022-013-0166-2

MIRCEA CRASMAREANU/Turk J Math

[3] Brander D. Spherical surfaces. Experimental Mathematics 2016; 25 (3): 257-272.
https://doi.org/10.1080/10586458.2015.1077359
[4] Crasmareanu M. The flow-curvature of plane parametrized curves. Communications. Faculty of Sciences, University of Ankara. Séries A1. 2023; 72 (2): 417-428. https://doi.org/10.31801/cfsuasmas. 1165123
[5] Crasmareanu M, Frigioiu C. Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves. International Journal of Geometric Methods in Modern Physics 2015; 12 (10): Article ID 1550111. https://doi.org/10.1142/S021988781550111X
[6] dos Reis HFS, Tenenblat K. Soliton solutions to the curve shortening flow on the sphere. Proceedings of the American Mathematical Society 2019; 147 (11): 4955-4967. https://doi.org/10.1090/proc/14607
[7] Goemans W, Van de Woestyne I. Clelia curves, twisted surfaces and Plücker's conoid in Euclidean and Minkowski 3-space, in: Suceavă, Bogdan D. (Ed.) et al., Recent advances in the geometry of submanifolds: dedicated to the memory of Franki Dillen (1963-2013), AMS Contemporary Mathematics 674, 2016. pp. 59-73. https://doi.org/10.1090/conm/674/13550
[8] Kazaras D, Sterling I. An explicit formula for spherical curves with constant torsion. Pacific Journal of Mathematics 2012; 259 (2): 361-372. https://doi.org/10.2140/pjm.2012.259.361
[9] Mazur B. Perturbations, deformations, and variations (and "near-misses") in geometry, physics, and number theory. Bulletin of the American Mathematical Society 2004; 41 (3): 307-336. https://doi.org/10.1090/S0273-0979-04-01024-9
[10] Musso E. Elastic curves and the Delaunay problem for curves with constant torsion. Rendiconti del Circolo Matematico di Palermo 2001; 50 (2): 285-298. https://doi.org/10.1007/BF02844983
[11] Takahashi M. Legendre curves in the unit spherical bundle over the unit sphere and evolutes, in: Nabarro, Ana Claudia (Ed.) et al., Real and complex singularities, AMS Contemporary Mathematics 675, 2016. pp. 337-355. https://doi.org/10.1090/conm/675/13600

