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1. Introduction
Molecules can be functionalized rationally to be responsive to their environments. Various acivatable therapeutics, 
molecular sensors that produce a readable output signal in the presence of analyte have been widely studied in the literature 
[1,2]. In the last decade, significant progress in the design of such systems has been taken. Molecules are further modified 
to have additional features, multianalyte responsiveness. These findings lead to the discovery of a new concept, molecular 
logic gates. Logic operations are well-defined mathematical operations where inputs and outputs are characterised by 
certain rules [3]. Analyte level or response output level beyond a certain threshold are accepted as ‘1’ and the absence 
of them are given the value of ‘0’. Similar to computer algorithms, this digitalized data is used for logic operations. A 
potential chemical and biological application of these operations with molecular devices is started to be discussed after 
the introduction of the molecular logic gate by de Silva et. al. [4]. In this pioneering work, the molecule can detect the 
inputs (acid and sodium ion), and produces an output in the form of fluorescence. Later, the idea is used to develop many 
different advanced logic gates such as DEMUX, FLIP-FLOP logics as well as integrated logic gates [5]. Some of these logic 
gates are shown to have potential applications as smart therapeutics or biosensors [6–20]. Recently, our research group 
designed a molecular keypad lock to show that information processing devices can have selective therapeutic activity 
in drug-resistant cancer cells, through a sequential analyte responsiveness and molecular encryption [6]. Theranostic 
approaches, by which a combinatorial imaging and therapeutic effect can be achieved, is also shown to be possible with 
advanced molecular logic gate operations [7,8].   

Enzymes are biological catalysts whose levels and activities are strictly regulated. Depending on the needs of the cells, 
extracellular and/or intracellular signals, enzymes are produced, degraded, activated or deactivated. Diseases, including 
cancer, are usually characterised by abnormal level or activity of a group of enzymes [21]. For that, elevated level of 
enzymes is considered as a disease marker and various molecular sensors are developed to detect enzyme levels [22,23]. 
Although diseases can be monitored by following the enzyme level, tissue expression of enzymes may also differ in a 
healthy organism [24]. The enzyme of interest may also be overexpressed in a different tissue under normal conditions. 
This may lead to misinterpretation of the data. This constitutes a major problem with single enzyme sensing for diagnostic 
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applications, and a direct correlation between enzyme level and the disease status cannot be achieved. For that, more than 
one enzyme (or analyte) can be monitored to selectively discriminate healthy tissue from the diseased one. Molecular 
AND logic operations are suitable devices to have this discrimination. When truth tables of this operation are analysed, 
these devices only produce an output in the presence of all inputs. In other words, a diagnostic signal is produced when all 
of the disease parameters are sufficiently high. Previously various dual enzyme sensing probes are reported [25–30]. To the 
best of our knowledge, there is no fluorescent small-molecule probe dual responsive to tyrosinase and esterase enzymes, 
which is aimed in this work.  

In the research, an esterase and tyrosinase responsive fluorescent probe 2 is designed as shown in Scheme 1. Resorufin 
dye is functionalised with tyrosinase enzyme ligand, 3-hydroxy benzyl moiety. This group is known to be oxidized by 
the enzyme to produce, 3,4-dihydroxy benzyl derivative [31–34]. This self-immolative linker detaches from the parent 
fluorophore spontaneously by rapid 1,6-elimination reaction, producing fluorescent resorufin (Scheme 1). 3-Hydroxy 
benzyl recognition unit is preferred because of its stability towards other reactive oxygen species [31]. In this work, 
phenolic OH is protected with the acyl group to avoid tyrosinase recognition. Upon removal of the acyl group by an 
esterase, tyrosinase can recognise and oxidise the probe [6]. Therefore, with the action of two enzymes, a fluorescence 
signal is expected to be produced. Dual enzyme responsiveness is intended to enable accurate discrimination of various 
phenotypes of diseases for future applications. Tyrosinase enzyme is an oxidative enzyme either catalyses second oxidation 
of phenolic compounds or produces quinones from diphenols [35]. It is involved in L-DOPA and melanin biosynthesis. 
Several diseases including Parkinson’s disease and melanoma cancers are reported to show an abnormal level of this enzyme 
[36, 37]. Esterase enzymes are hydrolytic enzymes responsible for the cleavage of ester bonds. They are known to have roles 
in drug detoxification and are associated with drug resistance [38]. Therefore, designing a probe responsive to both of 
these enzymes would enable discrimination of melanoma cancers or Parkinson’s disease that are resistant to traditional 
chemotherapies. This strategy can be further extended to display response in the presence of various combinations of other 
enzyme disease markers. 

