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Abstract: Let J,(z) denote the Bessel function of the first kind of order v. In this paper, our aim is to determine the
radii of starlikeness and convexity for three kind of normalization of the function N, (z) = az>J]/(z) + bzJ,(2) + ¢J.(2)
in the case where zeros are all real except for a single pair, which are conjugate purely imaginary. The key tools in the
proof of our main results are the Mittag—Leffler expansion for function N, (z) and properties of real and complex zeros

of it.
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1. Introduction

Denote by D, ={z € C: |z|] <r} (r>0) the disk of radius r and let D = D;. Let A be the class of analytic
functions f in the open unit disk D which satisfy the usual normalization conditions f(0) = f/(0) —1 = 0.
Traditionally, the subclass of A consisting of univalent functions is denoted by S. We say that the function f
€ A is starlike in the disk D, if f is univalent in D,., and f(D,) is a starlike domain in C with respect to the

origin. Analytically, the function f is starlike in D, if and only if Re (z;ég)) >0, z€D,. For €[0,1) we

say that the function f is starlike of order 8 in D), if and only if Re (ZJ’:ES)) > B, z € D,. We define by the

real number
zf'(2)
f(z)

Tz(f):SUP{TE(O,Tf)1R€< )>Bforallz€ID)T}

the radius of starlikeness of order f of the function f. Note that 7*(f) = r§(f) is the largest radius such that

the image region f (Dr;(f)) is a starlike domain with respect to the origin.

The function f € A is convex in the disk D, if f is univalent in D,, and f(D,) is a convex domain in

C. Analytically, the function f is convex in D, if and only if Re (1 + ZJ{,/;S)) >0, z€D,. For 3 €[0,1) we

say that the function f is convex of order g in D, if and only if Re (1 + Z]{,/ES)) > (3, z € D,.. The radius of
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convexity of order 8 of the function f is defined by the real number

2f"(2)
f'(z)

rg(f):SUP{TE(O,Tf):Re<1+ >>Bforalle]D)T}.

Note that r°(f) = r§(f) is the largest radius such that the image region f(ID,c(s)) is a convex domain.
The Bessel function of the first kind of order v is defined by [16, p. 217]

> -1 n 2\ 2n+v
() = n;) M (2) (€C). (1.1)

We know that it has all its zeros real for ¥ > —1. In this study, we consider mainly the general function
N, (2) = az®J/!(2) + b2J,(2) + cJ, (2)

where (¢=0 and b#a) or (¢>0 and b> a), studied by Mercer [15].

From (1.1), we have the power series representation

Q(2n +v) "z 2nty
Z n!l'(n+ v + 1)) (5) (€0C), (1.2)

where Q(v) = av? + (b—a)v+ ¢ (a,b,c € R).
Note that NN, is not belongs to A. To prove the main results, we need normalization of the function N, . In

this paper, we will be concerned with the following normalized forms

_ [rre+y, v
fl/(z) - Q(Z/) Nl/( ) )

2T (v+ 1)zt B
gV(Z) - Q(V) NV( )7

YI'(v 2%
mi) = PN W),

There are three important works on the function N,. First one is Mercer’s paper [15], which has proved that
the k" positive zero of N, increases with v in v > 0. Second one is the study of Ismail and Muldoon [10],
who showed that under the conditions a,b,c € R such that (c=0 and b#a) or (¢>0 and b>a);

(i) For v > 0, the zeros of N,(z) are either real or purely imaginary,

(ii) For v > max{0,vp}, where vg is the largest real root of the quadratic Q(v) = av(v — 1) + bv + ¢, the

zeros of N,(z) are real,

(iii) If v > 0, Q(v),/(b—a) > 0 and a,/(b—a) < 0, the zeros of N, (z) are all real except for a single pair,

which are conjugate purely imaginary.

Lastly, Baricz, Caglar and Deniz [4] obtained sufficient and necessary conditions for the starlikeness of a
normalized form of N, by using the results of Mercer [15], Ismail and Muldoon [10] and Shah and Trimble [17].
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Recently, in [12] authors obtained radii of starlikeness and convexity of order § for the function f,,g, and h,
under the condition (ii) related with the zeros of N, (z). Also, for studies on the geometric properties of Bessel
functions, see [1-9, 13, 18]. In this paper, we deal with same problem for the condition (iii). The key tools in
their proofs were some new Mittag—Leffler expansions for quotients of the function N, , special properties of
the zeros of the function N, and their derivatives.

In the rest of this paper, the quadratic Q(v) = av(v — 1) + bv + ¢ will always provide on a,b,c € R
(c=0 and a#b)or (c>0 and a<b).

