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Abstract: In this work, we establish the existence and uniqueness of solutions for a fractional stochastic differential
equation driven by countably many Brownian motions on bounded and unbounded intervals. Also, we study the
continuous dependence of solutions on initial data. Finally, we establish the transportation quadratic cost inequality for
some classes of fractional stochastic equations and continuous dependence of solutions with respect Wasserstein distance.
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1. Introduction
The theory of stochastic differential equations has become an active area of investigation due to their applications
in the fields such as chemistry, mechanics, electrical engineering, medical biology, economical systems, finance
and several fields in engineering, etc. One can find detailed information in [19, 22–24, 29, 31, 33, 34] and
references therein.

In recent years, the subject of differential and integral equations via different types of fractional derivatives
has received much attention because of its applications in various areas of sciences. For more information on
applications we refer the reader to [1, 14, 25, 28, 36, 42] and references therein.

The existence and uniqueness of solutions for some classes of stochastic differential equations with
fractional order derivative by employing the fixed point theory have been discussed in [2, 13, 15, 17, 18, 35, 40]
and the references therein.

Because the modeling of a great many problems in real situations is described by stochastic differential
equations, rather than deterministic equations, it is of great importance to study fractional differential equations
with stochastic effects. Consider the following stochastic fractional differential equations:

cDαXt =

∞∑
l=1

fl(t,Xt)dW
l
t + g(t,Xt)dt, t ∈ [0,∞),

X0 = x ∈ R,

(1.1)
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where α ∈ ( 12 , 1) , (fl)l∈N, g : R+×R → R are given functions and (W i
t )i∈N is an infinite sequence of independent

standard Brownian motions defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P) , with (Ft)t≥0

satisfying the usual conditions (i.e. right continuous and F0 containing all P -null sets). An R−valued random
variable is an Ft−measurable function Xt : Ω → R and the collection of random variables,

S = {X(t, ω) : Ω → R| t ∈ [0,∞)},

is called a stochastic process. Generally, we write Xt instead of X(t, ω).

Set 
f(·, x) = (f1(·, x), f2(·, x), . . .),

∥f(·, x)∥ =
( ∞∑

l=1

f2
i (·, x)

) 1
2 (1.2)

where f(·, x) ∈ ℓ2 for all x ∈ R and

ℓ2 =

{
φ = (φl)l≥1 : R+ → R : ∥φ(t)∥2 =

∞∑
l=1

|φl(t)|2 < ∞

}
.

Some existence results of solutions for differential equations and inclusions with infinite Brownian or fractional
Brownian motion were obtained in [5, 6, 12, 20, 30].

The remainder of this work is organized as follows. Some auxiliary results from stochastic analysis and
fractional calculus are gathered together in Section 2. In Section 3, we present results on the existence and
continuous dependence of solutions on initial data. We end the paper with a transportation inequality of some
classes of fractional stochastic differential equations.

2. Introduction
The theory of stochastic differential equations has become an active area of investigation due to their applications
in the fields such as chemistry, mechanics, electrical engineering, medical biology, economical systems, finance
and several fields in engineering, etc. One can find detailed information in [19, 22–24, 29, 31, 33, 34] and
references therein.

In recent years, the subject of differential and integral equations via different types of fractional derivatives
has received much attention because of its applications in various areas of sciences. For more information on
applications we refer the reader to [1, 14, 25, 28, 36, 42] and references therein.

The existence and uniqueness of solutions for some classes of stochastic differential equations with
fractional order derivative by employing the fixed point theory have been discussed in [2, 13, 15, 17, 18, 35, 40]
and the references therein.

Because the modeling of a great many problems in real situations is described by stochastic differential
equations, rather than deterministic equations, it is of great importance to study fractional differential equations
with stochastic effects. Consider the following stochastic fractional differential equations:

cDαXt =

∞∑
l=1

fl(t,Xt)dW
l
t + g(t,Xt)dt, t ∈ [0,∞),

X0 = x ∈ R,

(2.1)
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where α ∈ ( 12 , 1) , (fl)l∈N, g : R+×R → R are given functions and (W i
t )i∈N is an infinite sequence of independent

standard Brownian motions defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P) , with (Ft)t≥0

satisfying the usual conditions (i.e. right continuous and F0 containing all P -null sets). An R−valued random
variable is an Ft−measurable function Xt : Ω → R and the collection of random variables,

S = {X(t, ω) : Ω → R| t ∈ [0,∞)},

is called a stochastic process. Generally, we write Xt instead of X(t, ω).