Resorufin is a small fluorescent molecule that has been previously used for many biosensing applications [39, 40]. 
Functionalization of the OH moiety is known to reduce fluorescence. Once the substituent is removed by the analyte of 
interest, fluorescence can be reestablished. This TURN-ON fluorescent sensing approach was used to prepare probes for 
several analytes including enzymes [34, 39–43]. Recently, tyrosinase responsive probe based on resorufin skeleton is also 
reported with efficient and selective response to this enzyme [34]. In this work, dual responsiveness is generated by hiding 
the tyrosinase recognition site with acyl group. Acyl groups are previously reported to be removed by the esterase enzymes 
[6]. 

 
2. Experimental
General information about the materials, equipment, additional experimental and characterization data are given as 
supplementary information. 
2.1. Synthesis
2.1.1. 3-(bromomethyl)phenyl acetate (1)
3-Hydroxybenzyl bromide (94 mg, 0.50 mmol) was dissolved in 10 mL dichloromethane. Triethylamine (0.14 mL, 1 mmol) 
and acetyl chloride (72 μL, 1 mmol) were added (Scheme 2). The reaction was stirred for 16 h at room temperature and 
then extracted with dichloromethane and water. The organic layer is collected and dried using sodium sulfate. The solution 

Scheme 1. Mechanism of fluorescent resorufin generation from compound 2 in the presence of esterase and tyrosinase enzymes. The 
presence of ester (red) prevents recognition of the ligand by tyrosinase. Removal of this group exposes tyrosinase binding site, leading 
to oxidation (green). Oxidized ligand spontaneously dissociate by 1,6-elimination producing fluorescent resorufin.  
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is filtrated to remove sodium sulfate and the solvent was removed using a rotary evaporator. Light yellow oil is obtained 
as a product. Purification with silica column chromatography results in partial decomposition. For this reason, the crude 
product is used in the final reaction without further purification (100 mg, 88% yield). 

1H NMR (400 MHz, CDCl3, ppm) δ 7.37 (t, J = 7.8 Hz, 1H), 7.26 (m, 1H), 7.14 (m, 1H), 7.08-6.99 (m, 1H), 4.57 (s, 
2H), 2.30 (s, 3H).

13C NMR (400 MHz, CDCl3, ppm) δ 169.61, 151.02, 139.24, 129.96, 126.14, 121.99, 121.85, 45.71, 21.36.
HRMS (ESI): Theoritical m/z for (M+Na)+ is 250.9684 and experimental m/z for (M+Na)+ is 250.18276.

2.1.2. 3-(((3-oxo-3H-phenoxazin-7-yl)oxy)methyl)phenyl acetate (2)
3-(bromomethyl)phenyl acetate (91 mg, 0.40 mmol) and resorufin sodium salt (70 mg, 0.30 mmol) were dissolved in 5 mL 
dimethylformamide (DMF). Potassium carbonate (138 mg, 1 mmol) was added and the reaction mixture was stirred for 
16 h at 50 oC (Scheme 3). The crude product was extracted with dichloromethane and water. The organic layer is collected 
and dried using sodium sulfate. The solvent was removed using a rotary evaporator. The crude reaction mixture is purified 
with silica column chromatography using dichloromethane as mobile phase and solid orange product (2) was obtained 
(60 mg, 55% yield). 