1.1. Zeros of hyperbolic polynomials and the Laguerre—Pdlya class of entire functions

In this subsection, we recall some necessary information about polynomials and entire functions with real zeros.
An algebraic polynomial is called hyperbolic if all its zeros are real. We formulate the following specific statement
that we shall need, see [9] for more details.

By definition, a real entire function v belongs to the Laguerre-Pélya class LP if it can be represented

in the form

_ m 7a:1:2+['3:c 1 i -
Y(x) = cx™e H(erk e Tk,
E>1
with ¢, 8,2, € R, a > 0, m € NU{0} and }_ x;Z < 00. Similarly, ¢ is said to be of type Z in the Laguerre-Pélya
class, written ¢ € LPZ, if p(x) or ¢(—x) can be represented as

with ¢ € R, ¢ >0, m € NU{0}, zx > 0 and Zx,:l < 00. The class LP is the complement of the space of
hyperbolic polynomials in the topology induced by the uniform convergence on the compact sets of the complex
plane, while £LPZ is the complement of the hyperbolic polynomials whose zeros possess a preassigned constant

sign. Given an entire function ¢ with the Maclaurin expansion

xk’
pla) = oy

E>0
its Jensen polynomials are defined by
~/m
Puliia) = Pata) = p )t
k=0

In [12], authors proved the following lemma by using above the class £LP and Jensen polynomials.

Lemma 1.1 [12] If v > max{0,1p} then the functions z — ¥, (z) = %Ny(z) has infinitely many zeros

and all of them are positive. Denoting by A, the n'™ positive zero of W, (z), under the same conditions the

Weierstrassian decomposition
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is valid, and this product is uniformly convergent on compact subsets of the complex plane. Moreover, if we
denote by N, the n'™ positive zero of ®},(z), where ®,(z) = 2"V, (2), then the positive zeros of W, (z) are

interlaced with those of ®!,(z). In the other words, the zeros satisfy the chain of inequalities

M1 <A1 <Ao<Aa<A3<Az<--.

Following lemmas are key tools in the proof of main results.

Lemma 1.2 [12] The following equality holds

A2 A +1)QW)’

n>1 v

Z 1 Qv +2)

where A, s the nt? positive zero of N,,.

The zeros z7YN,(z) = 0 are taken to be £\, ,, where n € N* = {1,2,3,...}. We may suppose without
restricting the generality that A\, 1 =ia, A, ; =id/, 0 <o’ <aand A\, 5 < A2 <A, 3 <A 3<--<A,, <
Avn < oo+ It is well-known that o/ < X, 5 and a < A, .

Lemma 1.3 [12] If v > 0,, then we have

2

z2f1(2) 12N/ (2) :1_12 2z
v 2

fV(Z) VNV(Z) n>1 V,n_ZQ,

W) L N 22

we - TR T XEg
hyz) v, 1VENLWE) _ :

T E NI 17 R Db ey

These series are uniformly convergent on every compact subset of C\ {£\,,, : n € N}.

Lemma 1.4 [12] If v > 0, then we have

1/// 1 22 22
1+Z£(i§)1<y1)zvz_zzzwz_z2’ (1.3)

n>17vn n>1 7 vn
29/ (2) 222
1 =1- 1.4
MIE R Ve -
n>1 ’
and
zhl!(2) z
1 L =1-— (1.5)
TE R Ve pe
where A}, ,,, 0, and 7, are the nt" positive zeros of the functions N, ¢!, and h',, respectively.
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Lemma 1.5 [3]/IfveC, § € R and 6 > |v|, then

|v] v — [v]
> > . 1.
6—&-|11|*Re d+v) = 06—l (L7)

Moreover, v € C, v,6§ ER and v > 8§ >r > |v|, then

r2

U2
(EDRED (mm—)) ' (1.8)

2. Main results

2.1. Radii of starlikeness and sonvexity of the functions f,, g, and h,

For convenience in the rest of the paper, we shall use the following notation
M,(z) = i VN,(iz) =i [az?J)(iz) + bzJ)(iz) + cJ, (iz)]
az?T!(2) + b2l (2) + cl, (2),

where I,(z) denotes the modified Bessel function of the first kind and order v. Note that I, (z) =i~ J,(iz)

and I,(y/z) = (=1)""/2J,(vV—==2).

The first principal result gives the radii of starlikeness of the functions f,, g, and h,.

