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Abstract: The working mechanism of the chemotherapeutic drug doxorubicin, which is frequently used in cancer treatment, its effects
on cell metabolism, and pathways activated solely by doxorubicin are not fully known. Understanding these principles is important both
in improving existing therapies and in finding new drug targets. Here, I describe a systems-biology approach to find a generalizable
working principle for doxorubicin by superimposition of human interactome over gene datasets commonly expressed among various
cancer types. The common —in at least two different diseases—transcriptional response of distinctive cancer cell lines to doxorubicin was
reflected via 199 significantly and differentially expressed genes, mostly related to the regulation of transcription. Then, by integrating
with interactome data, an active network was constructed allowing detection of clusters. Since each cluster defines densely connected
regions, another level of understanding of functional principles is provided. Significant clusters were associated with the linked
transcription factors and transcriptional factor enrichment analysis within these regulatory networks led to the proposition of Pou5f1b,
Znf428, Prmt3, Znf12, Erg, Tfdpl, Foxm1, and Cenpa as new drug targets in drug development that can be applied in different cancer

types.
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1. Introduction

One of the most used chemotherapeutic drugs, shown
to be efficient in different types of cancer, is doxorubicin.
Doxorubicin is known to intercalate into DNA, inhibit
topoisomerase II, lead to DNA double-strand breaks,
induce production of reactive oxygen species (ROS),
overproduce ceramide, damage chromatin through
histone modifications and disrupt nucleosome assembly
(Yang et al., 2014; van der Zanden et al. 2020). Although
it has a high drug efficacy, usage of doxorubicin creates
resistance and causes several side effects (Ferreira et
al., 2017; Ashrafizaveh et al., 2021). Despite the known
functions of doxorubicin, the mechanism of action is not
fully clarified. To overcome the limitations of the drug,
to design better therapies and to utilize it in combination
therapies, comprehensive understanding of the mechanism
is required.

With the broad usage of transcriptome profiling, there
have been studies suggesting signature genes that can be
used to predict type of a disease, subtype and eventually
the drug that can be administered for therapy, centering at
cancer- and/or cell type-specific responses (Yu et al., 2019;
Gopiand Kidder, 2021) or effects of various concentrations
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of the drug on a certain cell model (Maillet et al., 2016).
Functional annotation and/or correlation analysis together
with clustering methods on gene expression data are
used to identify differences between tumors or cell lines.
Focusing on the differences in gene expression, therefore,
serves to improve the prediction of that certain type of
disease’s response. However, such approaches yield ad hoc
results specific to the used data and/or platform used for
the measurement of data leading to lack of generalization.

Integrative multiomic approaches were applied to
understand  doxorubicin-induced  cardiotoxicity, to
identify the common signature of anthracycline-induced
cardiotoxicity, or to suggest patient-specific optimal
combination therapy (Selevsek et al.,, 2020; Cava et al.,
2021). Systems-wide effects of doxorubicin have been
investigated also in yeast cells. While long-term treatment
showed extensive reconfiguration of metabolic and
signaling networks with ROS formation and DNA damage
(Taymaz-Nikerel et al., 2018), short-term treatment
showed the contribution of DNA repair, DNA replication,
and RNA surveillance pathway (Karabekmez et al., 2021).
Addition to the transcriptome and fluxome, interactome
was integrated in those studies, which explained well the
effects in eukaryotic yeast cells. Mentioned metaanalysis
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studies focused on the effects of doxorubicin in a certain
cell type or differences across the set of various cells.
However, a genome-wide approach to explore the common
response of doxorubicin in different cancer types has not
been applied.