Set 
f(·, x) = (f1(·, x), f2(·, x), . . .),

∥f(·, x)∥ =
( ∞∑

l=1

f2
i (·, x)

) 1
2 (2.2)

where f(·, x) ∈ ℓ2 for all x ∈ R and

ℓ2 =

{
φ = (φl)l≥1 : R+ → R : ∥φ(t)∥2 =

∞∑
l=1

|φl(t)|2 < ∞

}
.

Some existence results of solutions for differential equations and inclusions with infinite Brownian or fractional
Brownian motion were obtained in [5, 6, 12, 20, 30].

The remainder of this work is organized as follows. Some auxiliary results from stochastic analysis and
fractional calculus are gathered together in Section 2. In Section 3, we present results on the existence and
continuous dependence of solutions on initial data. We end the paper with a transportation inequality of some
classes of fractional stochastic differential equations.

3. Preliminaries
For each t ∈ R+ , let L2(Ω,F , (Ft)t≥0,P) denote the space of all Ft−measurable, mean square integrable
functions X : Ω → R , i.e.

E∥X∥2 < ∞, for all X ∈ L2(Ω,F , (Ft)t≥0,P).

We shall write L2(Ft) instead of L2(Ω,F , (Ft)t≥0,P).

Definition 3.1 A (Ft)t≥0−adapted process X : R+×Ω −→ R is called a solution of equation (2.1) with initial
condition X0 = x ∈ R if, for all t ≥ 0, the following integral stochastic equation holds,

Xt = x+
1

Γ(α)

∞∑
l=1

∫ t

0

(t− s)α−1fl(s,Xs)dW
l
s +

1

Γ(α)

∫ t

0

(t− s)α−1g(s,Xs)ds,

where Γ(α) :=
∫∞
0

sα−1e−sds is the Gamma function.

Let T > 0 . H2 stands for the Banach space of adapted processes X , equipped with the norm ∥ · ∥H2

such that

∥X∥H2 = sup
t∈[0,T ]

(E∥Xt∥2)1/2 < ∞.
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We define for all γ > 0 the weighted norm ∥ · ∥γ by

∥X∥γ := sup
t∈[0,T ]

√
E∥Xt∥2

E2α−1(γt2α−1)
for all X ∈ H2,

where E2α−1(.) is the Mittag–Leffler function such that

E2α−1(t) :=

∞∑
k=0

tk

Γ((2α− 1)k + 1)
for all t ∈ R.

For more details about the Mittag–Leffler functions, see [14]. Obviously, (H2, ∥ · ∥γ) is a Banach space, since
the norms ∥ · ∥H2

and ∥ · ∥γ are equivalent.

Lemma 3.2 For all α ∈ (0, 1] and γ > 0 , the following inequality holds:

γ

Γ(α)

∫ t

0

(t− s)α−1Eα(γs
α)ds ≤ Eα(γt

α).

Proof Let 0 < α ≤ 1. We consider first the linear problem
cDαy(t) = γy(t), t ∈ R+. (3.1)

From [14, Theorem 7.2 and Remark 7.1], the function y(t) = E(γtα) is a solution of (3.1), and for any t ∈ R+ ,
we have

E(γtα) = 1 +
γ

Γ(α)

∫ t

0

(t− s)α−1Eα(γs
α)ds.

This concludes the proof of the lemma. 2

We recall Gronwall’s lemma for singular kernels, whose proof can be found in [41, Lemma 7.1.1].

Lemma 3.3 Let v : [0, b) → [0,∞) be a real function and w(·) be a nonnegative, locally integrable function
on [0, b) ,(some b ≤ +∞)) and a(t) be a nonnegative, nondecreasing continuous function defined on 0 ≤ t < b,

with a(t) ≤ M (constant), and suppose v(t) is nonnegative and locally integrable on 0 ≤ t < b. Assume γ > 0

such that

v(t) ≤ w(t) + a(t)

∫ t

0

v(s)

(t− s)1−γ
ds.

Then

v(t) ≤ w(t) +

∫ t

0

∞∑
n=1

(a(t)Γ(γ))n

Γ(nγ)
(t− s)nγ−1w(s)ds,

for every t ∈ [0, b).

In the following, we state standing hypotheses holding for the coefficients f and g in our model of this
paper.

(H1) There exists K > 0 such that for all x, y ∈ R and t ∈ [0,∞)

∥f(t, x)− f(t, y)∥+ |g(t, x)− g(t, y)| ≤ K|x− y|, x, y ∈ R.

(H2) ∥f(·, 0)∥∞ := ess sups∈[0,∞) ∥f(s, 0)∥ < ∞ and
∫∞
0

|g(s, 0)|2ds < ∞.
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4. Main results
The following result is one of the elementary properties of square-integrable stochastic processes [29].