Theorem 2.1 Let 8 € [0,1), v >0, Q(v) /(b—a) >0, a/(b—a) <0 and Qg(j)z) < 0. The following

statements hold:

a) The radius of starlikeness of order B of the function f, is the smallest positive root of the equation

1 ar31” (r) + (2a + b)r21! (r) + (b + ¢)rI.(r)

y ar21/(r) + brIl,(r) + eI, (r) =5

b) The radius of starlikeness of order B of the function g, is the smallest positive root of the equation

ard I (r) + (20 + b)r*1)(r) + (b+ O)rIy(r) _
(I—v)+ ar2I!(r) + brll(r) + cl,(r) -

c) The radius of starlikeness of order [ of the function h, is the smallest positive root of the equation

ary/rI)'(v/r) + (2a + b) rI(Vr) + (b + ) VrI(VT)

(2-v)+ arll!(\/7) + by/rI(\/7) + cl,(\/T)

—28.

Proof a): In view of Lemma 1.3, we have

2fy(z) _1z2N)(z) 1 22
fo(z) v No(2) ! VZ 7
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From hypothesis of Theorem 2.1, we can write A, ;1 = ia (a > 0). Thus, from Lemma 1.2 we obtain

zfl(2) 1 1 a?2? 1 22
ASTNE —2 14|22 L o 2
fu(2) * v a2 + 22 Z A2, - + v\ a?+22a? nz>:2 A2, — 22
_ 2 0[22' Z I/ + 2) 2 Z Z2
V a4+ 22 = )\2 (v —l— 1DHQR(v) v A2, — 22
_ 1_1 a?Qv+2) 22 2Za 2402, 24

v \2v+1)Qv) a2 + 22

On the other hand, replacing z by 22 in (1.7) and (1.8), we get

22 2 A A

R > d >R . 2.1
‘2Tz M (@2 =72) (A2, +72) ~ ¢ (a2 +22) (A2, — 2?) 1)

Therefore, since ;(‘2%7';5(23) < 0, we have

2f1(2) 1 a?Q(v +2) r2 o+ /\12, n rd
Mgwﬂz”vzmwwwtﬂﬂg X, (22 (2, 1)

Consequently, the following equality holds

. @\ 1 [ et o2, .
zé%f?‘) Re ( fu(z) ) = v (2(1/ +1)Q() a2 —r2 2 Z A, (@2—r2) (A2, +712)

n>2

(2.2)

Since, the mapping

(00— R = D) L e
X ¢ , (X , X\T) = - v a2 —r2 >\12/n+r2

z=1ir n>2

is strictly decreasing and

lim =1> 4, lim x(r) = —o0,
lim x(r) B, lim x(r)

it follows that the equation x(r) = § has a unique root r € (0,«) for every 5 € [0,1). A simple calculation

shows that the equation x(r) = g is equivalent to

1 ar31 (r) + (2a + b)r21! (r) + (b + ¢)rIl(r)
v ar2l!(r) + borl(r) + el (r)

=B.

Finally, (2.2) implies that

(zfy( 2)

i )> > 8, zeU(r),
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where r1 is the biggest real value having this property.

b): According to Lemma 1.3, we have

gu(z) ns1 v
By replacing A, 1 = ia, we get
2g.,(2) 22 22 a?z? 1 22
N ) ) e AR— ) LA | W S S
gv(2) a? + 22 nzz:z A2, — 22 a? + 22 o? nzz:z A2, — 22

Now, using the equality in Lemma 1.2 it seems that

/ 2,2 1 2 2
95) = 142 Szz 2 o2 _22 22 2
gl/(z) o +z n>2 )‘u,n 4(” + 1)@(1/) n>o v Z
_a’Qw+2) 9 a® + A7, 2
W+ DQU) @+ 2 2 X, (@) (L, )

Let r be a fixed number r € (0,«) and z € U(0,7). The minimum principle for harmonic functions implies

2g.,(2) . a2Q(v +2) 22 a? + )\,2,771 24
Re(P5) = e (1 TN e R 2l o, @A g, )

n>2

v

2Qv+2) 22 a? + A7, 24
in Re | 1 — -2 s
|Iz1\n:nr ¢ ( 2(v+1)Q(v) a2 + 22 T; A, (2 +22) (A2, —2?)