Among the cancer types in which doxorubicin
treatment has been applied either in single form or in
combination with other chemotherapeutic drugs, are
breast cancer (Di Francesco et al., 2021), leukemia (Turk
et al,, 2020), and nonsmall cell lung cancer (Shahriari et
al., 2021). Though, doxorubicin is not much preferred
in the treatment of colon cancer (Sonowal et al., 2017)
or renal cancer (Acharya and Singh, 2021) due to severe
cardiotoxiciy and drug resistance. These different sets of
diseases are selected to examine the common effect(s)
of doxorubicin regardless of the cancer/cell type. By
this, affected processes, drug-specific transcriptional
and regulatory networks in doxorubicin treatment
irrespectively can be identified, and consensus mechanism
of action can be offered.

Here, a systems biology approach is described, which is
based on the integration of transcriptome with interactome
data for the selected cell types, providing the regulatory
components having a role in the mechanism of action of
doxorubicin. Enrichment analyses relative to processes,
pathways, and transcription factors demonstrate that
there are several common types of machinery responsible
for the cellular changes caused by doxorubicin. Moreover,
such an approach enables the prediction of new targets for
the development of drugs or of combination therapies.

2. Materials and methods

2.1. Compilation of gene expression data
While selecting gene expression datasets, cancer types,
cell lines, dosage, and duration of administration
of doxorubicin drug were taken into consideration.
Microarray data, obtained using the Affymetrix platform,
associated with doxorubicin was collected by scanning the
NCBI Gene Expression Omnibus, GEO, and ArrayExpress,
the functional genomics data repository supporting
MIAME-compliant data submission.
Doxorubicin-induced transcriptome responses were
then collected from the measurements across the National
Cancer Institute (NCI)-60 cell line panel (Monks et al.,
2018). In that study, expression of genes in NCI-60 human
tumor cell lines were measured in response to several
anticancer agents for 2, 6, and 24 h. For renal cancer,
breast cancer, leukemia, nonsmall cell lung cancer and
colon cancer, the gene expression data, Gene Expression
Omnibus (GEO) accession number of GSE116441
measured in the cells treated with 1000 nm of doxorubicin
were used. As reference gene expressions, data measured
in untreated control cultures were applied. Details of the
compiled data are given in Supplementary Table S1.
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2.2. Data analysis

2.2.1. Differential expression analysis in transcriptome
First, datasets were normalized. Differentially expressed
genes (DEGs) were defined from normalized log-
expression values using linear models for microarray
data. In data analysis, t-test method was applied to
determine statistically significant (fold change in gene
expression >|1.05|, p-value < 0.05) subsets. These analyses
were performed in CLC Genomics Workbench (Qiagen
Bioinformatics).

2.2.2. Integration with interactome data

A protein-protein interaction (PPI) network was created
using the proteins encoded by the common — in at
least two diseases — differentially expressed genes and
physical interactions of these proteins obtained from
BIOGRID Homo sapiens 3.5.187 database comprising
613869 protein-protein interactions (Oughtred et al.,
2019). Subnetwork analysis was carried out to detect
clusters within the active network via MCODE application
in Cytoscape 3.8.0, where all networks were visualized
(Shannon et al., 2003).

2.2.3. Functional annotation analysis

Functional annotation analyses were carried out for the
common differentially expressed genes and for each
cluster identified within the active PPI network. Gene
ontology (GO) term enrichment analyses were performed
in DAVID functional annotation tool to identify
significantly (Benjamini-Hochberg corrected p-value <
0.05) associated biological process, molecular function,
cellular compartment, and KEGG pathways (Huang et al.,
2009).

2.2.4. Transcription factor enrichment analysis

For each cluster identified within the active PPI network,
transcription factor (TF) enrichment analysis was done
in ChEA3, a web-based tool, ranking TFs (Keenan et al.,
2019).

3. Results and discussion

This study aims to explain the working principle of
doxorubicin and, via this, propose new drug targets for
cancer therapy. A systems biology approach was applied
through a metaanalysis of available transcriptome data
measured in the presence of doxorubicin subjected to
different cell lines of cancer. Commonly altered genes
were coupled with interactome yielding a mechanistic and
systems-level understanding.