Lemma 4.1 (Itô Isometry for Elementary Processes) Let (Ft)t≥0 satisfy the usual conditions and be generated
by (W i

t )i∈N⋆ . Given two sequences of measurable (Ft)t≥0−adapted processes Xi and Yi, set


Mt =

∞∑
i=1

∫ t

0

(t− s)α−1Xi(s)dW
i
s ,

Nt =

∞∑
i=1

∫ t

0

(t− s)α−1Yi(s)dW
i
s .

If
∞∑
i=1

∥Xi∥2H2
< ∞ , then M is a continuous L2(Ft)−martingale. The quadratic variation of M denoted by

[M ]t is

[M ]t =

∫ t

0

(t− s)2α−2|X(s)|2ds, for all t ≥ 0,

where |X(s)|2 =

∞∑
i=1

X2
i (s). And the cross variation of M and N , denoted by [M,N ]t , is

[M,N ]t =

∞∑
i=1

∫ t

0

(t− s)2α−2Xi(s)Yi(s)ds, for all t ≥ 0.

Proof Let n ≥ 1 , we put

Mn
t =

n∑
i=1

∫ t

0

(t− s)α−1Xi(s)dW
i
s .

For all t ≥ 0 , we have

E
n∑

i=1

∫ t

0

(t− s)2α−2∥Xi(s)∥2ds =
∫ t

0

(t− s)2α−2
n∑

i=1

E∥Xi(s)∥2ds

=

∫ t

0

J(s)

n∑
i=1

(√
E∥Xi(s)∥2

E2α−1(γs2α−1)

)2

ds,

where
J(s) = (t− s)2α−2E2α−1(γs

2α−1).

Then, by the definition of ∥ · ∥γ , we have

E
n∑

i=1

∫ t

0

(t− s)2α−2∥Xi(s)∥2ds ≤
n∑

i=1

∥Xi∥2γ
∫ t

0

(t− s)2α−2E2α−1(γs
2α−1)ds.
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Then Lemma 2.1 implies that

E
n∑

i=1

∫ t

0

(t− s)2α−2∥Xi(s)∥2ds ≤
Γ(2α− 1)E2α−1(γT

2α−1)

γ

n∑
i=1

∥Xi∥2γ .

Choose and fix a positive constant γ such that

γ = Γ(2α− 1)E2α−1(γT
2α−1).

Then

E
n∑

i=1

∫ t

0

(t− s)2α−2∥Xi(s)∥2ds ≤
n∑

i=1

∥Xi∥2γ .

Since
n∑

i=1

∥Xi∥2γ < ∞ for all n ≥ 1 , then

E
n∑

i=1

∫ t

0

(t− s)2α−2∥Xi(s)∥2ds < ∞.

Consequently, Mn is a continuous L2(Ft)−martingale for all n ≥ 1 , and its quadratic variation is [Mn]t such
that

[Mn]t =

∫ t

0

n∑
i=1

(t− s)2α−2X2
i (s)ds.

By the Burkholder–Davis–Gundy inequality [10, 11], we have, for some positive real constant C ,

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤ C

∫ t

0

(t− s)2α−2
n∨m∑

i=n∧m+1

E∥Xi(s)∥2ds.

By the definition of ∥ · ∥γ and Lemma 4.1, we obtain that

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤ CΓ(2α− 1)E2α−1(γT
2α−1)

γ

n∨m∑
i=n∧m+1

∥Xi∥2γ .

Choose and fix a positive constant γ such that

γ = CΓ(2α− 1)E2α−1(γT
2α−1).

Then

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤
n∨m∑

i=n∧m+1

∥Xi∥2γ .

Since
∞∑
i=1

∥Xi∥2γ < ∞ , we have

E sup
s∈[0,t]

(Mn
s −Mm

s )2 ≤
n∨m∑

i=n∧m+1

∥Xi∥2γ −→ 0 as n,m −→ ∞,
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where
n ∧m = min(n,m), n ∨m = max(n,m).

So Mn is a Cauchy sequence with respect to the norm (E supt∈[0,T ](·)2)
1
2 for any bounded time interval [0, T ] .

Denote its limit by M . Consequently, by the continuity of Mn , we obtain

lim
n−→∞

E(E(Mn
t /Fs)− E(Mt/Fs))

2 = 0, for all s < t,

and
lim

n−→∞
E(Mn

s −Ms)
2 = 0.

Since E(Mn
t /Fs) = Mn

s for all s < t and n ≥ 1 , by the two previous limits, we have

E(Mt/Fs) = Ms, for all s < t.

