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Abstract: In [6], [8] and [10], the authors studied the generalized Fibonacci numbers. Also, in [7], the author found a
class of bipartite graphs whose number of 1 -factors is the nth k -Lucas numbers. In this paper, we give a new relationship

between g
(k)
n and l

(k)
n and the number of 1 -factors of a bipartite graph.
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1. Introduction
The Fibonacci sequence has been discussed in so many articles and books. In particular, the Fibonacci number
are very important in combinatorial analysis.

The well-known Fibonacci sequence {Fn} is defined as follows:

F1 = F2 = 1 and, for n > 2, Fn = Fn−1 + Fn−2.

We call Fn the nth Fibonacci number. The Fibonacci sequence is

(F0 := 0), 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

Now, we consider the generalization of the Fibonacci sequence, which is called as the k -Fibonacci sequence

for positive integer k ≥ 2 . The k -Fibonacci sequence {g(k)n } is defined as follows:

g
(k)
1 = . . . = g

(k)
k−2 = 0, g

(k)
k−1 = g

(k)
k = 1

and for n > k ≥ 2 ,

g(k)n = g
(k)
n−1 + g

(k)
n−2 + . . .+ g

(k)
n−k.

We call g
(k)
n the nth k -Fibonacci number. By the definition of the k -Fibonacci sequence, we have that

g
(k)
j = 2j−k for j = k, k + 1, . . . , 2k − 1 .

For example, if k = 5 , then the 5-Fibonacci sequence is

0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3535, 6930, . . . .
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In particular, if k = 2 , then {g(2)n } is the Fibonacci sequence {Fn} .
In [2], the author defined a new subclass of analytic biunivalent functions associated with the Fibonacci

numbers. Moreover, the author surveyed the bounds of the coefficients for functions in this class. In [1], the
authors introduced a family of companion sequences for some generalized Fibonacci sequence: the r -Fibonacci
sequence. They evaluated the generating functions and gave some applications, and they exhibited convolution
relations that generalized some known identities such as Cassini’s. Afterwards, they calculated the sums of
their terms using matrix methods. In [6], [8] and [10], the authors studied the generalized Fibonacci numbers.
In [9], the authors considered the factorizations and eigenvalues of k -Fibonacci and symmetric k -Fibonacci
matrices. In [12], the authors generalized result on connection permanents of special tridiagonal matrices with
Fibonacci numbers, as they shown that more general sequences of tridiagonal matrices is related to the sequence
of Fibonacci numbers.

Now, we introduce k -Lucas sequences.
For the Fibonacci number Fn , let Ln be the nth Lucas number, that is, for n ≥ 1 , Ln = Fn−1 + Fn+1

where F0 = 0 . The Lucas sequence {Ln} is

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . .

Let us define the generalized Lucas sequence in a similar way to the definition of the generalization of

Fibonacci sequence. For the generalized Fibonacci number {g(k)n } , let g
(k)
0 = 0, and let the k -Lucas sequence

{l(k)n } is defined by

l(k)n = g
(k)
n−1 + g

(k)
n+k−1.

We call l
(k)
n the nth k -Lucas number. From the definition, we have, for j = 1, 2, . . . , k − 1 ,

l
(k)
j = 2j−1, (1.1)

and l
(k)
k = 1 + 2k−1 .
For example, if k = 5 , then the 5-Lucas sequence is

1, 2, 4, 8, 17, 32, 63, 124, 244, 480, 943, 1854, 3645, 7166, . . . .

In particular, if k = 2 , then {l(2)n } is the Lucas sequence {Ln} . One can find a generalization of the Lucas
number in [13].

Since the Fibonacci numbers are connected by the fundamental recursion Fn = Fn−1 + Fn−2 , it follows
immediately that the Lucas numbers are likewise related by Ln = Ln−1 +Ln−2 for n > 2 . Hence, we have, for
n > k ,

l(k)n = l
(k)
n−1 + l

(k)
n−2 + . . .+ l

(k)
n−k.

