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1. Introduction
Plants are often exposed to environmental stresses 
that negatively affect their growth, development, and 
productivity (Bolat et al., 2014; Khan et al., 2015; Aysin 
et al., 2020; Chang et al., 2020). The steady increase in 
abiotic stress factors is due to increased pressure on limited 
farmland for higher productivity to compensate the growth 
rate of the human population, which is expected to exceed 9 
billion by 2050 (Zia-Ul-Haq et al., 2013; Sehar et al., 2019). 

Salt stress is one of the most important environmental 
factors that plants encounter.  Soil salinity is the most 
important abiotic stress factor which directly limits 
agricultural production areas worldwide (Tiryaki, 2018). 
Salinity, in food legumes, can limit plant growth. Sodium 
chloride (NaCl) is the prevailing salt in the soil, causes 
osmotic and ionic stress effects, of which the osmotic stress 
minimizes the ability of plants to take up water, minerals, 
and reduces symbiotic performance, etc. (Rout and Shaw, 
2001; Rao et al., 2002; Khan et al., 2012; Ahmad et al., 
2016). 

Nitric oxide (NO) has now taken an important role 
in plant development (Kaya et al., 2020). NO plays an 
important role in resistance to salt, temperature, drought, 

and heavy metal stress (Siddiqui et al., 2011). Also, it 
has a key function in various processes of plant growth 
and development, including seed germination, seed 
dormancy, root growth, flowering, photosynthesis, plant 
metabolism, and cell death (Siddiqui et al., 2011; Manai 
et al., 2014; Mostofa et al., 2015). Nitric oxide (NO) is a 
gaseous intracellular and intercellular signal molecule with 
a wide variety of regulatory functions various physiological 
processes in mammals (Meilhoc et al., 2011). It has been 
recognized as a potential plant hormone related to plant 
defense mechanism (Fatma et al., 2016a; 2016b, Per et al., 
2017a; 2017b).

Legumes are rich in proteins, recovery of marginal 
lands, and very important components of the human 
diet (Jukanti et al., 2012). Among the edible legumes, 
chickpea (Cicer arietinum L.) is a very popular crop around 
the world as it can supply a rich source of proteins, fats, 
carbonhydrates for humans and animals and increase 
the input of combined N2 into the soil through symbiotic 
association with Rhizobium (Rasool et al., 2015; Garg and 
Singla, 2016).  Chickpea normally grows under rainfed and 
irrigated conditions (Rasool et al., 2015) and this crop is 
very sensitive to salinity stress.
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Limited studies have been carried out on the application 
of NO to reduce the effect of salt stress in chickpeas. In this 
study, we investigated the effect of NO on plant growth, 
nutrient uptake, physiological and biochemical properties 
of chickpea seedlings under salt stress. 

2. Material and methods
The experiment was conducted in greenhouse, the 
temperature ranged from 19 °C to 32 °C, and the average 
humidity was 65%. Two chickpea cultivars (Cagatay and 
Inci) were used as plant materials. Different NO doses 
(0, 75, and 100 µM sodium nitroprusside (SNP as an NO 
donor)) were applied to chickpea plants grown under 
saline (50 and 100 mM of NaCl) and nonsaline conditions. 
NO treatments were prepared at 3 levels of 0 (control), 75, 
and 100 µM SNP in ultrapure water with Tween 20. These 
solutions were applied to the seeds (for 24 h at 20 °C) in 
petri dishes and then seeds were taken out and air-dried.  
The NO treated seeds were planted in pots (mixture of 
peat: perlite (3:1, v: v) (Sahin et al., 2002) and seedlings 
have been obtained under greenhouse conditions. Ten 
days after emerging seedlings were foliarly treated with 
NO at 3 levels of 0 (control), 75, and 100 µM SNP. The 
foliar NO treatments were repeated three times at one 
weekly interval, as the solutions were sprayed on leaves. 