3.1. Common genes differentially expressed under doxo-
rubicin treatment in different cancer types

Genome-wide response of renal cancer, breast cancer,
leukemia, nonsmall cell lung cancer, and colon cancer cells
to doxorubicin at the transcriptional level revealed that
numerous genes were differentially and significantly (fold
change >|1.05| and p-value <0.05) expressed. Number of
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identified differentially expressed genes (DEGs) for each
cancer type are presented in Figure 1.

In order to determine the common DEGs of different
cancer types, genes that showed significant differences in
at least two diseases were identified. This resulted in 199
genes, listed in Supplementary Table S2. Gene ontology
(GO)-term enrichment analyzes for these 199 common
DEGs revealed statistically significant (Benjamini-
Hochberg < 0.05) biological processes (Figure 2A),
molecular functions (Figure 2B), and the cellular part
they take place in (Figure 2C). TNF signaling pathway and
osteoclast differentiation are significant pathways. When
these findings are examined, it is seen that these common
genes are mostly related to the regulation of transcription
(Figure 2A).

3.2. Construction of the active network

An active network was formed by obtaining the protein-
protein interactions of the proteins encoded by the
common 199 DEGs (Supplementary Table S2). After
removing the unlinked residues, a linked network of
active protein-protein interactions was identified through
7022 proteins and 15775 protein-protein interactions.
Topological analysis of the active protein-protein
interaction network revealed that it is a scale-free network,

Cancer type Number of DEGs

Renal cancer 314

Breast cancer 139

Leukemia 288

Non-small cell lung cancer 367

Colon cancer 459
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Figure 1. Number of identified differentially expressed genes
(DEGs) in the presence of doxorubicin exposed to different
cancer cell lines.

with degree distribution following the power law model
P(k) = k¢ with R? = 0.975, (Supplementary Table S3 and
Figure SI).

3.2.1. Modular analysis of the active network

The heavily connected clusters in the active network
were determined in MCODE application, resulting in
nine clusters (Supplementary Figure S2). The parameters
for each cluster are summarized in Supplementary Table
S4. Functional enrichment analyzes were performed for
the identified clusters. Biological process terms/cellular
compartments/molecular functions and pathways that
were found to be statistically significant (Benjamini-
Hochberg p-value < 0.05) are presented for the first three
clusters (Figures 3A).

Among the biological processes related to the genes/
proteins in Cluster 1, besides general terms such as
transcription and translation, more specific processes
such as ribosomal large subunit, ribosomal large subunit
biogenesis, NIK/NF-kappaB signaling, tumor necrosis
factor-mediated regulation of signaling pathway, and
cell adhesion were also observed (Figure 3B). NIK/NF-
kappaB was reported to potentially trigger doxorubicin
resistance (Gao et al., 2019). Ribosomes were frequently
encountered in different terms in this cluster. This allows
us to predict in advance that Cluster 1 is important in
defining transcriptional regulatory networks.

In Cluster 2 (Figure 4A) there are no significant
(Benjamini-Hochberg p-value < 0.05) results for biological
processes, but many for pathways (Figure 4B). Many
cancer-related terms have been obtained, such as nonsmall
cell lung cancer, glioma, viral carcinogenesis, melanoma,
chronic myeloid leukemia, microRNAs in cancer,
serotonergic synapse, thyroid hormone signaling pathway,
thyroid cancer, bladder cancer, proteoglycans in cancer,
regulation of actin cytoskeleton, endometrial cancer,
acute myeloid leukemia, central carbon metabolism in
cancer, renal cell carcinoma, prostate cancer, and choline
metabolism in cancer. In addition, the genes in Cluster
2 were found to be associated with several signaling
pathways that can be associated with cancer, long-term
depression, and natural killer cell-mediated cytotoxicity.

Statistically significant biological processes associated
with the genes/proteins that constitute Cluster 3 (Figure
5A) are cell cycle regulation, DNA damage checkpoint,
and negative regulation of transcription from the RNA
polymerase II promoter (Figure 5B). Significant molecular
function terms are mostly related to binding. HTLV-I
infection is the only significant pathway in Cluster 3.