Hence, M is a continuous L2(Ft)−martingale. Moreover, [Mn]t converges to [M ]t as n −→ ∞ in probability,
for all t ≥ 0 , i.e.

[M ]t =

∫ t

0

(t− s)2α−2|X(s)|2ds, where |X(s)|2 =

∞∑
i=1

X2
i (s).

Similarly, the cross variation of M and N for all t ≥ 0 is

[M,N ]t =

∞∑
i=1

∫ t

0

(t− s)2α−2Xi(s)Yi(s)ds.

2

Now, we define the operator L on H2 by

(LX)(t) = x+
1

Γ(α)

∞∑
l=1

∫ t

0

(t− s)α−1fl(s,Xs)dW
l
s +

1

Γ(α)

∫ t

0

(t− s)α−1g(s,Xs)ds.

Lemma 4.2 The operator L is well-defined on H2([0, T ]) .

Proof Let X ∈ H2 , then for all t ∈ [0, T ] , we get

E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 3
Γ2(α)E

∥∥∥∑∞
l=1

∫ t

0
(t− s)α−1fl(s,Xs)dW

l
s

∥∥∥2
+ 3

Γ2(α)E
∥∥∥∫ t

0
(t− s)α−1g(s,Xs)ds

∥∥∥2 .
By Lemma 4.1 and Hölder’s inequality, we obtain

E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 3
Γ2(α)E

∫ t

0
(t− s)2α−2|f(s,Xs)|2ds

+ 3
Γ2(α)E

∥∥∥∫ t

0
(t− s)α−1g(s,Xs)ds

∥∥∥2
≤ 3E∥x∥2 + 3

Γ2(α)E
∫ t

0
(t− s)2α−2|f(s,Xs)|2ds

+ 3t2α−1

(2α−1)Γ2(α)E
∫ t

0
∥g(s,Xs)∥2ds.
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From (H1) and (H2) , we derive

E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 3
Γ2(α)E

∫ t

0
(t− s)2α−2×

2(|f(s,Xs)− f(s, 0)|2 + |f(s, 0)|2)ds
+ 3t2α−1

(2α−1)Γ2(α)E
∫ t

0
2(∥g(s,Xs)− g(s, 0)∥2 + ∥g(s, 0)∥2)ds

≤ 3E∥x∥2 + 3
Γ2(α)E

∫ t

0
(t− s)2α−22(K2∥Xs∥2 + |f(., 0)|2∞)ds

+ 3t2α−1

(2α−1)Γ2(α)E
∫ t

0
2(K2∥Xs∥2 + ∥g(s, 0)∥2)ds.

Then
E∥(LX)(t)∥2 ≤ 3E∥x∥2 + 6t2α−1|f(.,0)|2∞

(2α−1)Γ2(α) + 6t2α−1

(2α−1)Γ2(α)

∫ t

0
∥g(s, 0)∥2ds

+ 6K2t2α

(2α−1)Γ2(α)∥X∥2H2
+ 6K2t2α−1

(2α−1)Γ2(α)∥X∥2H2
.

Moreover,

sup
t∈[0,T ]

(
E∥(LX)(t)∥2

) 1
2 ≤ 3E∥x∥2 + 6T 2α−1|f(., 0)|2∞

(2α− 1)Γ2(α)

+
6T 2α−1

(2α− 1)Γ2(α)

∫ T

0

∥g(s, 0)∥2ds

+

(
6K2T 2α

(2α− 1)Γ2(α)
+

6K2T 2α−1

(2α− 1)Γ2(α)

)
∥X∥2H2

.

Therefore, ∥LX∥H2 < ∞ . Hence, the map L is well-defined. 2

Theorem 4.3 Assume that (H1) and (H2) hold. Then problem (2.1) has a unique global solution on [0,∞) .

Proof We show that, for every T > 0 , the operator L is a contractive map with respect to some Bielecki-type
norm on H2 which will be defined later. Let X,Y ∈ H2 and t ∈ [0, T ] . Then

E∥(LX)(t)− (LY )(t)∥2 = E

∥∥∥∥∥ 1

Γ(α)

∞∑
l=1

∫ t

0

(t− s)α−1(fl(s,Xs)− fl(s, Ys))dW
l
s

+
1

Γ(α)

∫ t

0

(t− s)α−1(g(s,Xs)− g(s, Ys))ds

∥∥∥∥2

≤ 2

Γ2(α)
E

∥∥∥∥∥
∞∑
l=1

∫ t

0

(t− s)α−1(fl(s,Xs)− fl(s, Ys))dW
l
s

∥∥∥∥∥
2

+
2

Γ2(α)
E
∥∥∥∥∫ t

0

(t− s)α−1(g(s,Xs)− g(s, Ys))ds

∥∥∥∥2 .
By Lemma 4.1 and Hölder’s inequality, we obtain

E∥(LX)(t)− (LY )(t)∥2 ≤ 2
Γ2(α)