1H NMR (400 MHz, DMSO-d6, ppm) δ 7.80 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 9.4 Hz, 1H), 7.46 (dd, J = 8.3, 4.1 Hz, 1H), 
7.38 (d, J = 7.8 Hz, 1H), 7.26 (s, 1H), 7.21 (s, 1H), 7.17 – 7.06 (m, 2H), 6.79 (d, J = 9.5 Hz, 1H), 6.28 (d, J = 3.1 Hz, 1H), 
5.30 (s, 2H), 2.28 (s, 3H). 

13C NMR (400 MHz, DMSO-d6, ppm) δ 185.82, 169.68, 162.61, 151.09, 150.19, 145.83, 145.69, 138.21, 135.41, 134.25, 
131.83, 130.19, 128.53, 125.71, 122.17, 121.63, 114.76, 106.14, 101.69, 70.13, 21.34.
2.2. Analysis of enzyme-responsiveness
In order to understand enzyme responsiveness of compound 2, 5 mM stock solution was prepared in dimethyl sulfoxide 
(DMSO). A second solution in PBS buffer (pH 7.4) was prepared with the final concentration of 20 μM. By using the latter 
solution compound 2 was either incubated alone, in the presence of esterase enzyme, in the presence of tyrosinase enzyme 
or in the presence of both enzymes for 120 min at 37 °C. Fluorescence spectra were recorded at 30 min intervals using 
the excitation wavelength of 550 nm. The final concentration of esterase (Esterase Porcine Liver, Enzyme Commission 
Number 3.1.1.1) and tyrosinase (Mushroom, Enzyme Commission Number 1.14.18.1) enzymes were 2.5 U/mL and 25 U/
mL, respectively. In order to allow entry of fresh air, a needle was placed on the lids of reaction vials.   
  
3. Results and discussion
Compound 2 was synthesised in two successive steps and obtained as orange solid with good yields. The compound 
was characterised using 1H NMR, 13C NMR, and high-resolution mass spectrometry. Consistent with literature data, 
O-functionalized resorufin displays a lower absorption at 478 nm and no fluorescence whereas resorufin absorbs at 571 
nm and has bright fluorescence at 584 nm in phosphate saline buffer (PBS), at pH 7.4 (Figure 1).The quantum yield and 
extinction coefficient of the compound were calculated to be 0.04 and 5800 M–1cm–1 respectively in PBS buffer. Compound 
2 has a fluorescence quantum yield much lower than the tabulated value of resorufin (0.97 in water) consistent with the 
value of similar O-functionalized resorufin derivatives in literature [34, 44]. 

To assess the enzyme responsiveness of the probe, compound 2 is incubated alone or with various combinations 
of inputs and fluorescence spectra are analysed (Figure 2). Almost 70 fold enhancement in fluorescence at 584 nm is 

Scheme 3. Synthesis of compound 2.

Scheme 2. Synthesis of compound 1.
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detected when both esterase and tyrosinase enzymes are present in the solution. This value is significantly higher than the 
other input combinations (no enzymes, only esterase or only tyrosinase). Data suggest that in order to obtain fluorescent 
resorufin, activities of both enzymes are required. A moderate increase in tyrosinase applied samples may indicate slow 
spontaneous hydrolysis of ester bond in solution. With a separate more concentrated sample (100 μM in PBS buffer), the 
reaction is repeated with 100 U/mL tyrosinase and 2.5 U/mL esterase enzymes. Change in the solution colour and pink 
fluorescence of the enzyme-treated sample can be seen with naked eye (Figure S1a and S1b). Low-resolution mass analysis 
of the dual enzyme treated sample with LCMS proves the formation of resorufin peaks located at 212, corresponding to 
deprotonated product (Figure S1-c).    