3.4.2. Transcriptional regulatory networks

Identification of the transcription factors (TFs) responsible
for the regulation of genes, which had altered expression
is important to understand the working mechanism of
doxorubicin. Transcription factor enrichment analysis for
the three statistically significant clusters was performed in
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Figure 3. Modular representation of Cluster 1 (A), significant (Benjamini-corrected p-value < 0.05) biological process gene ontology
(GO) terms in Cluster 1 (B), transcription factor enrichment for Cluster 1 (C).
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Figure 4. Modular representation of Cluster 2 (A), significant (Benjamini-corrected p-value < 0.05) biological process gene ontology
(GO) terms and KEGG pathways in Cluster 2 (B).
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Figure 5. Modular representation of Cluster 3 (A), significant (Benjamini-corrected p-value < 0.05) biological process, molecular
function, cellular compartment gene ontology (GO) terms, and KEGG pathways in Cluster 3 (B).

ChEA3 (Keenan et al., 2019). TF co-expression networks
help visualize top-ranked transcription factors in the
framework of the larger human transcription regulation
network. TF-TF co-regulatory networks are dynamically
created using the best results of the selected library. The
regulatory network for the top 10 TF results for Cluster 1
is presented in Figure 3C.

Expression of TF Pou5flbp associated with Cluster
1 was shown to increase in cervical cytology and was
proposed as a biomarker to identify cervical high-grade
squamous lesions (Chen etal., 2020). Another TF, Znf428p,
was presented as one of the regulators of cell invasion and
cell migration in tumor cells (Barreiro-Alonso et al., 2018);
it is also one of the seven panel biomarker candidates for
the early diagnosis of hepatocellular carcinoma (Zhang
et al., 2020). The transcription factor Prmt3p (protein
arginine methyltransferase 3) has been shown to be
dysregulated in gemcitabine-resistant pancreatic cancer
cells. Overexpression of Prmt3p resulted in increased
resistance to gemcitabine in pancreatic cancer cells, while
reduction of Prmt3p was observed to restore gemcitabine
sensitivity in resistant cells (Hsu et al., 2018). Based on this,
inhibition of Prmt3p was proposed as a new strategy for
the treatment of gemcitabine-resistant pancreatic cancer
(Hsu et al., 2018).

The regulatory network for the top 10 TFs of Cluster
2 is presented in Supplementary Figure S3. Znfl2p
was proposed as a new target in imatinib-resistant
gastrointestinal stromal tumor cells (Cao et al.,, 2018).
Znt888p was reported as one of the methylation-based
genes associated with clear-cell renal cell carcinoma
(Wang et al., 2020). Overexpression of another Cluster
2-related TF, Ergp, was reported to be associated with
tumor stage in prostate cancer but did not strongly predict
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the rate of relapse or death among men treated with
radical prostatectomy (Pettersson et al., 2012). TMPRSS2-
ERG gene fusions are the major subtype of prostate
cancer and are predominantly seen in young patients and
lead to constitutive overexpression of the transcription
factor Ergp. ERG overexpression alone is not prognostic;
however, ERG was shown to modulate the expression of
> 1600 genes in prostate epithelial cells (Biischeck et al.,
2019).

The regulatory network for the top 10 TFs of Cluster
3 is presented in Supplementary Figure S4. Of the TFs
associated with Cluster 3, Tfdplp has the highest mean-
rank. Extensive characterization of DNA amplification at
chromosome region 13q34 in breast cancer has revealed
Tfdplp as one of the possible candidate target genes; in
addition, tumors with high gene expression have been
associated with markers of tumor proliferation and cell
cycle progression (Melchor et al., 2009). Under normal
physiological conditions and in most cancer cells, Tfdplp
is a predominant protein that binds to E2F; deregulated
TFDP1/E2F1 is known to induce stress leading to high
levels of p53 in cancerous cells (Zhan et al., 2017).