∫ t

0
(t− s)2α−2E

∞∑
l=1

(fl(s,Xs)− fl(s, Ys))
2ds

+ 2t
Γ2(α)

∫ t

0
(t− s)2α−2E∥g(s,Xs)− g(s, Ys)∥2ds

≤ 2
Γ2(α)

∫ t

0
(t− s)2α−2E|f(s,Xs)− f(s, Ys)|2ds

+ 2t
Γ2(α)

∫ t

0
(t− s)2α−2E∥g(s,Xs)− g(s, Ys)∥2ds.
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From (H1) , we derive

E∥(LX)(t)− (LY )(t)∥2 ≤ 2K2

Γ2(α)

∫ t

0
(t− s)2α−2E∥Xs − Ys∥2ds

+ 2tK2

Γ2(α)

∫ t

0
(t− s)2α−2E∥Xs − Ys∥2ds

= 2K2

Γ2(α) (t+ 1)
∫ t

0
(t− s)2α−2E∥Xs − Ys∥2ds.

Moreover,
E∥(LX)(t)−(LY )(t)∥2

E2α−1(γt2α−1) ≤ 2(t+1)K2

E2α−1(γt2α−1)Γ2(α)

∫ t

0
(t− s)2α−2E2α−1(γs

2α−1)×(
sup

s∈[0,T ]

√
E∥Xs − Ys∥2
E2α−1(γs2α−1)

)2

ds.

If we choose ∥ · ∥ = ∥ · ∥γ for the Bielecki-type norm on H2 , then the definition of ∥ · ∥γ and the Lemma 4.1
imply that

E∥(LX)(t)−(LY )(t)∥2

E2α−1(γt2α−1) ≤ 2(t+1)K2

Γ2(α) ∥X − Y ∥2γ
( ∫ t

0
(t−s)2α−2E2α−1(γs

2α−1)ds

E2α−1(γt2α−1)

)
≤ 2(t+1)K2Γ(2α−1)

γΓ2(α) ∥X − Y ∥2γ .

In particular,

∥L(X)− L(Y )∥γ ≤ λ∥X − Y ∥γ , where λ =

√
2(T + 1)K2Γ(2α− 1)

γΓ2(α)
.

Choose and fix a positive constant γ such that

γ >
3(T + 1)K2Γ(2α− 1)

Γ2(α)
.

Then λ < 1 , and therefore, L is a contraction mapping. According to the Banach fixed point theorem, the
unique fixed point of this map is the unique solution on H2 of problem (2.1). 2

We are now in the position to prove the continuous dependence of solutions on the initial data on bounded
intervals for the problem (2.1).

Theorem 4.4 Assume that (H1) holds. Then for any bounded time interval [0, T ] the solution of problem
(2.1) depends continuously on x , i.e.

lim
x−→η

∥Xx −Xη∥H2 = 0.

Proof Fix T > 0 and x, η ∈ R . Let Xx
t and Xη

t be two solutions of problem (2.1), i.e.

Xx
t = x+

1

Γ(α)

∞∑
l=1

∫ t

0

(t− s)α−1fl(s,X
x
s )dW

l
s +

1

Γ(α)

∫ t

0

(t− s)α−1g(s,Xx
s )ds,

Xη
t = η +

1

Γ(α)

∞∑
l=1

∫ t

0

(t− s)α−1fl(s,X
η
s )dW

l
s +

1

Γ(α)

∫ t

0

(t− s)α−1g(s,Xη
s )ds.
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It follows that

E∥Xx
t −Xη

t ∥2 = E

∥∥∥∥∥x− η + 1
Γ(α)

∞∑
l=1

∫ t

0

(t− s)α−1(fl(s,X
x
s )− fl(s,X

η
s ))dW

l
s

+ 1
Γ(α)

∫ t

0
(t− s)α−1(g(s,Xx

s )− g(s,Xη
s ))ds

∥∥∥2 .
Then

E∥Xx
t −Xη

t ∥2 ≤ 3E∥x− η∥2

+ 3
Γ2(α)E

∥∥∥∥∥
∞∑
l=1

∫ t

0

(t− s)α−1(fl(s,X
x
s )− fl(s,X

η
s ))dW

l
s

∥∥∥∥∥
2

+ 3
Γ2(α)E

∥∥∥∫ t

0
(t− s)α−1(g(s,Xx

s )− g(s,Xη
s ))ds

∥∥∥2 .
By Lemma 4.1 and Hölder’s inequality, from (H1) , we get

E∥Xx
t −Xη

t ∥2 ≤ 3E∥x− η∥2 + 3K2

Γ2(α)
(t+ 1)

∫ t

0

(t− s)2α−2E∥Xx
s −Xη

s ∥2ds.