= 1-

szQ(V +2) . 22 _o Z a? + )\g,n Re 24
WrNQW) At 2Tz, et (R, - )

Thus, from (2.1) and M < 0, we have

2(v+1)Q(v
/ 2 2 2 4 )2 4
O CAC A TS B w ; |
v (2) 2w+ 1)Qv) a? — 12 = Na (@2-1?) (A2, +72)

Consequently, the following equality holds

4

. Re(zg;(z)) _ o, 0%t 2 Zauxﬁ,n r
0\ a(?) 20+ DQW) a2 — 2 AT X2 (a2 —12) (A2, +12)

= w® (29)
Since, the mapping
29, (2) 2 1 1
v:(0,a) — R, o(r)= =1-2r
9 (2) |_ir a? — 2 nzzzz A2+ 2
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is strictly decreasing and

lim o(r)=1> B, lim ¢(r) = —oo,
limp(r) = 1> B, lim (r)

it follows that the equation (r) = 8 has a unique root ro € (0,«) for every S € [0,1). A simple calculation
shows that the equation ¢(r) = 3 is equivalent to
ar31 (r) + (2a + b)r2I (r) + (b + )r1l(r)

(1-v)+ ar?I”(r) + brl’(r) + el (7) -7

Finally, from (2.3) we have

Re (%) > B, z€U(r),

where ro is the biggest real value having this property.

c): In a similar way to the proof of Theorem a), we deduce from Lemmas 1.2 and 1.3

zhy(2)\ _ a?Q(v +2) z a2+ A2, 22
fte ( hy(2) ) =1 4(v 4+ 1)Q(v) Re a4z 7;2 A2, Re (@2 +2) (X2, —2) (2.4)

where z € U(0,7) and r € (0,a?). We get from (1.7), (1.8) and (2.4) the inequality

zh),(2) a?Qv+2) r a?+ 22, r2
R v > 1 _ El
¢ ( hy(2) ) = 4v+1)QW)a? —r ; A, (@2=r)(A2,+7)

holds true. Equality holds for z = —r. Consequently, it follows that

() =

Since the function ¢ : (O, a2) — R, defined by

_ _ a?Q(v+2) r o? + )\,%m, r2
wlr) = _Th,,(—r) =L+ v+ 1)Qw)a?—r B Z

2
is strictly decreasing, and for % <0,

limp(r)=1> 4§ and  lim, o(r) = oo,

it follows that the equation —TZ/”gjg = (3 has a unique root 73 € (0,a?). These results imply that 73 is the

biggest value for which

Re (iii’é?) > B, ze€U(rs).

A short calculation shows that —rzi’g::g = [ is equivalent to

Loy + Qa+ b r(V) + (b + 0) VT (V)

2-v) arI/(\/r) + by/rI, (V) + eI, (V)

= 20,
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and the proof is done. O

When v = 1.5, considering the special values of a,b,c € R, radii of starlikeness of the functions f,, g,
and h, are seen from the Table 1. If the values of b and ¢ are fixed constant and the value of a is increased,
radii of starlikeness of the functions f,, g, and h, are monotone decreasing. If the values of a and ¢ are fixed
constant and the value of b is increased or the values of ¢ and b are fixed constant, and the value of ¢ is
increased, radii of starlikeness of the functions f,, g, and h, are monotone increasing. In addition, according

to the increasing values of [, it is clear that radii of starlikeness of the functions f,, g, and h, is decreasing.

Table 1. Radii of starlikeness for f,, g, and h, when v = 1.5.

™ (fv) 7 (g) 7 (hy)
=0 | =05|p=0 | =05|8=0 | =05
b=-5|a=3|1.2886 | 1.0771 1.1666 | 0.9505 1.8772 | 1.3609

and a= 0.9512 | 0.7782 | 0.8510 | 0.6766 | 1.0368 | 0.7242
c= a=>5 | 0.7406 | 0.5998 | 0.6588 | 0.5181 | 0.6329 | 0.5485
a=-2|b=210.9630 | 0.7878 | 0.8615 | 0.6848 | 1.0629 | 0.7422
and b= 1.3384 | 1.1212 | 1.2131 | 0.9910 | 2.0225 | 1.4717

c=1 b=4 | 1.7306 | 1.4940 | 1.5939 | 1.3521 | 3.3226 | 2.5404
a=—-2]c=4 04920 | 0.3948 | 0.4354 | 0.3392 | 0.2812 | 0.1896
and c= 0.7015 | 0.5663 | 0.6230 | 0.4883 | 0.5692 | 0.3881
b=-1|c=6 | 0.8660 | 0.7034 | 0.7717 | 0.6088 | 0.8637 | 0.5955

In second principal result, we obtained the radii of convexity of the functions f,,g, and h, .