Foxmlp associated with Cluster 3 is an oncogenic
transcription factor that is overexpressed in most human
cancers. Foxmlp is involved in cell migration, invasion,
angiogenesis, and metastasis. The important role of
Foxmlp in cancer confirms its importance for therapeutic
intervention (Halasi and Gartel, 2013). Understanding the
regulation and function of Foxm1p has gained attention,
which will provide potential roles of it in cancer and
additional diseases.

Another TF associated with Cluster 3 is Cenpa
(centromere protein-A), which was shown to be important
in hepatocellular carcinoma development (Zhang et al.,
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2020), and gastric cancer progression and prognosis (Xu
et al., 2020).

4. Conclusion
The analyses reported in this study have shown that
doxorubicin causes common changes in gene expression
in different types of cancer. Significant differential
expressions were mainly observed in genes that have a
role in transcription, regulation of transcription, and
regulation of cell proliferation. Binding of protein,
chromatin, and DNA are among significant molecular
functions in addition to several terms related to RNA
polymerase II activity, indicating that doxorubicin targets
transcription machinery of RNA polymerase II, related
to DNA intercalating property of doxorubicin. Further
analysis of the PPI network revealed the interconnectivity
of expression-level effects of doxorubicin on additional
cancer types such as glioma, melanoma, thyroid, bladder,
endometrial, and prostate cancers.

Identification of TFs within the significant clusters of the
active network revealed the necessity of a comprehensive

References

Acharya N, Singh KP (2021). Differential sensitivity of renal
carcinoma cells to doxorubicin and epigenetic therapeutics
depends on the genetic background. Molecular and Cellular
Biochemistry 476 (6): 2365-2379.

Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, Husmandi K, Zabolian
A et al. (2021). Long non-coding RNAs in the doxorubicin
resistance of cancer cells. Cancer Letters 508: 104-114.

Barreiro-Alonso A, Lamas-Maceiras M, Garcia-Diaz R, Rodriguez-
Belmonte E, Yu L, et al. (2018). Delineating the HMGBI1 and
HMGB?2 interactome in prostate and ovary epithelial cells and
its relationship with cancer. Oncotarget 9 (27): 19050-19064.

Biischeck F, Zub M, Heumann A, Hube-Magg C, Simon R et al.
(2019). The independent prognostic impact of the GATA2
pioneering factor is restricted to ERG-negative prostate cancer.
Tumour Biology 41 (7): 1010428318824815.

Cao J, Wei J, Yang P, Zhang T, Chen Z et al. (2018). Genome-scale
CRISPR-Cas9 knockout screening in gastrointestinal stromal
tumor with Imatinib resistance. Molecular Cancer 17 (1): 121.

Cava C, Sabetian S, Castiglioni I (2021). Patient-specific network
for personalized breast cancer therapy with multi-omics data.
Entropy (Basel) 23 (2).

Chen L, Dong B, Gao H, Xue H, Pan D et al. (2020). HPV-16 E2/E6
and POUS5F1B as biomarkers to determine cervical high-grade
squamous lesions and more. Journal of Inflammation Research
13: 813-821.

Di Francesco M, Celia C, Cristiano MC, d’Avanzo N, Ruozi B et
al. (2021). Doxorubicin hydrochloride-loaded nonionic
surfactant vesicles to treat metastatic and non-metastatic
breast cancer. ACS Omega 6 (4): 2973-2989.

understanding of the regulation principles of these TFs in
order to provide new potential therapeutic strategies for
cancer therapy. As a result of this study, Pou5f1b, Znf428,
Prmt3, Znfl2, Erg, Tfdpl, Foxml, and Cenpa can be
suggested as new drug targets in the development of drugs
that can be effective in application to different cancer types.

The common effects of doxorubicin on human cancer
cells were investigated at the transcriptome and interactome
levels and evaluated with an integrated systems biology
approach. In more detailed studies in the future, the
information on intracellular metabolite levels, metabolic
flux values and protein amounts may be integrated and
thus the mechanisms affected will be detailed. In addition,
the results obtained in this study showed the applicability
of the proposed systems biology approach to other drugs/
drug types to obtain valuable information about the
mechanism(s) of the drug in question. And in this way,
new drug targets can be suggested as here.