By the definition of ∥ · ∥γ , we have

E∥Xx
t −Xη

t ∥2

E2α−1(γt2α−1)
≤ 3E∥x− η∥2 + 3(t+ 1)K2

Γ2(α)
∥Xx −Xη∥2γ

(∫ t

0
(t− s)2α−2E2α−1(γs

2α−1)ds

E2α−1(γt2α−1)

)
.

Therefore, using Lemma 4.1, we obtain

∥Xx −Xη∥2γ ≤ 3E∥x− η∥2 + 3(T + 1)K2Γ(2α− 1)

γΓ2(α)
∥Xx −Xη∥2γ .

Since γ > 3(T+1)K2Γ(2α−1)
Γ2(α) , we have

(
1− 3(T + 1)K2Γ(2α− 1)

γΓ2(α)

)
∥Xx −Xη∥2γ ≤ 3E∥x− η∥2.

We conclude

lim
x−→η

∥Xx −Xη∥H2
= 0.

The proof is complete. 2

5. Talagrand transportation inequalities

Let (X, d) be a metric space and A be the Borel sets on X. We denote by Pp(X) the space of probability
measure. For every p ∈ [1,∞) we define the Wasserstein distance Wp : Pp(X)× Pp(X) → R+ by

Wp(µ, ν) = inf
π∈

∏
(µ,ν)

(∫
X×X

d(x, y)pdπ(x, y)

) 1
p

, where
∏
(µ, ν) is the set of all probability measures on the product space X ×X with marginals µ and ν.
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Definition 5.1 Let µ and ν two measures on (X,A). A measure ν is called absolutely continuous with respect
µ , if we have

∀A ∈ A, µ(A) = 0 =⇒ ν(A) = 0.

We denote this by ν ≪ µ.

For investigation of the Monge–Kantorovich optimal transportation problem, this distance plays an important
role in the minimal cost to transport distribution µ into ν at the cost rate (cost function) d . Proprieties and
some applications of the Wasserstein distance can be found in the important contribution by Ambrosio et al.
[3] and Villani [39].

The relative entropy of the probability measure ν with respect to µ is defined by

H(µ|ν) =


∫
X
ln dν

dµdν, ν ≪ µ,

∞, otherwise.

Definition 5.2 Given probability measure µ, if there exists C > 0 such that for every probability measure ν ,

W2(µ, ν) ≤
√
CH(µ|ν),

then we say µ satisfies the transportation and entropy inequality.

In this section we study the transportation inequality of the the following problem:
cDαXt = f(t,Xt)dWt + g(t,Xt)dt, t ∈ [0, T ],

X0 = x ∈ R,
(5.1)

where α ∈
(
1
2 , 1
)
, f, g : R+ × R → R are continuous functions.

In 1996, Talagrand [38] estimated the transportation distance (or Wasserstein distance) with a quadratic
cost of the standard Guassian measure by the entropy functional. Transportation-cost inequalities have been
recently deeply studied, because of their connection between the concentrations of measure phenomenon, or
for deviation inequalities for Markov processes [21, 26]. The Talagrand inequality was generalized by Otto and
Villani [32].

By means of Girsanov’s formula, Djellout et al. [16] obtained a direct proof of Talagrand’s transportation
inequality for the law of a diffusion process. This idea was used for stochastic differential equations [4, 7–9, 27].

5.1. Transportation inequality

Now, we will establish the transport inequality for the solution of (5.1).

Theorem 5.3 Assume that the conditions (H1) and that there exists M > 0 such that

|f(t, x)| ≤ M, for all (t, x) ∈ [0, T ]× R,

hold, and let Px be a law of the proesses Xt(x, ·) solution of the problem (5.1). Then

W2(Px,Q) ≤
√
2CH(P|Q).
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Proof Let Q ∈ P(C([0, T ],R)) such that Q ≪ Px . Consider

Q̂ =
dQ
dPx

(X·(x, ·))P.

Then

H(Q̂|P) =

∫
Ω

ln

(
dQ̂
dP

)
dQ̂

=

∫
Ω

ln

(
dQ
dPx

(X·(x, ·))
)

dQ
dPx

(X·(x, ·))dP

=

∫
C([0,T ],R)

ln

(
dQ
dPx

)
dQ
dPx

dPx

=

∫
C([0,T ],R)

ln

(
dQ
dPx

)
dQ

= H(Q|Px).