Theorem 2.2 Let 8 € [0,1), Q(v) /(b—a) >0, a/(b—a) <0 and Q ujz)

((9( 7 < 0. The following statements
hold:

a) If 0 <v <1 then, the radius r5(f,) is the smallest positive root of the equation

1+

M) (1 1) M)

M (r) v ) M,(r)

b) If v > 0 then, the radius T (g9,) is the smallest positive Toot of the equation

r2M!"(r) + (2 —2v) rM.(r) + (1/2 - V) M,(r)
Lt PML(r) 1 (L) M, (r) =45

c) If v > 0, then the radius rg(hu) is the smallest positive root of the equation

rM(/F) + (3~ 20) VEML(/P) + (v — 20) My ()

o TV 22— ) Mo () -
Proof a) Observe that
2f)(z) NI (1 ZN(Z)
T N )RS
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Now, we consider the following infinite product representations

N,(z) = %g (1_;;) and N/ (z )— 2vr 1;[ ( X2 ) (2.5)

v,n

th

where A, , and X, are the n'* positive zeros of N, and N}, respectively. The logarithmic differentiation on

v,n

both sides of the above relations yields

" 2 2
R oIkl Rl DI R W 20

v n>1 """ n>1""V"n

By using Lemma 1.1, the conditions v >0, Q (v) /(b—a) >0 and a,/(b—a) <0 imply A\, ; = ia, A\, ; = id/
and a,a’ >0, Ay, A, >0 for n € {2,3,...}. Thus, we obtain that

f”(z) 1 22 222 22 9,2
A (e | PEa—— 2 = . 2.7
f’() * v a? + 22 Z/\2 — 22 + a'? 4 2 Z/\IZ _ .2 (2.7)

n>2 "V n>2 “vn

On the other hand, the convergence of the function series in (2.6) is uniform on every compact subset of
C\ ({)‘wn |neN}U {/\,’/n | n € N}) .
Additionally, from Lemma 1.2 and (2.5) we get the following equalities

S Q<”+2 _ (v +2)Q+2)
,; 2 A +1H)Q and Z gn_m- (2.8)

,n

Using above equalities, we obtain that

S0 (A [ (e e ) 2
b fiz) 1+<V 1) [2a2+22 Z)\% 4v+1DQ(>v) 22)\2 _ 2

o2 1 (r+2)Q(v+2) 22
- — 2.9
* '? 4 22 g A2 v+ 1D)Qv) 7;2 2, — 22 (2.9)
The equality (2.9) implies
" 2 2 2 2 4
+ A
1+ 2fV(2) _ 1<11> a?Qv+2) =z +QZQ o z
702) v ) e newar 2 TP TN, (2t ) (02, — )
,2 2 12 2 4
_ (V+2)Q( +2) < _2Za +/\V,n z
w+1QW)  a”+22 i M (a7 +22) (A2, -2
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For 0 < v <1, by using (1.7) and (1.8), for all z € D, and Qg&’f) < 0 we obtain the inequality

2f)(2) 1 Qv +2)  r? o? + A0, r
Re (1 T () ) z 1+ (; B 1) [2 v+ 1)Q(v) a? —r? -2 Z A2, (a2 —12) ()\12,7»,1 + 7'2)
Q

n>2
N % (v+2) (V+2) r2 _QZa +A’3n i r
2v(v+1)Q(v) s N2, a's — 7”2) (>\§/2,n + 7"2)
sz’(z))
( L(Z) z=1ir
This means that
. L @) £ (ir) 1 r?
zé%{r)Re( fu()) l—Hrf,,( ) L a2 — g2 7;2/\2 ¥r2

- +Z/\/2 Fr2’

n>2

for all r € (0,a’). Let us consider the function @ : (0,a’) — R, defined by

1l (ir) 1 r2 2r2
7 R PRy Sk B e 2wt D

n>2 v,n
This function satisfy lim,~,0®(r) =1 > §, lim, »o &(r) = —o0, and
(P/('r‘) _ 1 _q 4ra? _ Z 47’)\12,_’71 - + Z 47”)\/2
B v (az - 7“2)2 n>2 ()\12”" + T2)2 n>2 )\/2
1 dra 4r
(= -1 — —
= (V ) (Oé2 - T2)2 T;Z )‘z,n - + Z un

1 —4ra? Ar - QU +2)r ] dra’? Ar | (v +2) QW +2)r
< <V 1) [(ag ) PR R 1)@(1,)} (@? —12)2 Tt 2+ 1)00)
1 Qv+2)r  (w+2)Qv+2)r
< G-V eimen Sorer <

In other words, the function @ maps (0,a’) into (—oo,1) and is strictly decreasing. Thus the equation

1+r 7 ((z:)) = [ has exactly one root in the interval (0,a’), and this equation is equivalent to Theorem

2.2-a. If we denote the unique root of the equation 1 + Zr)}[;’((zr) B, by r4 € (0,a). then by using the

minimum principle of harmonic functions, we have that

2, (2)
Re (1 + 70 ) > 0 for all z € U(0,74),
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zie%fr4 Re (1 + ZJ{Z’(S)> =0, Zienui Re (1 + ZJ{;&?) < B, for r > ry.