Salinity treatments were initiated ten days after 
seedling emergence with an increase of 25 mM NaCl to 
avoid an osmotic shock for plants. The irrigation water was 
applicated at three levels of NaCl (0, 50, and 100 mM) and 
their electrical conductivities were measured as 0.54, 5.23, 
and 7.61 ds m–1 respectively. Plants were irrigated with a 
halfstrength Hoagland solution with ten days intervals. 

The relative water content (RWC), electrical 
conductivity (EC), and chlorophyll reading value (CRV) 
were measured after 52 days of sowing from each pot 
before harvest. During harvest, plants were cut from the 
soil level, and above-ground biomass (shoot) and roots 
were separated for measurements and analysis. In this 
study, plant shoot fresh and dry weight, root fresh and dry 
weight, chlorophyll a, b, total chlorophyll, malondialdehyde 
(MDA), hydrogen peroxide H2O2, antioxidant enzyme 
activity (superoxide dismutase (SOD), peroxidase (POD), 
ascorbate peroxidase (APx), K/Na and Ca/Na ratio were 
examined.

RWC and EC were determined according to Yildirim 
et al. (2015). 

CRV was determined as leaf chlorophyll reading value 
(SPAD) with a chlorophyll meter (Konica Minolta SPAD-
502). The measurements were carried out at ten different 
spot on leaves of each pot, and then the average was used 
for analyses.

For leaf chlorophyll content (chlorophyll a, chlorophyll 
b, and total chlorohyll (a+b) of plants; samples were cut at 

10 mm diameter from the middle leaves and shaken with 
0.2 mL 80% acetone. Then samples were centrifuged at 
10,000 rpm at 5 °C by brought to the final volume with 
80% acetone. The absorbance values were measured at 663 
and 645 nm and calculated (Khan et al., 2003; Ekinci et 
al., 2020). 

Assays of MDA, H2O2, and antioxidant enzyme 
activity (POD, APX, SOD) were performed by UV/vis 
spectrophotometer according to Sarafi et al. (2018). 

For the determination of mineral nutrition content, the 
leaves of the chickpea cultivars were dried at 68 °C for 48 
h and K, Ca and Na contents were analyzed by a coupled 
plasma spectrophotometer (Optima 2100 DV; Perkin-
Elmer, Shelton, CT) (Helrich, 1990). 

A completely randomized design with three 
replications was used in the current experiment and we 
had 12 plants per replicate. Data were subjected to analysis 
of variance (ANOVA). Means were separated by Duncan’s 
multiple range tests (p < 0.05).

3. Results
3.1. Plant growth
Stress conditions negatively affected the growth 
parameters of two chickpea varieties. 100 mM of NaCl 
decreased shoot fresh and dry weight, and the root fresh 
and dry weight by 47, 37, 54 and 50%, respectively in 
Cagatay cultivar compared to control.  In Inci, the shoot 
fresh and dry weight, and the root fresh and dry weight 
were reduced by 62%, 49%, 72%, and 68%, respectively 
compared to untreated one (Table 1). NO treatments 
alleviated the deleterious effects of salinity stress on the 
growth, physiological and biochemical properties of 
chickpea cultivars (Table 1). 
3.2. Chlorophyll content (Chl a, Chl b, total Chl)
The Chl a, Chl b, and total Chl contents were significantly 
decreased by salt stress in two cultivars. The maximum 
decrease for Chl b compared to the control was recorded 
at 100 mM NaCl respectively in Inci (53%) and Cagatay 
(23%) cultivars (Figure 1). This decrease in Chl content in 
chickpea leaves might partially cause a decrease in growth. 
Supplementation of NO (100 mM NaCl + 75 µM NO) was 
increased (23%) comparison with (100 mM NaCl) (for 
Chl b parameters) as control in Inci cultivar. In Cağatay 
cultivar the best result (nearly equal control) was obtained 
100 mM NaCl + 75 µM NO (for Chl b parameters) (Figure 1). 
3.3. RWC, EC and SPAD
RWC is adversely affected by salinity stress in chickpea 
cultivars. With the effect of salt (at 100 mM NaCl) there 
was a decrease (24%-Cagatay and 44%-Inci) in two 
cultivars (Table 2). The decrease in RWC of salt-stressed 
plants was alleviated by exogenous application of NO, 
resulting in an enhancement in RWC of 14% in Cağatay 
and 42% in Inci at 100 mM NaCl + 100 µM NO. Cell 
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membrane permeability of chickpea cultivars used in the 
study was determined by the measurement of EC (Table 
2). Salinity stress markedly increased the cell membrane 
permeability in chickpea cultivars but it had a lower effect 
on Inci cultivar than Cağatay. NaCl treatments of 100 
mM damaged the cellular membranes. This damage was 
reflected in terms of increased electrolyte leakage. Salinity 
caused a decrease in SPAD values in Cağatay cultivar 
(Table 2).
3.4. H2O2 and MDA 
Increase in H2O2 contents was observed with the raise 
of NaCl dose applied to chickpea plants (Table2). H2O2 
content increased by 82% in two cultivars at 100 mM 
NaCl. Supplementation of exogenous NO to NaCl-stressed 