As in [16], there exists f̂ ∈ L2([0, T ],R) with
∫ T

0
|f̂(s)|2ds < ∞ , P -almost surely, such that

H(Q̂|P) = H(Q|Px) =
1

2
EQ̂

(∫ T

0

|f̂(s)|2ds

)
.

By the Girsanov theorem, the following process Ŵt defined by

Ŵt = Wt −
∫ t

0

f̂(s)ds

is a Brownian motion with respect the filtration (Ft)t≥0 on the probability space (Ω,F , Q̂). We consider the
following problem for the fractional stochastic differential equation


cDαYt = f(t, Yt)dŴt + g(t, Yt)dt, t ∈ [0, T ],

Y0 = x ∈ R.
(5.2)

From Theorem 4.3, there exists a unique solution Y ∈ H2([0, T ]) such that

Yt = x+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Ys)dŴs +
1

Γ(α)

∫ t

0

(t− s)α−1g(s, Ys)ds.

Under Q̂ , the law of (Yt)t∈[0,T ] is exactly Px . Hence (X,Y ) , under Q̂ , is a coupling of (Q,Px) . This implies
that

W2(Q,Px)
2 ≤ EQ̂∥X − Y ∥2∞.
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Let t ∈ [0, T ] . Then

EQ̂|Xt − Yt|2 = EQ̂

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1(f(s,Xs)− f(s, Ys))dWs

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Ys)f̂(s)ds

+

∫ t

0

(t− s)α−1(g(s,Xs)− g(s, Ys))ds

∣∣∣∣2

≤ 3

Γ2(α)
EQ̂

∣∣∣∣∫ t

0

(t− s)α−1(f(s,Xs)− f(s, Ys))dWs

∣∣∣∣2

+
3

Γ2(α)
EQ̂

∣∣∣∣∫ t

0

(t− s)α−1f(s, Ys)f̂(s)ds

∣∣∣∣2

+
3

Γ2(α)
EQ̂

∣∣∣∣∫ t

0

(t− s)α−1(g(s,Xs)− g(s, Ys))ds

∣∣∣∣2 .
Thus

EQ̂|Xt − Yt|2 ≤ 3K2

Γ2(α)

∫ t

0

(t− s)2α−2EQ̂|Xs − Ys|2ds

+
3

Γ2(α)
EQ̂

∣∣∣∣∫ t

0

(t− s)α−1f(s, Ys)f̂(s)ds

∣∣∣∣2

+
3

Γ2(α)
EQ̂

∣∣∣∣∫ t

0

(t− s)α−1(g(s,Xs)− g(s, Ys))ds

∣∣∣∣2 .
It follows from Hölder’s inequality,

EQ̂|Xt − Yt|2 ≤ 3K2

Γ2(α)

∫ t

0

(t− s)2α−2EQ̂|Xs − Ys|2ds

+
3

Γ2(α)
EQ̂

∣∣∣∣∫ t

0

(t− s)α−1f(s, Ys)f̂(s)ds

∣∣∣∣2
+

3K2

Γ2(α)

∫ t

0

(t− s)2α−2ds

∫ t

0

EQ̂|Xs − Ys|2ds

≤ 3K2

Γ2(α)

∫ t

0

(t− s)2α−2EQ̂|Xs − Ys|2ds

+
3K2M2

Γ2(α)

∫ t

0

(t− s)2α−2dsEQ̂∥f̂∥
2
L2

+
3K2

Γ2(α)

∫ t

0

(t− s)2α−2ds

∫ t

0

EQ̂|Xs − Ys|2ds.
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Then

EQ̂|Xt − Yt|2 ≤ 3K2

Γ2(α)

∫ t

0

(t− s)2α−2EQ̂|Xs − Ys|2ds

+
3K2M2

(2α− 1)Γ2(α)
t2α−1EQ̂∥f̂∥

2
L2

+
3K2

Γ2(α)

∫ t

0

(t− s)2α−2ds

∫ t

0

EQ̂|Xs − Ys|2ds.

Further, we have

EQ̂|Xt − Yt|2 ≤ 3K2M2T 2α−1

(2α− 1)Γ2(α)
EQ̂∥f̂∥

2
L2 +

3K2T 2α−1

(2α− 1)Γ2(α)

∫ t

0

EQ̂|Xs − Ys|2ds

+
3K2

Γ2(α)

∫ t

0

(t− s)2α−2EQ̂|Xs − Ys|2ds.