Acknowledgment and/or disclaimers
This study has been supported by Istanbul Bilgi University
Research Fund through Project No. 2019.01.009.

Ferreira A, Cunha-Oliveira T, Sim&es RF, Carvalho FS, Burgeiro A et
al. (2017). Altered mitochondrial epigenetics associated with
subchronic doxorubicin cardiotoxicity. Toxicology 390: 63-73.

Gao L, Han H, Wang H, Cao L, Feng WH (2019). IL-10 knockdown
with siRNA enhances the efficacy of doxorubicin chemotherapy
in EBV-positive tumors by inducing lytic cycle via PI3K/p38
MAPK/NF-kB pathway. Cancer Letters 462: 12-22.

Gopi LK, Kidder BL (2021). Integrative pan cancer analysis reveals
epigenomic variation in cancer type and cell specific chromatin
domains. Nature Communications 12 (1): 1419.

Halasi M, Gartel AL (2013). Targeting FOXM!1 in cancer. Biochemical
Pharmacology 85 (5): 644-652.

Hsu MC, Pan MR, Chu PY, Tsai YL, Tsai CH et al. (2018). Protein
arginine methyltransferase 3 enhances chemoresistance
in pancreatic cancer by methylating hnRNPA1 to increase
ABCG?2 expression. Cancers (Basel) 11 (1).

Huang D, Sherman B, Lempicki R (2009). Bioinformatics enrichment
tools: paths toward the comprehensive functional analysis of
large gene lists. Nucleic Acids Research 37 (1): 1-13.

Karabekmez ME, Taymaz-Nikerel H, Eraslan S, Kirdar B (2021).
Time-dependent re-organization of biological processes by the
analysis of the dynamic transcriptional response of yeast cells
to doxorubicin. Molecular Omics 17 (4): 572-582.

Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML
et al. (2019). ChEA3: transcription factor enrichment analysis
by orthogonal omics integration. Nucleic Acids Research 47
(W1): W212-W224.

143



TAYMAZ-NIKEREL / Turk ] Biol

Maillet A, Tan K, Chai X, Sadananda SN, Mehta A et al. (2016).
Modeling doxorubicin-induced cardiotoxicity in human
pluripotent stem cell derived-cardiomyocytes. Scientific
Reports 6: 25333.

Melchor L, Saucedo-Cuevas LP, Munoz-Repeto I, Rodriguez-Pinilla
SM, Honrado E et al. (2009). Comprehensive characterization
of the DNA amplification at 13q34 in human breast cancer
reveals TFDP1 and CUL4A as likely candidate target genes.
Breast Cancer Research 11 (6): R86.

Monks A, Zhao Y, Hose C, Hamed H, Krushkal J et al. (2018). The
NCI transcriptional pharmacodynamics workbench: a tool to
examine dynamic expression profiling of therapeutic response
in the NCI-60 cell line panel. Cancer Research 78 (24): 6807-
6817.

Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L et al. (2019).
The BioGRID interaction database: 2019 update. Nucleic Acids
Research 47 (D1): D529-D541.

Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT et al. (2012). The
TMPRSS2: ERG rearrangement, ERG expression, and prostate
cancer outcomes: a cohort study and meta-analysis. Cancer
Epidemiology Biomarkers & Prevention 21 (9): 1497-1509.

Selevsek N, Caiment E, Nudischer R, Gmuender H, Agarkova I et al.
(2020). Network integration and modelling of dynamic drug
responses at multi-omics levels. Communications Biology 3
(1): 573.

Shahriari M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi
M (2021). Self-targeted polymersomal co-formulation of
doxorubicin, camptothecin and FOXM1 aptamer for efficient
treatment of non-small cell lung cancer. Journal of Controlled
Release 335: 369-388.