Dual enzyme-treated samples display an increase in the absorption above 550 nm, where free resorufin absorbs (Figure 
3). This finding further proves the hypothesis depicted in Scheme 1. Results shown in Figure 2 suggest that when acyl 
bearing compound 2 is treated with tyrosinase only, fluorescence enhancement is very small. A structurally similar probe 

Figure 1. UV-vis absorbance (a) and fluorescence spectra of 20 μM compound 2 (black) and resorufin (red) in PBS buffer, at pH 
7.4. Fluorescence spectra are obtained by exciting the sample at 550 nm.  

Figure 2. Fluorescence spectra of compound 2, 120 min after incubation with various input combinations (a) and time-dependent 
change in fluorescence intensity at 584 nm (b). Compound 2 (20 μM, in PBS, pH 7.4) is incubated at 37 °C either alone, with 
esterase (2.5 U/mL), with tyrosinase (25 U/mL), or with both enzymes for 120 min. Fluorescence at 584 nm is followed to analyse 
the formation of resorufin. Spectra are recorded by excitation at 550 nm.  
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that lacks acyl moiety on the structure is reported to be responsive to tyrosinase enzyme [34]. Hence, acyl derivatization 
seems to prevent enzyme catalysed conversion. To assess this further, Michaelis constant of the enzyme catalysed reaction 
is calculated. Solutions with different concentrations of compound 2 are treated with 3 U/mL of tyrosinase enzyme and 
the rate of fluorescence change is determined. Michaelis constant (Km) is calculated to be 44.3 μM from the Lineweaver-
Burke plot, which is approximately 1.5 fold higher than the tabulated value for a similar probe having ester-free 3-hydroxy 
phenyl ligand (Figure S2) [34]. This result indicates a lower affinity of the molecule to the enzyme when hydroxyl group 
is protected by an acyl group. Hence esterase is necessary for the removal of this group to be recognized by tyrosinase. 
From the same calculations, Vmax is determined to be 0.37 μM.min–1. When probe is incubated in the presence of an 
abundant serum protein (bovine serum albumin), reducing agents of the body (glutathione, ascorbate) or reactive oxygen 
species (hydrogen peroxide, hydroperoxide, and superoxide) there is no significant increase in fluorescence indicating the 
selectivity of the probe towards chosen enzymes (Figure S3).

Considering the data presented so far, compound 2 is shown to display a significant fluorescence enhancement upon 
incubation with both tyrosinase and esterase enzymes. When the enzymes are introduced alone, the increase is not 
significant. Altogether, the behaviour of the probe is like an AND logic operation as depicted in Figure 4a,4b. digitalized 
data is used to construct the truth table of the logic gate (Figure 4b). For the absence of the enzymes, ‘0’ is written and for 
the presence of the enzymes ‘1’ is written in the first two columns of the truth table. The last column of the table gives the 
output (fluorescence at 584 nm) and the value is assigned to be ‘1’ if and only if the change in fluorescence is above 150 
under experimental conditions. Therefore, the output can only be observed if both enzymes are present in the solution 
(both inputs are 1).  

4. Conclusion
Fluorescent molecular sensors are very reliable and sensitive tools for diagnostic applications. Based on the design, sensors 
can selectively discriminate analytes including enzymes. Expression level and activities of enzymes differ with the progress 
of certain diseases and this change is usually used for the diagnosis. Since the change in the enzyme level and/or activity is 
tissue-specific, there should be more than one diagnostic enzyme data, for the accuracy of the analysis. Monitoring more 
than one disease marker would improve the reliability of the data. In the research presented here, a simple resorufin-based 
molecular structure is used to overcome this issue. In order to obtain a bright fluorescence, the presence of two enzymes 
is necessary. This property of the compound makes the molecule an information processing device, with a capacity to 
detect the signal and produces a readable output as a response. Relatively simple synthetic steps and the efficiency of the 