plants decreased H2O2 content by 24% (Cağatay) and 25% 
(Inci) at 100 mM NaCl + 100 µM NO.  As for MDA, an 
increase by more than 100% (Table 2) in both cultivars 
under salinity stress. 
3.5. Antioxidant enzyme activity
The activity of SOD, APX, and POD was increased by 
salinity stress in two cultivars. Their activities were 
decreased with exogenous NO application (Figure 2). In 
Cağatay cultivar, NO applications varied depending on 
severity of salt stress and the dose of the applications. At 50 
mM salt stress, POD, and SOD activity decreased with 100 
µM NO application, while there was no significant change 
in APX activity. At 100 mM salt stress, POD activity 
decreased significantly with 100 µM NO and 75 µM NO 

Table 1. The effect of salinity and NO treatments on plant growth in chickpea plants.

Cultivar NaCl 
(mM)

NO 
(µM)

Shoot fresh weight
(g plant-1)

Shoot dry weight
(g plant-1)

Root fresh weight
(g plant-1)

Root dry 
weight (g plant-1)

CAGATAY

0 0 42.09 a 6.5 a 39.3 a 2.63 a

75 42.15 a 6.7 a 38.67 a 2.71 a

100 37.80 b 6.06 b 38.52 a 2.36 b

50 0 32.50 c 5.06 d 21.97 c 1.43 de

75 37.99 b 5.76 c 28.85 b 1.79 c

100 29.79 d 4.63 e 29.48 b 1.46 d

100 0 22.37 f 4.08 g 18.25 d 1.31 f

75 26.84 e 4.33 f 21.29 c 1.39 df

100 20.83 f 3.27 h 23.89 c 1.34 ef

NaCl *** *** *** ***

NO *** *** *** ***

NaCl x NO *** *** *** ***

INCI

0 0 20.88 a 2.48 a 14.52 b 0.94 ac

75 13.62 bc 1.99 ac   8.69 ce 0.8 bd

100 10.14 cd 1.51 ac 11.06 c 0.99 ab

50 0   8.47 d 1.15 c   6.26 ef 0.49 de

75 10.67 cd 1.49 ac 14.21 b 0.71 bd

100 17.29 ab 2.30 ab 18.66 a 1.15 a

100 0   7.92 d 1.26 bc   4.03 f 0.3 e

75 10.07 cd 1.58 ac   8.85 cd 0.65 cd

100   7.2 d 1.21 bc   7.17 de 0.57 de

NaCl  ***  ns  *** ***

NO  ns  ns  *** **

NaCl x NO  ***  *  *** **

Data followed by a different letter in column were significantly different according to the DMRT, *: p < 0.05; **: p < 0.01; ***: p < 0.001; 
ns: p > 0.05.