The permanent of an n -square matrix A = [aij ] is defined by

perA =
∑

σ∈Sn

n∏
i=1

aiσ(i),

where the summation extends over all permutations σ in the symmetric group Sn . For any square matrix A

and any permutation matrices P and Q , perA = perPAQ .
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For positive integers k and n with k ≤ n , let Qk,n denote the set of all strictly increasing k -sequences
from {1, 2, . . . , n} . For an n × n matrix A and for α, β ∈ Qk,n , let A[α|β] denote the matrix lying in rows
α and columns β and let A(α|β) denote the matrix complementary to A[α|β] in A . That is, the submatrix
obtained from A by deleting rows α and column β . In particular, the (n− k)× n submatrix obtained from A

by deleting rows α is denoted by A(α|−) . Similarly, A(−|β) denotes the n× (n− k) submatrix obtained from
A by deleting columns β .

A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V1 and V2 such
that every edge of G joins a vertex in V1 and a vertex in V2 . A 1-factor (or perfect matching) of bipartite
graph G with 2n vertices is a spanning subgraph of G in which every vertex has degree 1. The enumeration
or actual construction of 1-factors of a bipartite graph has many applications, for example, in [5], in maximal
flow problems, and in [4], in assignment and scheduling problems. Let A(G) be the adjacency matrix of the
bipartite graph G , and let µ(G) denote the number of 1-factors of G . Then, in [11], we have the very well
known fact : µ(G) =

√
perA(G) . Let G be a bipartite graph with 2n vertices, and suppose that no edge joins

two vertices in {v1, . . . , vn} nor two vertices in {vn+1, . . . , v2n} . Then the adjacency matrix of G has the form

A(G) =

[
0 B(G)

B(G)T 0

]
,

where B(G) is an n×n submatrix of A(G) . The matrix B(G) is called the subadjacent matrix of the bipartite
graph G . Then, in [11], the number of 1-factors of bipartite graph G equals the permanent of its subadjacency
matrix. That is,

µ(G) =
√
perA(G) = perB(G).

In [7], the author found a class of bipartite graphs whose number of 1 -factors is the nth k -Lucas numbers.
Let G and G′ denote two general graphs of order n , and let the adjacency matrices of these graphs be

denoted by A and A′ , respectively. Then G and G′ are isomorphic if and only if A is transformable into A′

by simultaneous permutations of the lines of A . Thus, G and G′ are isomorphic if and only if there exists a
permutation matrix P of order n such that PTAP = A′.

Let A = [aij ] be an m × n real matrix with row vectors α1, α2, . . . , αm. We say A is contractible on
column (resp. row) k if column (resp. row) k contains exactly two nonzero entries. Suppose A is contractible
on column k with aik ̸= 0 ≠ ajk and i ̸= j. Then the (m − 1) × (n − 1) matrix Aij:k obtained from A by
replacing row i with ajkαi + aikαj and deleting row j and column k is called the contraction of A on column
k relative to rows i and j . If A is contractible on row k with aki ̸= 0 ̸= akj and i ̸= j , then the matrix
Ak:ij = [AT

ij:k]
T is called the contraction of A on row k relative to columns i and j . Every contraction used

in this paper will be on the first column using the first and second rows. We say that A can be contracted to a
matrix B if either B = A or there exist matrices A0, A1, . . . , At (t ≥ 1) such that A0 = A, At = B and Ar is
a contraction of Ar−1 for r = 1, . . . , t. One can find the following fact in [3]: let A be a nonnegative integral
matrix of order n > 1 and let B be a contraction of A . Then

perA = perB.

2. k -Fibonacci numbers
In this section, we consider the classes of bipartite graphs whose number of 1 -factors are k -Fibonacci numbers.
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To begin with, we have some definitions for matrices.
A matrix is said to be a (0, 1) matrix if each of its entries is either 0 or 1.

Let n× n (0, 1) matrix A
(k)
n = [a

(k)
ij ] is defined as follows: for i < j ,

a
(k)
ij =

{
1 if j = i+ 1,
0 otherwise,

for i ≥ j ,

a
(k)
ij =

{
1 if j = 1 or k ̸ |(i− j + 1),
0 otherwise.

For example, if k = 3 and n = 8 , then we have the 8× 8 (0, 1) matrix A
(3)
8 as follows:

A
(3)
8 =



1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 1 1 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1


.

Let Tn = [tij ] be the n× n tridiagonal (0, 1) matrix defined by tij = 0 if and only if |j − i| ≤ 1 and let
Un = [uij ] be the n× n (0, 1) matrix defined by uij = 1 if and only if 2 ≤ j − i ≤ k − 1 . In [10], the authors
had a matrix for which the permanent of the matrix is the (n+ k − 1)st k -Fibonacci number.