Figure 3. Change in UV-vis absorbance spectra of compound 2 (20 
μM, PBS, pH 7.4) in the presence and absence of enzymes. Compound 
2 is incubated with 2.5 U/mL esterase and 25 U/mL tyrosinase for 
120 min at 37 °C. Peak above 550 nm appears in dual enzyme treated 
sample, consistent with the formation of resorufin (arrow). 
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enzymatic conversion makes this compound a good candidate for future applications in relevant biomedical areas such as 
in the diagnosis of drug-resistant melanomas. The same design strategy, hiding the enzyme binding site and exposing it 
with another analyte, can be used to make other enzyme responsive sensors. This may lead to the production of a library of 
sensors discriminating various diseases with different enzyme combinations. As conclusion, the dual enzyme responsive 
molecular logic gate presented here can be further modified to have useful applications in the future. 
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1. General Information 

 

All reagents and solvents were purchased from commercial sources and used without further 

purification. Column chromatography was carried out using silica stationary phase (230–400 

mesh, SiliCycle Inc., Canada). Analytical thin layer chromatography was performed on 0.25 

mm thick precoated silica gel plates (60F254, Merck, Germany). Esterase enzyme is obtained 

from Sigma-Aldrich (Porcine Liver Esterase, Enzyme Commission Number 3.1.1.1) and 

tyrosinase enzyme was purchased from Sigma (mushroom tyrosinase, Enzyme Commision 

Number 1.14.18.1). Compounds were visualized under UV light. All 1H NMR ad 13C NMR 

spectra were recorded on a Varian Inova instrument (400 MHz) at Selçuk University and 

Ataturk University respectively. Chemical shifts (δ) are reported in parts per million (ppm) and 

referenced to the residual solvent peak. Coupling constants (J) are reported in hertz (Hz). 

Standard abbreviations indicating multiplicities are given: b = broad, d = doublet, m = 

multiplet, s = singlet, t = triplet. High-resolution mass spectrometry was carried out using 

Agilent 6530 Accurate-Mass Q-TOF LC/MS of the Eastern Anatolia Advanced Technology 

Research and Application Centre (DAYTAM, Erzurum, Turkey). UV-Vis Absorbance and 

Fluorescence Spectrometry (Agilent, Varian) of Konya Food and Agriculture University are 

used for spectroscopic analysis. LC-MS data were recorded using Schimadzu LCMS-2020 Single 

Quadrupole Liquid Chromatography Mass Spectrometer located at Konya Food and 

Agriculture University. 
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2. Additional Experimental Procedures 

 

2.1. Calculation of Quantum yield and Extinction Coefficient 

 

Absorbance and Fluorescence spectra of compounds and reference sample were recorded in 

PBS buffer and water respectively. As the reference compound Rhodamine 6G is used. 

Tabulated quantum yield of this compound is used in calculations (0.97 in water)1 using the 

Formula 1 given below.2 Samples are excited at 488 nm.  

 

                             Q = QR (I/IR)*(AR/A)*(n2/nR
2)                                (Formula 1) 

 

Integrated areas of fluorescence for sample and reference compound (I and IR respectively) 

are calculated using Origin software. A and AR are absorbance values at 488 nm for sample 

and reference compound respectively. n is the refractive index and this value is taken to be 

1.333, corresponding to the value for water. Quantum yield of Rhodamine 6G (QR) is taken to 

be 0.95.  

Extinction coefficient is determined using Beer-Lambert formula (Formula 2), taking the 

length of light path (l) as 1 cm.  