DADAŞOĞLU / Turk J Agric For

227

application. It occurred in POD, APX, and SOD activities 
in both salt strengths with NO application in pearl variety.
3.6. Mineral uptake
Salinity stress was significantly affected Na+, K+, and Ca2+ 

uptake and the ratio of K+/Na+ and Ca2+/Na+ significantly 
decreased in chickpea plants but exogenous NO treatment 
increased (Figure 3). When evaluated in terms of NO 
applications, there was no statistically significant difference 
between applications in salt stresses.

4. Discussion
Chickpea is an important pulse crop grown in the arid 
and semiarid regions. High salt concentration causes 
osmotic and ionic stress in plants. It limits the growth and 

development of plants by affecting several key metabolic 
processes (Läuchli and Grattan, 2007).  In this research, 
two different chickpea cultivars were used and the effect 
of NO application on salt stress was investigated. In this 
purpose, the effect of NO application on plant shoot fresh 
and dry weight, root fresh and dry weight, chlorophyll a, 
b, total chlorohyll, CRW (SPAD), RWC, EC, MDA, H2O2, 
antioxidant enzyme activity (SOD, POD, APX), K/Na 
and Ca/Na ratio of two chickpea cultivars under salinity 
conditions were examined under salt stress.

In study, salt stress significantly decreased the growth 
of chickpea cultivars. These results are similar to the 
findings of Kotula et al. (2015), Ahmad et al. (2016) who 
reported that salinity stress significantly decreased the plant 

Figure 1. Effects of NO on chlorophyll content of chickpea plants under salt stress (Inci-a, Cagatay-b). Different letters indicate 
significant difference (p < 0.05) among the treatments.
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growth in chickpea. But coapplication of NO and salinity 
promoted the growth of plants under saline conditions 
compared to the salinity treatment. These results supported 
earlier reports on different crops, such as wheat (Kausar 
and Shahbaz, 2013), rice (Mostofa et al., 2015), pepper 
(Shams et al., 2019), and pea (Dadasoglu et al., 2021). NO 
can weaken the cell wall, act on the phospholipids bilayer, 
increase membrane fluidity and stimulate cell enlargement 
and plant growth (Leshem and Haramaty, 1996). They 
reported that NO is involved in increasing the osmotic 
pressure of the plant cells and improving the cytoplasmic 
viscosity under high salinity. Nitric oxide is an important 
signaling molecule involved in amelioration of growth and 
development of plants under biotic and abiotic stresses 
(Esim and Atici, 2014; Manai et al., 2014). 

The Chl a, Chl b, and total Chl contents were significantly 
decreased by salt stress in the two cultivars. The decrease in 

Chl content under NaCl stress (Figure 1) might be assigned 
to the demolition of Chl pigments, decreased Chl syntheses, 
and the exposure of the pigment-protein complexes (Rasool 
et al., 2013). Similarly, Ahmad et al. (2016) determined that 
salinity decreased chlorophyll content in chickpea, but 
combined the application of NO and salinity increased 
chlorophyll content compared to the control. NO was found 
to activate the enhancement of photosynthetic activity in 
chickpea plants, potentially by protecting the membrane 
of the cell organelle containing Chl against salt-stimulated 
ion toxicity (Kausar and Shahbaz, 2013). The increase in 
photosynthetic activity due to NO application under salt 
stress, has also been reported plant species including wheat 
(Ruan et al., 2004), rice (Habib and Ashraf, 2014), chickpea 
(Ahmad et al., 2016) and pea (Dadasoglu et al., 2021).

RWC is adversely affected by imposition of NaCl, 
which leads to decrease in water uptake and injury of 

Table 2. The effect of salinity and NO treatments on EC (electrical conductivity), RWC (relative water content), CRV (chlorophyll 
reading value), MDA (malondialdehyde), and hydrogen peroxide (H2O2) in chickpea plants. 