Theorem 2.1 [10] Let F
(k)
n = Tn + Un . Then

perF(k)
n = g

(k)
n+k−1.

Now, let us compare the matrix A
(k)
n and F

(k)
n . The here and now, for example, let us compare the

number of 1 ’s in A
(3)
8 and the number of 1 ’s in F

(3)
8 . Then we know that the number of 1 ’s in A

(3)
8 is 36 but

the number of 1 ’s in F
(3)
8 is 28. Thus, in general, we have the following result.

Lemma 2.2 For the n × n matrices A
(k)
n and F

(k)
n , there do not exist permutation matrices P and Q such

that
F(k)
n = PA(k)

n Q

Lemma 2.3 For k ≥ 2 ,

perA(k)
k = 2k−1

Proof For the n× n (0, 1) matrix A
(k)
n = [a

(k)
ij ] , if n = k , then aij = 1 if and only if −1 ≤ j − i . Since the

matrix A
(k)
k contractible on column k , we have perA(k)

k = 2k−1 . 2
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From the Lemma 2.3, we know that

perA(k)
k = per



1 1 0 · · · 0

1 1 1
. . . ...

... . . . . . . . . . 0

... . . . . . . 1
1 · · · · · · 1 1


= 2k−1. (2.1)

Let G and G′ denote two general graphs of order n , and let the adjacency matrices of these graphs be

denoted by A
(k)
n and F

(k)
n , respectively. From the Lemma 2.2, we know that the graph G does not isomorphic

to the graph G′ .
Thus, we have the following result.

Theorem 2.4 For the positive integers n and k , 2 ≤ k ≤ n , let G(A
(k)
n ) be the bipartite graph with subadjacency

matrix A
(k)
n . Then the number of 1-factors of G(A

(k)
n ) is g

(k)
n+k−1 .

Proof For fixed k , if n = k then, from Lemma 2.3, we have perA(k)
k = 2k−1 = g

(k)
k+k−1.

By induction on n ,

perA(k)
n = perA(k)

n (n|n) + perA(k)
n (n− 1|n)

= g
(k)
n+k−2 + perA(k)

n (n− 1|n)

= g
(k)
n+k−2 + perA(k)

n (n− 1, n|n− 1, n) + perA(k)
n (n− 2, n− 1|n− 1, n)

= g
(k)
n+k−2 + g

(k)
n+k−3 + perA(k)

n (n− 2, n− 1|n− 1, n)

...

= g
(k)
n+k−2 + g

(k)
n+k−3 + . . .+ g(k)n

+perA(k)
n (n− k, . . . , n− 2, n− 1|n− k + 1, . . . , n− 1, n)

Note that, in A
(k)
n (−|n− k + 1, . . . , n− 1, n) , the nth row is the same that the (n− k)th row.

Hence, we have

perA(k)
n (n− k, . . . , n− 2, n− 1|n− k + 1, . . . , n− 1, n)

= perA(k)
n (n− k + 1, . . . , n− 1, n|n− k + 1, . . . , n− 1, n)

= g
(k)
n−1
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Therefore, we have

perA(k)
n = g

(k)
n+k−2 + g

(k)
n+k−3 + . . .+ g(k)n

+perA(k)
n (n− k, . . . , n− 2, n− 1|n− k + 1, . . . , n− 1, n)

= g
(k)
n+k−2 + g

(k)
n+k−3 + . . .+ g(k)n + g

(k)
n−1

= g
(k)
n+k−1,

and the proof is completed. 2

For example, since per A
(3)
8 = 81 , the number of 1 -factors of G(A

(3)
8 ) is g

(3)
8+3−1 = g

(3)
10 = 81 . Also, we

know that the number of 1 -factors of G(A
(5)
10 ) is g

(5)
10+5−1 = g

(5)
14 = 464 .

For the n × n (0, 1) matrix A
(k)
n = [a

(k)
ij ] , in particular, if k = 2 , we denote An = [aij ] instead of

A
(2)
n = [a

(2)
ij ] . Then we have the following result.

Corollary 2.5 Let G(An) be the bipartite graph with subadjacency matrix An , 2 ≤ n . Then the number of
1-factors of G(An) is Fn+1 .