Shannon P, Markiel A, Ozier O, Baliga N, Wang ] et al. (2003).
Cytoscape: A software environment for integrated models of
biomolecular interaction networks. Genome Research 13 (11):
2498-2504.

Sonowal H, Pal PB, Wen JJ, Awasthi S, Ramana KV et al. (2017).
Aldose reductase inhibitor increases doxorubicin-sensitivity
of colon cancer cells and decreases cardiotoxicity. Scientific
Reports 7 (1): 3182.

144

Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kirdar B (2018).
Doxorubicin induces an extensive transcriptional and
metabolic rewiring in yeast cells. Scientific Reports 8 (1):
13672.

Turk S, Turk C, Akbar MW, Kucukkaraduman B, Isbilen M et
al. (2020). Renin angiotensin system genes are biomarkers
for personalized treatment of acute myeloid leukemia with
doxorubicin as well as etoposide. PLoS One 15 (11): e0242497.

van der Zanden SY, Qiao X, Neefjes J (2021). New insights into the
activities and toxicities of the old anticancer drug doxorubicin.
FEBS Journal 288 (21):6095-6111.

Wang J, Zhang Q, Zhu Q, Liu C, Nan X et al. (2020). Identification
of methylation-driven genes related to prognosis in clear-cell
renal cell carcinoma. Journal of Cellular Physiology 235 (2):
1296-1308.

XuY, Liang C, Cai X, Zhang M, Yu W et al. (2020). High centromere
protein-A (CENP-A) expression correlates with progression
and prognosis in gastric cancer. OncoTargets and Therapy 13:
13237-13246.

Yang E Teves SS, Kemp CJ, Henikoft S (2014). Doxorubicin, DNA
torsion, and chromatin dynamics. Biochimica et Biophysica
Acta 1845 (1): 84-89.

Yu K, Chen B, Aran D, Charalel ], Yau C et al. (2019). Comprehensive
transcriptomic analysis of cell lines as models of primary
tumors across 22 tumor types. Nature Communications 10 (1):
3574.

Zhan W, Wang W, Han T, Xie C, Zhang T et al. (2017). COMMD9
promotes TFDP1/E2F1 transcriptional activity via interaction
with TFDP1 in non-small cell lung cancer. Cellular Signalling
30: 59-66.

Zhang S, Liu Y, Chen J, Shu H, Shen S et al. (2020). Autoantibody
signature in hepatocellular carcinoma using seromics. Journal
of Hematology & Oncology 13 (1): 85.

Zhang Y, Yang L, Shi ], Lu Y, Chen X et al. (2020). The oncogenic role
of CENPA in hepatocellular carcinoma development: evidence
from bioinformatic analysis” BioMed Research International
2020: 3040839.



TAYMAZ-NIKEREL / Turk J Biol

Supplementary Files for
Doxorubicin-induced transcriptome meets interactome: identification of new drug targets

Table S1: Doxorubicin-induced transcriptome data used in the study:
cancer type, cell line, GEO accession numbers of the control and case gene
expression data

Cancer type Cell Line GEO control | GEO case
GSM3233605 | GSM3233608
Renal cancer 786-0 GSM3233606 | GSM3233609
GSM3233607 | GSM3233610
GSM3233810 | GSM3233815
Breast cancer MCEF7 GSM3233811 | GSM3233816°
GSM3233812 | GSM3233817
GSM3233659 | GSM3233662
Leukemia CCRF-CEM | GSM3233660 | GSM3233663
GSM3233661 | GSM3233664
GSM3233623 | GSM3233626
Non-small cell lung cancer | A549/ATCC | GSM3233624 | GSM3233627
GSM3233625 | GSM3233628
GSM3233668 | GSM3233671
Colon cancer COLO 205 GSM3233669 | GSM3233672
GSM3233670 | GSM3233673

“100 nm of doxorubicin was administered.