Cultivar NaCl (mM) NO (µM) EC (%) RWC (%) CRV (SPAD) MDA H2O2

CAGATAY

0 0 11.24 f 74.87 b 42.14 bc 11.12 d 103.91 e
75 11.86 f 78.24 a 46.03 a 13.14 cd 113.34 d
100 20.72 e 77.63 a 43.13 bc 14.47 bc 103.32 e

50 0 27.87 d 71.20 c 37.07 ef 16.26 b 137.50 c
75 20.96 e 65.45 d 44.27 ab 15.68 b 120.11 d
100 21.83 e 67.60 d 41.83 c 14.06 bc 117.58 d

100 0 60.85 a 57.09 f 35.50 f 23.65 a 189.47 a
75 38.80 c 61.38 e 40.80 cd 22.37 a 164.86 b
100 50.96 b 68.14 d 39.20 de 23.75 a 143.96 c

NaCl *** *** *** *** ***
NO *** *** *** *** ***
NaCl x NO *** *** ns *** ***

INCI

0 0 13.80 d 71.69 b 32.87 ab 11.17 e 108.67 e
75 23.89 c 70.95 b 37.97 a 10.87 e 111.00 e
100 15.05 d 93.38 a 31.00 ab 12.33 de 111.70 e

50 0 46.69 b 55.36 bc 31.23 ab 17.62 c 144.32 c
75 39.97 b 50.82 bc 30.67 ab 13.59 d 142.52 c
100 46.37 b 56.40 bc 33.10 ab 13.23 d 136.41 d

100 0 56.75 a 40.00 c 33.30 ab 27.29 a 195.88 a
75 58.85 a 55.25 bc 30.80 ab 20.60 b 157.64 b
100 45.97 b 62.46 b 29.17 b 18.63 c 146.38 c

NaCl *** *** ns *** ns
NO * * ns *** ***
NaCl x NO ** ns ns *** ***

Data followed by a different letter in column were significantly different according to the DMRT *:p < 0.05; **:p < 0.01; ***: p < 0.001; 
ns: p > 0.05.
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root system (Zeng et al., 2011). When plants are exposed 
to salinity, primarily they face an osmotic challenge that 
reduces water uptake by roots. Besides ABA-mediated 
stomatal closure effects, transpiration entails low relative 
water content in the cell (Blatt & Armstrong 1993). As it 
reported before studies (Zeng et al., 2011), in the present 
study, supplementation of NO had a positive impact on 
RWC of chickpea plants under salt stress too (Table 2). 
Salinity decreased RWC and NO application increased in 
some crops, including chickpea (Ahmad et al., 2016), pea 
(Dadasoglu et al., 2021), and rice (Habib and Ashraf, 2014) 
which is similar to our findings. The decrease in relative 
water content could be due to nonavailability of water near 

the root zone and loss of water by transpiration (Kotagiri 
and Kolluru, 2017).

Salinity stress causes elevated ROS levels, and these 
elevated ROS levels play a dual role in the salinity 
responses of plants; as toxic by products causing oxidative 
damage or as signaling molecules mediating salt tolerance 
(Miller et al. 2008; Jiang et al. 2013). Salt stress induces 
lipid peroxidation through reactive oxygen species (ROS) 
production (Liang et al., 2003; Verma and Mishra, 2005), 
thus making the membrane leaky as evinced by increased 
electrical conductivity. Exogenously applied NO could 
prevent injury to membranes (Sheokand et al., 2008). In the 
present investigation also, NO could completely ameliorate 

Figure 2.  Effects of NO on activities of peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase (SOD) in 
leaves of chickpea plants under salt stress (Inci-a, Cagatay-b). Different letters indicate significant difference (p < 0.05) among 
the treatments.
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the adverse effect of NaCl treatment on membrane injury 
and lipid peroxidation. A protective effect of NO on 
relative membrane injury has been reported under salt 
stress (Zhao et al., 2004; Zhang et al., 2006; Wu et al., 2011; 
Ahmad et al., 2016; Shams et al., 2019; Dadasoglu et al., 
2021). The findings were similar to those of Shams et al. 
(2019) who demonstrated that salinity stress decreased 
RWC and increased EC, but exogenous NO application 
ameliorated the adverse effect of salinity stress.