b) In view of (1.4), we have

Let 4,1 =146, 6 > 0. Thus, we obtain

/" 2
29, (2) 9
1 =14+2—— — =1 2 — .
* /(Z) * 92+ 2 Zz 12/717’2 - 292 ZZ 12/717’2
On the other hand, the convergence of the function series in (1.4) is uniform on every compact subset of

C {d,n | n € N}. Integrating both sides of the equality (1.4), it follows that

9. =11 (1 - (5) : (2.10)

n>1 v,n

The convergence of this infinite product is uniform on every compact subset of C. Comparing the coefficients

of 22 on both sides of (2.10), we get the following equality

— M (2.11)

52 A+ 1)Q(v)

n>1 vV

The equality (2.11) implies

1 3Q+2) s 1

7 i+ DQw) &,
and using this, we obtain that
zgl(2) 6222 1 3Q(v+2) 22
1+ = 14257 Z 2 - 22 2 2
g,’/(z) 0%+ 2 n>2 /\V,n 4(V + 1)@(”) n>2 6u,n -z
302Q(v +2) 22 Z 0%+ 02, 2%

T DR P2 52, (02+2) (5%, -2)

n>2

30%2Q((v+2)

iorna <0, and taking v = 2% in the inequality (1.7), we get

On the other hand, we have

52 2

R662+22 29277,2

for all |z| <7 < 0. Moreover, taking r = 2?2 in the inequality (1.8) it follows that

7n4 Z4

>
(02 —r2) ()\?,n + 7"2) 2 Re (02 + 22) (A?,n — 22)
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for all |z| <r <6 and n € {2,3,...}. Summarizing, provided that |z| <r < 6, the following inequality holds

zg)(2) 30°Q(rv+2) r? 0% +~2, 7
Re (1 > 1 -2 ’ .
(* gy<z>> T2+ DQW) 2 — 12 Z Ven (07=72) (32, +72)

This means that

v

: 29, (%) - g (ir) r r
f <Re(1l =1 =1-2—-—5+2 S
2eU, { ¢ < * g,(2) o g, (ir) 2 nZ: 02, +r%’

for all r € (0,6). Now, let us consider the function © : (0,0) — R, defined by

7“2 7“2 g”(ir)
12 " oS gy
o(r) 02 —r2 + 7;2 62, + 12 o g, (ir)

For v >0, Q (v) /(b—a) > 0 and a,(b—a) < 0, this function satisfy lim,\ 0 O(r) =1 > 3, lim, »g O(r) = —oc0

and

. 4702 47’53” 4r0? 4r
o'r) = - (62 — 2)2 + (62, + r2)? < _(92 —12)2 + 52
n>2 W n>2 V"

4r6? dr 3rQ(v +2) 3rQ(v + 2)
@2 T E T LT 0Qw) S v )W)

In other words, the function @ maps (0,6) into ,1) and is strictly decreasing. Thus, the equation

(=00
1+ar 9, 8:; B has exactly one root in the interval (0,0), and this equation is equivalent to Theorem 2.2-b. If
)

Qu ) (ir
L(ir) T

we denote the unique root of the equation 1+ ir B by r5 € (0,6), then by using the minimum principle

of harmonic functions we have that

) > (8 for all z € U(0,r5),

1 1!
inf Re (1 + g”(z)> — 3, inf Re <1+ Zg”(z)) <B, for r>rs,

ZGUTS g{,(Z)

and the proof is done.

c) Lemma 1.5 implies that

Let v,1 =ik, &> 0. Then, we have

zh})(2) z z K2z 1 z
1 =1 - =1 - _ .
+h:/(Z) +K32+Z Z 2 — +I‘E2+ZK?2 Z 2 — 2
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On the other hand, similarly to Theorem a), we obtain the following equality

252, T A QW)

Z 1 Qv+2)

which in turn implies that

1 1 Qv +2)
APkt s eTr)

2

Thus, we get
zh!(2) K2z 1 Qv+2) z
L) _ ) 2.12
W) e |\ X TR0 ) T s (212
I{2Q(V + 2) z Z Hz +Vgn 22

DR R +e 24 2, (R t2) (.- 2)

Since |z| <r < k* <42, , then the inequalities (1.7) and (1.8),implies that

Re { K2Qv+2) =z } - K2Qw+2) r
2

2w+ 1)Qv) K2 + 2 v+ 1)Q(v) K2 -1’
and

Re

Vg,n ('%2 + Z) ('ng - Z) ’Y;%;,L (HQ - ’I") (rylg,n + r) .