Let Bn = [bij ] be an n× n matrix of which a11 = ann = 1 and aij = 1 if i < j or i = j + 1 , otherwise
Aij = 0 . In [10], the authors gave two matrices for which the permanent of the matrices are the (n + 1)st
Fibonacci number. That is, for the tridiagonal (0, 1) matrix Tn and for the matrix Bn , perTn = perBn = Fn+1 ,
where Fn+1 is the (n+ 1)st Fibonacci number.

Now, we define a new (0, 1) matrix Cn . Let Cn = [cij ] be an n×n (0, 1) matrix of which cij = 0 if and
only if j > i+ 1 or i ≥ j and 2|(i− j + 1) or, i = n and 2|(n− j + 1) . For example,

T6 =


1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

 , B6 =


1 1 1 1 1 1
1 0 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 1

 ,

and

C6 =


1 1 0 0 0 0
0 1 1 0 0 0
1 0 1 1 0 0
0 1 0 1 1 0
1 0 1 0 1 1
0 1 0 1 0 1

 .

Then the number of 1 ’s in T6 is 16, the number of 1 ’s in B6 is 21 and the number of 1 ’s in C6 is 17. Thus,
in general, we have the following result.

Lemma 2.6 For the n× n matrices Tn , Bn and Cn , there do not exist permutation matrices P , Q , R and
S such that Cn = PTnQ and Cn = RBnS .
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Theorem 2.7 For the n × n (0, 1) matrix Cn , 2 ≤ n , let G(Cn) be the bipartite graph with subadjacency
matrix Cn . Then the number of 1-factors of G(Cn) is Fn .

Proof For n = 2 and n = 3 ,

C2 =

[
1 1
0 1

]
, C3 =

 1 1 0
0 1 1
1 0 1

 ,

and hence perC2 = 1 = F2 and perC3 = 2 = F3 .
Since perCn(1|1) = Fn−1 , by induction on n , we have

perCn = perCn(1|1) + perCn(1|2)

= Fn−1 + perCn(1|2)

Since the first row of Cn(1|2) is the (n−1) tuple such that (0, 1, 0, . . . , 0) , perCn(1|2) = perCn(1, 2|2, 3) . And,
by induction on n , we have perCn(1, 2|2, 3) = Fn−2 .

Therefore, we have

perCn = Fn−1 + perCn(1|2)

= Fn−1 + perCn(1, 2|2, 3)

= Fn−1 + Fn−2

= Fn,

and the proof is completed. 2

3. k -Lucas numbers
In this section, we consider the classes of bipartite graphs whose number of 1 -factors are k -Lucas number.

Let Eij denote the n × n matrix with 1 in the (i, j) position and zeros elsewhere. Let H
(k)
n = [h

(k)
ij ]

be the n × n (0, 1) -matrix defined by h
(k)
ij = 1 if and only if −1 ≤ j − i ≤ k − 1 . For k < n , let

J
(k)
n = H

(k)
n −

∑k
j=2 E1j + E1k+1 . In [7], the author found a class of bipartite graphs whose number of 1 -

factors is the nth k -Lucas number and the following result was proven:

Theorem 3.1 Let G(J
(k)
n ) be the bipartite graph with subadjacency matrix J

(k)
n , n ≥ 3 . Then the number of

1-factors of G(J
(k)
n ) is l

(k)
n−1 .

We consider an n × n (0, 1) matrix V
(k)
n = [v

(k)
ij ] . To define the n × n (0, 1) matrix V

(k)
n = [v

(k)
ij ] , we

consider two cases:(i) i < j and (ii) i ≥ j .
Case (i) If i < j , then

v
(k)
ij =

{
1 if j = i+ 1,
0 otherwise.

Case (ii) If i ≥ j , then we have two subcases: (i’) i ≡ 1 (mod k) , (ii’) i ̸≡ 1 (mod k) .
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Subcase (i’) If i ≡ 1 (mod k) , then

v
(k)
ij =

{
0 if, for some positive integer m, i− j + 1 = km and j ̸= 2,
1 otherwise.

Subcase (ii’) If i ̸≡ 1 (mod k) , then

v
(k)
ij =

{
0 if, for some positive integer m, i− j + 1 = km or j = 1,
1 otherwise.