 

                                                       A =   C l                                (Formula 2) 

 

In the Formula 2, C refers to concentration of the sample in PBS buffer, A is the absorbance 

and  is the extinction coefficient. 
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2.2. Determination of Michaelis Constant and Maximum Rates 

 

Samples containing 10, 20, 30, 40 and 50 M of compound 2 in the presence of 3U/ml 

tyrosinase enzyme in PBS buffer (pH 7.4) were incubated at 37oC and fluorescence spectra 

were recorded. Fluorescence was recorded at 0, 15, 45 and 75 minutes. From the time 

dependent fluorescence change of the samples, initial rates of reactions were calculated for 

each sample. The data is plotted as Lineweaver-Burke plot as shown in Figure S2. Linear fitting 

of the data points gives the equation 1 below. Using the slope and intercept values of the 

equation, Michaelis constant (Km) and maximum rate of enzymatic conversion (Vmax) were 

calculated. [S] in the equation represents the concentration of compound 2.  

 

                                                    1/V0 = (Km/Vmax)*(1/[S])  + 1/Vmax              (Equation 1) 

 

2.3. Selectivity Experiment 

 

Compound 2 (20 M) was prepared in PBS buffer (pH 7.4). Various analytes were added at 

the concentrations relevant to physiological ones and incubated for 120 min at 37oC. 

Fluorescence spectra were recorded and compared with the spectra of dual enzyme treated 

Compound 2 as shown in Figure S3. Concentrations of the analytes were 1 mM for glutathione 

(GSH) and sodium ascorbate, 100 M for Bovine Serum Albumin (BSA), tert-butyl 

hydroperoxide (TBHP), hydrogen peroxide, potassium superoxide and finally 25U/ml for 

tyrosinase and 2.5U/ml for esterase.  
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Figure S1. Compound 2 (100 M) in PBS buffer (pH 7.4) under daylight (a) and under UV light (b). 

Compound 2 is incubated with esterase (2.5 U/ml) and tyrosinase (100 U/ml) enzymes for 30 min in 

right samples of each photo. Low resolution mass spectra obtained by LCMS analysis of enzyme 

treated sample (c) proves the formation of resorufin with m/z of 212 corresponding to (M-H)-. 

 

To determine the Michaelis constant of tyrosinase enzyme, substrate dependency of rates are plotted 

in the form of Lineweaver-Burke plot (Figure S2). From the slope and intercept values Km and Vmax are 

calculated as described in previous section.   

 

3. Additional Figures 

 

In order to understand the colour and fluorescence change more obviously with naked eye 

and by Mass Spectrometry analysis, more concentrated compound 2 was prepared (100 M 

in PBS buffer). To this solution, esterase enzyme (2.5 U/ml) and tyrosinase enzyme (100 U/ml) 

were added. A photo under day light and UV light is taken (Figure S1-a and S1-b respectively). 

Colour change and generation of bright pink fluorescence is clearly seen in dual enzyme 

treated samples. LC-MS analysis from enzyme treated samples proves the formation of 

resorufin with a peak value at 212 corresponding to (M-H)-. 



7 
 

 

 

Figure S2. Lineweaver-Burke plot for conversion rate of compound 2 (10-50 M) in the presence of 3 

U/ml tyrosinase enzyme in PBS buffer, at 37oC.  

 

 

 

Figure S3. Selectivity of the compound 2 towards various different analytes. Samples contains (1) 

100 M BSA; (2) 1mM GSH; (3) 1 mM sodium ascorbate; (4) 100 M H2O2; (5) 100 M KO2; (6) 100 

M TBHP; (7) 25U/ml tyrosinase and 2.5U/ml esterase enzymes. Excitation wavelength is 550 nm. 
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                          Figure S4. 1H NMR spectrum of compound 1 (400 MHz, CDCl3) 

 

 

 

Figure S5. 13C NMR spectrum of compound 1 (400 MHz, CDCl3) 
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Figure S6. HRMS (ESI) spectrum of compound 1 

 

 

Figure S7. 1H NMR spectrum of compound 2 (400 MHz, DMSO-d6) 
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Figure S8. 13C NMR spectrum of compound 2 (400 MHz, DMSO-d6) 
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