K 22 ] o K HWn r?

Then, from above last two inequalities and (2.12) we have

" 2 2_|_ 2 2 "ne__
Re (1 4 Zhy(Z)) > 2/€ Q(V + 2) r Z a7 rYu,n T _ hu( T)

R (z) v+ 1)QW) k2 —r = Vn (K2=r)(2,.+T) h.,(=r)

Thus, we get

, zh!)(z) R (—r) B
f 1 £ =1-r-+= for all .
Jnf {Re ( + (o) )} Th{,(—r) or all r e (0,k%)

Now, consider the function ¢ : (0, x?) — R, defined by

_ hy(—r) K2Qw+2) 7 K+ Yom r’
R 7 e R 72es 7T Pl i g Y ey

Since for v >0, Q (v) /(b—a) >0 and a/(b—a) <0,

lim (r) = 1> 8, lim, w(r) = oo,

it follows that equation 1 — TZ?E::; = f3 has at last one real root in the interval (0,x2). Let rg denote the

smallest positive real root of the equation 1 — r’;:”/g::g = (3. we have

"

Re (1 + Z;:é?) > B, z€U(0,re),
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and if r > rg then inf Re (1 + Z:;é?) < B.
z€U, v

In order to finish the proving, we remark that 1 — TZ:V,E::; = [ is equivalent to

rMy(Vr) + (3 = 2v) VM (V) + (v — 2v) M, (V7)

b 2 /i (V) + 2(2 — 1) M, (/7)

- 3.

O

In the Table 2, the monotonicity properties of convexity radii according to special values of a,b,c € R
are similar to radii of starlikeness in the Table 1.

Moreover, looking at the values v = 0.5, a = =2, b =2, ¢ =1 and § = 0 in Table 2, it is seen that
7e(h1/2) = 0.9350. In the Figure, the images of function hq/5(2) for 7§(h1/2) = 0.9350 and 7§(hi/2) = 1.1 are

convex and not convex, respectively

Table 2. Radii of convexity for f.,, g, and h, when v =0.5.

7 (fv) 7 (g9,) ¢ (hy)

=0 | =05|p=0 | =05|p5=0 | =05
b=-5|a=4|0.5429 | 0.4428 | 0.6711 | 0.5591 | 0.8051 | 0.6045
and a=>5 104199 | 0.3311 | 0.5391 | 0.4360 | 0.5611 | 0.4059
c=0 a=6 | 03577 | 0.2786 | 0.4668 | 0.3726 | 0.4375 | 0.3103
a=-2|b=010.2821 | 0.2170 | 0.3752 | 0.2949 | 0.2979 | 0.2055
and b=1 | 0.3972 | 0.3100 | 0.5167 | 0.4134 | 0.5316 | 0.3786
c=1 b=2 | 0.5873 | 0.4798 | 0.7247 | 0.6046 | 0.9350 | 0.7035
a=-2|c=4 104560 | 0.3566 | 0.5917 | 0.4745 | 0.6924 | 0.4949
and c= 0.5354 | 0.4236 | 0.6842 | 0.5553 | 0.8928 | 0.6499
b=—-1|c=6 | 0.6164 | 0.4947 | 0.7744 | 0.6371 1.1031 | 0.8173

23S % ¥

i
£

=}
T
|

Figure. Images of function hy/o(2) for r§(hi/2) = 0.9350 and r§(hy/2) = 1.1, respectively.

908



KAZIMOGLU and DENIZ/Turk J Math

3. Conclusion

In this section, some results and examples for special values of v in main theorems will be given.

Indeed, we can write the function N,(z) in terms of elementary trigonometric functions for the value v = 3/2
as follows:

[a (422 — 15) + 6b — 4c] zcos z + [4 (b — 2a) z* 4 15a — 6b + 4c| sin z

Narl2) = NNV

Thus, we have

fara(z) = 32/ [a (422 —15) +6b — 4c] zcos z + [4 (b — 2a) 2> 4 15a — 6b + 4c]| sin z 23

3/24%) = (3a+ 6b + 4c) /2 ’

3 [a (42% —15) + 6b — 4c] zcos z + 3 [4 (b — 2a) 2% + 15a — 6b + 4c| sin z
(3a + 6b + 4c) 22

93/2(2) =

and
3la(4z — 15) 4+ 6b — 4c| \/z cos/z + 3[4 (b — 2a) z + 15a — 6b + 4] sin/z

hay2(2) = (3a+6b+4c) vz

Now, we state the following results for the functions fs3/5, g3/2 and hz/5 in Theorem 2.1.