As for MDA, an increase was observed in both cultivars 
under salinity stress. As well H2O2 supplementation 
of NO decreased. Thereby increasing tissue electrolyte 
conductivity chickpea plants accumulated higher H2O2 
and MDA contents under salt stress. This increase in 
H2O2 and MDA content may be due to membrane damage 
caused by ROS-induced oxidative damage. Consistent with 
the observations of Zheng et al. (2009); Khan et al. (2012) 
and Ahmad et al. (2016) with agreement. But exogenous 
application of NO decreased H2O2 and MDA content 
(Ahmad et al., 2018). NO application could be an effective 
way to protect plants against oxidative injury caused by 
salt stress. NO stimulates mitogen-activated protein kinase 
(MAPK) which in turn activates transcription factors for 
induction of stress-related genes (Neill et al., 2008). 

These results are similar to earlier studies of Ahmad 
et al., (2018), Shams et al., (2019) and Dadasoglu et al., 

(2021) who found that NO treatment increased enzyme 
activity under salinity stress. Increasing evidence indicates 
that ROS also function as important signalling molecules 
in plants and that they are involved in regulating a broad 
range of processes, such as growth, development, defence, 
and responses to various abiotic and biotic stresses 
(Radwan  et al.,  2010; Sharma  et al.,  2012; Baxter  et 
al.,  2014; Vuleta  et al.,  2016; Xu  et al.,  2019).  NO, as a 
signaling molecule and it activates the expression of 
antioxidant enzymes thereby providing salt tolerance 
(Hernandez et al., 2000; Ahmad et al., 2016; Gadelha et al., 
2017). Therefore, it can be concluded that NO treatment 
increased the enzyme activity under saline condition. 
Zhang et al. (2004); Wu et al. (2011); Ahmad et al. (2016); 
and Dadasoglu et al. (2021) on maize (Zea mays), soybean 
(Glycine max), chickpea (Cicer arietinum) and pea (Pisum 
sativum) respectively, demonstrated that application of 
NO increased the plant growth under saline conditions, 
which might be due to increased activities of antioxidant 
enzymes. NO has been shown to alleviate the effects of 
biotic and abiotic stresses on plants by mediating H2O2 
induced mitigation of oxidative damage by regulation 
of the antioxidant defense mechanism (Mostofa et al., 
2015; Singh and Vinayak, 2015). SOD, APX, and POD are 
known as ROS eliminator (Radwan et al., 2010; Sharma et 
al., 2012; Vuleta et al., 2016).

Figure 3. Effects of NO on K/Na and Ca/Na ratio on chickpea plants under salt stress (Inci-a, Cagatay-b). Different letters 
indicate significant difference (p < 0.05) among the treatments.
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As we mentioned in the previous study, the decrease 
in K+/Na+ and Ca2+/Na+ ratios can be connected to the 
over accumulation of Na+ and the decrease in Ca2+ and K+ 

concentration in leaves of pea cultivars under NaCl stress 
(Dadasoglu et al., 2021). Shams et al. (2019) reported 
that, by enhancing the absorption of K, Ca and declining 
the absorption of Na and then it led to mitigate the 
deleterious effect of salinity. The results are same in this 
study. Therefore, it can be concluded that exogenous NO 
treatment increased the ratio K+/Na+ and Ca2+/Na+.

5. Conclusion
Plants expose to a wide range of environmental stresses. 
Among these, salinity is considered one of the major abiotic 

stresses that limits crop yield. As known chickpea is highly 
sensitive to salinity and therefore needs considerable 
enhancement of salinity tolerance. Salinity decreased 
the growth and development of chickpea by acting 
morphologically, physiologically, and biochemically. 
Taken together, our findings highlighted the importance 
of NO on plant growth, antioxidant enzyme activity and 
chlorophyll contents in chickpea plants. Exogenously NO 
treatment diminished oxidative damage by upregulating 
antioxidant enzymes and osmolytes, thereby ameliorating 
a significant decrease in ROS-induced lipid peroxidation 
and electrolyte leakage. Therefore, NO can be a promising 
approach for salt stress management.
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