Let

V(t) = C1 + C2

∫ t

0

EQ̂|Xs − Ys|2ds, t ∈ [0, b].

Then
V ′(t) = C2EQ̂|Xt − Yt|2, V(0) = C1

and

EQ̂|Xt − Yt|2 ≤ V(t) + C3

∫ t

0

(t− s)β−1EQ̂|Xs − Ys|2ds,

where

C1 =
3K2M2T 2α−1

(2α− 1)Γ2(α)
EQ̂∥f̂∥

2
L2 , C2 =

3K2T 2α−1

(2α− 1)Γ2(α)
, C3 =

3K2

Γ2(α)
, β = 2α− 1.

Furthermore, by Lemma 3.3

EQ̂|Xt − Yt|2 ≤ V(t) +
∫ t

0

∞∑
n=1

(C3Γ(β))
n

Γ(nβ)
(t− s)nβ−1V(s)ds

≤ V(t) +
∫ t

0

∞∑
n=1

(C3Γ(β))
n

Γ(nβ)
(t− s)nβ−1V(t)ds.

Therefore

EQ̂|Xt − Yt|2 ≤

[
1 +

∞∑
n=1

(C3Γ(α)T
β)n

Γ(nβ + 1)

]
V(t).

Then

EQ̂|Xt − Yt|2 ≤ C1E(C3Γ(β)T
α) + C2E(C3Γ(β)T

α)

∫ t

0

EQ̂|Xs − Ys|2ds.
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By Gronwall’s Lemma

EQ̂|Xt − Yt|2 ≤ C1E(C3Γ(β)T
α)etC2E(C3Γ(β)T

α) t ∈ [0, T ].

This means that

EQ̂|Xt − Yt|2 ≤ C

2
EQ̂∥f̂∥

2
L2 t ∈ [0, T ],

where

C =
6K2M2T 2α−1eTC2E(C3Γ(β)T

α)

(2α− 1)Γ2(α)
E(C3Γ(β)T

α).

Thus it follows,

W 2
2 (Px,Q) ≤ CH(Px|Q).

The proof of this lemma is complete. 2

Now, we give the continuity dependance result via the Wasserstein distance.

Theorem 5.4 Assume that the condition (H1) holds. Then, for every pair of solutions Xt, Yt to (5.1), with
respective laws µt, νt ∈ P2(H2([0, T ])) , such that the initial data X0, Y0 ∈ L2(Ω,P) , we have

W2(µt, νt) ≤ C(t)W2(µ0, ν0),

where µ0, ν0 are laws of X0, Y0 , respectively, and C ∈ C([0, T ],R) .

Proof From [39], it is clear that we can rewrite W2 in the following form,

W2(µt, νt) = inf{
[
E∥X· − Y·∥2∞

]2
: law(Xt) = µt, law(Yt) = νt}.

Since Xt, Yt are solutions of (5.1), then

Xt = X0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s,Xs)dWs +
1

Γ(α)

∫ t

0

(t− s)α−1g(s,Xs)ds

and

Yt = Y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Ys)dWs +
1

Γ(α)

∫ t

0

(t− s)α−1g(s, Ys)ds.
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Thus

E|Xt − Yt|2 = E
∣∣∣∣X0 − Y0 +

1

Γ(α)

∫ t

0

(t− s)α−1(f(s,Xs)− f(s, Ys))dWs

+

∫ t

0

(t− s)α−1(g(s,Xs)− g(s, Ys))ds

∣∣∣∣2
≤ 3E|X0 − Y0|2

+
3

Γ2(α)
E
∣∣∣∣∫ t

0

(t− s)α−1(f(s,Xs)− f(s, Ys))dWs

∣∣∣∣2

+
3

Γ2(α)
E
∣∣∣∣∫ t

0

(t− s)α−1(g(s,Xs)− g(s, Ys))ds

∣∣∣∣2
≤ 3E|X0 − Y0|2 +

3K2

Γ2(α)

∫ t

0

(t− s)2α−2E|Xs − Ys|2ds

+
3K2t2α−1

(2α− 1)Γ2(α)

∫ t

0

E|Xs − Ys|2ds.

By the same argument of Theorem 4.4, we can prove that there exist M1,M2 ≥ 0 such that

E|Xt − Yt|2 ≤ M1e
M2tE|X0 − Y0|2, t ∈ [0, T ].

Since law(Xt) = µt and law(Xt) = µt , then

W 2
2 (µt, νt) ≤ E|Xt − Yt|2.

By taking the infimum over X0 and Y0 , we obtain

W 2
2 (µt, νt)

2 ≤ M1e
M2tW 2

2 (µ0, ν0), t ∈ [0, T ].

2
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