Corollary 3.1 Let 8 €[0,1), (3a+6b+4c) /4(b—a) >0, a/(b—a) <0 and %m < 0. The following

statements are true.

a) The radius s (fg/g) is the smallest positive root of the equation

[4(2b— a)r? — 45a + 18b — 12c| rcoshr + [a (8r* 4 2272 4 45) + 8 (¢ — b) 72 — 18b + 12¢| sinhr
3la(4r2 +15) — 6b + 4c| rcoshr + 3[4 (b — 2a) 72 — 15a + 6b — 4c]| sinh r

b) The radius s (93/2) is the smallest positive Toot of the equation

2— [2(a—b)r* +15a — 6b+ 4c| rcoshr + [a (47 4+ 15r% 4 30) — 2 (3b — 2¢) (r* + 2)] sinhr
[a (412 4+ 15) — 6b + 4c| rcoshr + [4 (b — 2a) 2 — 15a + 6b — 4¢| sinh r

= 8.

c) The radius s (h3/2) is the smallest positive Toot of the equation

[b(4r + 6) — 15a — 4] \/r cosh /T + [a (472 + Tr +15) — 2b(r + 3) + 4c (r + 1)] sinh /7
2[a (4r 4+ 15) — 6b + 4c] \/r cosh /7 — 2 [a (8 + 15) — 4br — 6b + 4c] sinh \/r B

8.

Example 3.2 Taking a =3, b= -5, ¢ =0 and 8 =0 in Corollary 3.1, we have the radii of starlikeness of

the functions:

3(74z2+25)z cos z+(44z2775) sin z

2/3
o 15 (f(2)) =1.2886, where f(z) = ( 7572 >

3(—42°+25)z cos 2+ (442> —75) sin z
Tz2

o 73 (9(2)) = 1.1666, where g(z) =
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o 15 (h(2)) = 18772, where h(z) = 2=ENEosE =T VE

Similarly, for v = 1/2 we get

4(b—a)zcosz+ [a (3 —42%) — 2b+ 4c| sinz

Nijo(z) =
1/2( ) 2\/%\/2
Thus, we have
[4(a—b)zcosz+ (4a2273a+2b740)sinz]2
f1/2(2) = 3 ,
(a—2b—4c)" 2
4(a—b)zcosz+ (4az? — 3a + 2b — 4c) sin z
9/2(2) = a—2b—4c
and
4(a—b)zcos/z+ (daz — 3a + 2b — 4¢) \/zsin/z
hl/g(Z) = .

a—2b—4c

Taking v = 1/2 in Theorem 2.2, we have following results.

Corollary 3.3 Let € [0,1), (—a+2b+4c) /4(b—a) >0, a/(b—a) <0 and % < 0. The following

statements are true.

a) The radius of convexity of order 3 of the function fy,o is the smallest positive root of the equation

2 (4ar2 +a+ 40) rcoshr + (4ar2 + 8br2 — A) sinh r
8(b—a)rcoshr + 2 (4ar? + A)sinhr

4(4(2a+b)r? —2a+b—4c) rcoshr + (16ar* + 8 (a + b+ 2c) r? + 3A) sinhr
4 (4ar? + a + 4c) r coshr + 2 (4ar? + 8br2 — A) sinhr B

where A = 3a — 2b+ 4c.

b) The radius of convexity of order B of the function g,/ is the smallest positive root of the equation

[4 (4a 4+ b) 7> — a + 2b + 4c] coshr + [dar? + Ta 4+ 10b + 4c] rsinhr
[(4ar? — a + 2b+ 4c¢) coshr + 4 (a + b) rsinhr| r

= 5.

c) The radius of converity of order 3 of the function hy o is the smallest positive oot of the equation

[4(6a 4 b) — 7Ta +10b+ 12¢] \/r cosh /7 + [a (472 + 197 + 3) + 2b (92 — 1) + 4c (z + 1)] sinh /7
2 (4dar — ba + 6b + 4¢) /r cosh /7 + 2 (8ar + 4br + 3a — 2b + 4c) sinh \/r B

3.

Example 3.4 Taking a = -2, b=2, ¢=1 and 5 =0 in Corollary 3.3, we have the radii of convexity of the
functions:

(82 cos z+2(4z273) sin 2)2

o 75 (f(2)) = 0.5873, where f(z) = 1002

8z cos z+(42273) sin z
5

o 75(9(2)) =0.7247, where g(z) =

o 15 (h(2)) =0.9350, where h(z) = 8z cos \/E+(4’3573)\/Esm‘/5.
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