For example, if k = 3 and n = 10 , then we have the 10× 10 (0, 1) matrix V
(3)
10 as follows:

V
(3)
10 =



1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0
0 1 1 0 1 1 1 0 0 0
1 1 1 1 0 1 1 1 0 0
0 1 0 1 1 0 1 1 1 0
0 1 1 0 1 1 0 1 1 1
1 1 1 1 0 1 1 0 1 1


.

Since the number of 1 ’s in J
(3)
10 does not equal to the number of 1 ’s in V

(3)
10 . Thus, in general, we have

the following result.

Lemma 3.2 For the n × n matrices J
(k)
n and V

(k)
n , there do not exist permutation matrices P and Q such

that J
(k)
n = PV

(k)
n Q .

Let G and G′ denote two general graphs of order n , and let the adjacency matrices of these graphs be

denoted by J
(k)
n and V

(k)
n , respectively. From the Lemma 3.2, we know that the graph G does not isomorphic

to the graph G′ .

Lemma 3.3 For 2 ≤ n ≤ k ,

perV(k)
n = 2n−2 = l

(k)
n−1.

Proof Since n ≤ k , we have

V(k)
n =



1 1 0 0 · · · 0
0 1 1 0 · · · 0
...

...
...

... . . . ...
0 1 1 1 · · · 0
0 1 1 1 · · · 1
0 1 1 1 · · · 1


.

Then per V
(k)
n = per V

(k)
n (1|1) . By induction on n and (1.1) and (2.1), we have

per V(k)
n = per V(k)

n (1|1) = 2n−2 = l
(k)
n−1.
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Therefore, the proof is completed. 2

In the following theorem, we have a class of bipartite graphs whose number of 1 -factors is the (n− 1)st
k -Lucas number.

Theorem 3.4 Let k and n be positive integers. Let G(V
(k)
n ) be the bipartite graph with subadjacency matrix

V
(k)
n , n ≥ 2 . Then the number of 1-factors of G(V

(k)
n ) is l

(k)
n−1 .

Proof If n ≤ k , then, by Lemma 3.3, we are done.
Suppose that 2 ≤ k < n .
For positive integer t , n > t , note that

V(k)
n (n, n− 1, . . . , n− t+ 1|n, n− 1, . . . , n− t+ 1) = V

(k)
n−t.

That is,

per V(k)
n (n, n− 1, . . . , n− t+ 1|n, n− 1, . . . , n− t+ 1) = per V

(k)
n−t.

By induction on n ,

perV(k)
n = perV(k)

n (n|n) + perV(k)
n (n− 1|n)

= l
(k)
n−2 + perV(k)

n (n− 1|n)

= l
(k)
n−2 + perV(k)

n (n− 1, n|n, n− 1) + perV(k)
n (n− 1, n− 2|n, n− 1)

= l
(k)
n−2 + l

(k)
n−3 + perV(k)

n (n− 1, n− 2|n, n− 1)

...

= l
(k)
n−2 + l

(k)
n−3 + . . .+ l

(k)
n−k

+perV(k)
n (n− 1, . . . , n− k|n, . . . , n− k + 1).

Note that, in V
(k)
n (−|n− k + 1, . . . , n− 1, n) , the nth row is the same that the (n− k)th row. That is,

perV(k)
n (n− 1, . . . , n− k | n, . . . , n− k + 1)

= perV(k)
n (n, . . . , n− k + 1|n, . . . , n− k + 1)

= l
(k)
n−k−1.

Therefore, we have

perV(k)
n = l

(k)
n−2 + l

(k)
n−3 + . . .+ l

(k)
n−k

+perV(k)
n (n− 1, . . . , n− k|n, . . . , n− k + 1)

= l
(k)
n−2 + l

(k)
n−3 + . . .+ l

(k)
n−k + l

(k)
n−k−1

= l
(k)
n−1,
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and the proof is completed. 2

For example, the number of 1 -factors of the graph G(V
(5)
10 ) is l

(5)
9 = 244 .

For the n × n (0, 1) matrix V
(k)
n = [v

(k)
ij ] , in particular, if k = 2 , we denote Vn = [vij ] instead of

V
(2)
n = [v

(2)
ij ] . Then we have the following result.

Corollary 3.5 Let G(Vn) be the bipartite graph with subadjacency matrix Vn , 2 ≤ n . Then the number of
1-factors of G(Vn) is Ln−1 .
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