Table S2: Differentially expressed common genes under doxorubicin treatment in different cancer types

ABCA2 CENPA FOSL2 IGHG1 MEDI13L PEX14 RPL13 TIAM1
ABHD5 COL6A1 FOX]J3 IRF1 MEF2C PGM5 RUNX3 TLE6
ADAMTS7 CREBZF FRYL ITPR1 MGA PHF14 SCAF4 TNFRSF10D
AGO2 CSF2 FYN JARID2 MLLT10 PHLDA1 SCAPER TNEFSF9
AKAP13 CSHL1 FZR1 JMJD1C MLLT3 PIM2 SETD2 TNIK
ALDOB CTAG2 GABARAPLI1 JUN MSX2 PLCH1 SEZ6L TNS3
ANKRD11 CXCL1 GADD45B JUNB MTHFD2L | PLEKHAS5 SFI1 TRAF2
ANKRD12 CXCL3 GAS7 KCNAB2 MUM1 PMAIP1 SHB TRIM36
APOE CYLD GATA2 KLF12 MYO10 PPM1H SIPA1L1 TRIO
ARHGAP26 DAPK1 GDF15 LARGE MYOZ2 PPP1RI12B SKAP2 TRPM3
ARL4C DCT GEMIN2 LCT NAIP PPP1R15A | SLC19A2 TSPANS5
ARMC9 DGCR14 GLPIR LIF NFATC4 PSD3 SLC5A3 UBR5
ATF5 DNAJB1 GPER1 LILRA5 NFIB PSRC1 SOCS6 VAMP1
ATXNI1 DNAJB9 GPR39 LIMCH1 NFKBIA PTPRC SOX2 VEZF1
BCAR3 DST GPSM2 LINS1 NPAS2 PTPRO SPATA2 WDR?7
BCLI11A DUSP1 GRKS5 LOC100287590 | NPAT RAB31 STK17B XRCC4
BHLHE40 DUSP10 H2AFX RUNX1 NR2E1 RALGPS1 SUPT7L ZBTB14
BICD1 E2F1 HEXIM1 WNK1 NRF1 RAPGEF2 SVIL ZBTB20
BNC2 ERBB4 HEY1 LOC643733 OGFOD2 RELB SYNJ2 ZCCHC11
BTG2 ETV1 HIST1H1D LPCAT4 PAQR6 REX7 TAF1B ZEB1
Cl6orf71 FAM120C | HISTIHIE LRIG1 PARVA RGS14 TBL1X ZFYVE9
CAMKI1 FAM168A | HLA-E LTB4R PATZ1 RGS2 TCF4 ZKSCANI1
CCNF FAM193A | HOXD1 MAP3K14 PAXS8 RHOH TCF7L2 ZMYM1
CD59 FGF18 IER5 MAP3K5 PDE4DIP RNF19B TFAP2A ZNF480
CEBPA FN1 1F144 MCAM PELI1 RNF40 TFAP2B
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Figure S1: Active network constructed by protein-protein interactions of proteins encoded by the genes that are commonly
differentially expressed under doxorubicin treatment in different cancer types

Table S3: Parameters of the active PPI (protein-protein interaction) network

Clustering coefficient : 0.045 Number of nodes : 7022
Connected components : 3 Network density : 0.001
Network diameter : 9 Network heterogeneity : | 5.726
Network radius : 1 ISolated nodes : 0
Network centralization : 0.122 Number of self-loops : 0
Shortest paths : 49217254 (99%) | Multi-edge node pairs: | 1309
Characteristic path length : 3.845

Avg. number of neighbours: | 4.120
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Figure S2: Clusters within the active PPI (protein-protein interaction) network. Clusters were identified via MCODE application in
Cytoscape.

Table S4: Parameters of the clusters within the active PPI
(protein-protein interaction) network

Cluster El}%g;ietsy)”Number I:::;Eer of ziugl::)er of
1 4.152 80 170

2 3.565 24 44

3 3.412 18 36

4 3.333 4 8

5 3 3 5

6 3 3 3

7 3 5 6

8 2.667 7 8

9 2.667 4 5
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