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Abstract: Let F be an algebraically closed field of characteristic zero. In this paper we deal with matrix superalgebras
(i.e. algebras graded by Z2 , the cyclic group of order 2) endowed with a pseudoinvolution. The first goal is to present
the classification of the pseudoinvolutions that it is possible to define, up to equivalence, in the full matrix algebra
Mn(F ) of n × n matrices and on its subalgebra UTn(F ) of upper-triangular matrices. Along the way we shall give
the generators of the T -ideal of identities for the algebras M2(F ) , UT2(F ) and UT3(F ) , endowed with all possible
inequivalent pseudoinvolutions.
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1. Introduction
Let F be an algebraically closed fixed field of characteristic zero. Given a countable set X of variables x1, x2, . . . ,
the free associative algebra F 〈X〉 on X over F is the algebra of all polynomials in the variables from X and
with coefficients in the field F . An F -algebra A is said to be a PI-algebra if it satisfies at least one non-trivial
polynomial identity. In other words, there exists at least one non-zero polynomial f ∈ F 〈X〉 which vanishes
under all substitutions of its variables in the elements of A . The set of all the polynomial identities satisfied by
A is denoted by Id(A) and it is a T -ideal of the free algebra, i.e., an ideal invariant under all endomorphisms
of F 〈X〉 .

In this paper, in the context of the theory of polynomial identities (PI-theory for short), we shall focus our
attention on the so-called superalgebras with pseudoinvolution. A superalgebra is simply an algebra graded by
Z2 , the cyclic group of order two. This means that A can be decomposed in the direct sum A = A0⊕A1 , where
the Ai ’s are the homogeneous components of A and they satisfy the following properties: A0A0 +A1A1 ⊆ A0

and A0A1 +A1A0 ⊆ A1 . This kind of algebras first appeared in physics in order to have an algebraic structure
representing the behaviour of the subatomic particles bosons (A0) and fermions (A1) . The importance of
superalgebras in PI-theory was highlighted by a famous theorem of Kemer ([9]). He showed that every PI-
algebra is equivalent to (i.e., it has the same T -ideal of identities as) the Grassmann envelope of a finite
dimensional superalgebra.

Now, a pseudoinvolution on a superalgebra A = A0 ⊕ A1 , is a graded linear map ∗ : A → A such that
a∗∗ = (−1)|a|a and (ab)∗ = (−1)|a||b|b∗a∗ , for any homogeneous elements a, b ∈ A0 ∪ A1 . Here |c| denotes
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the homogeneous degree of c ∈ A0 ∪ A1 . The existence of pseudoinvolutions of the first kind was proved in
2008 by Jaber (see [8]). Two years later, Martinez and Zelmanov used pseudoinvolutions in order to completely
classify the irreducible bimodules over simple finite dimensional Jordan superalgebras (see [12]). In the PI-
theory context, several papers concerning superalgebras with pseudoinvolution have been published recently
([5–7]).

Now it is time to state more clearly the goals of this paper. Let Mn(F ) be the algebra of n×n matrices
over F . In 1950 , a celebrated theorem of Amitsur and Levitzki ([1]) showed that the standard polynomial St2n
is an identity for the algebra Mn(F ) (actually, it is not hard to prove that St2n is, up to a scalar, the only
identity of minimal degree of Mn(F )). This theorem was the beginning of a new approach to PI-theory, the
main objective being the description of the polynomial identities satisfied by a given algebra. The purpose of
this paper goes in this direction.

In characteristic zero, it is well known that, up to isomorphism, the matrix algebra Mn(F ) can be
endowed with only one non trivial Z2 -grading. More precisely, if we write n = k + h , then Mn(F ) has the
following decomposition as superalgebra:

Mn(F ) =

{(
X 0
0 T

)
| X ∈Mk(F ), T ∈Mh(F )

}
⊕
{(

0 Y
Z 0

)
| Y ∈Mk×h(F ), Z ∈Mh×k(F )

}
.

Such a superalgebra is denoted by Mk,h(F ) . In [8], Jaber proved that, up to equivalence, there are only two
classes of inequivalent pseudoinvolutions on this superalgebra: the pseudotranspose pt and the pseudosymplectic
ps (we shall define them in full detail later on). The first goal of this paper is to present the generators of the
ideal of identities for the superalgebra M1,1(F ) endowed with the pseudotranspose and the pseudosymplectic
pseudoinvolution.

The last part of the paper is devoted to the study of the algebra UTn(F ) of n × n upper-triangular
matrices. If n = 2 , a basis of the identities of such an algebra was found by Malcev in 1971 (see [11]) whereas
a solution for the general problem was given in 2010 by Latyshev ([10]). Now let us consider when the algebra
UTn(F ) has a structure of superalgebra. In [14], the authors completely characterized all the Z2 -grading on this
algebra by showing that, up to isomorphism, they are just the elementary ones. By taking into account these
results and according to the classification of the involutions on UTn(F ) given by Di Vincenzo, Koshlukov and La
Scala in 2006 , in 2021 the author completely classified the pseudoinvolutions on UTn(F ) (see [4]). In the last
sections of the paper we shall recall these results and, along the way, we shall give the generators of the T -ideal
of identities of the algebras UT2(F ) and UT3(F ) , endowed with all possible inequivalent pseudoinvolutions.

2. Preliminaries
Throughout this paper F will denote an algebraically closed field of characteristic zero and A = A0 ⊕ A1 an
associative superalgebra over F, i.e., an algebra graded by Z2 , the cyclic group of order two. The elements
of A0 and A1 are called homogeneous of degree zero (or even elements) and of degree one (or odd elements),
respectively.

Let now consider a countable set of variables X = {x1, x2, . . .}. Write X = Y ∪ Z as the disjoint union
of two subsets, requiring that the variables of Y are of even homogeneous degree and the variables of Z are
of odd homogeneous degree. If we denote by F0 the subspace of F 〈Y ∪ Z〉 spanned by all monomials in the
variables of Y ∪Z having an even number of variables of Z and by F1 the subspace spanned by all monomials

1872



IOPPOLO/Turk J Math

having an odd number of variables of Z , then it is clear that F 〈Y ∪ Z〉 = F0 ⊕ F1 is a Z2 -grading. Thus we
can refer to F 〈Y ∪ Z〉 as the free associative superalgebra.

Now suppose that the superalgebra A is endowed with a pseudoinvolution ∗ . Recall that a pseudoinvo-
lution on A is a graded linear map ∗ : A −→ A such that a∗∗ = (−1)|a|a and (ab)∗ = (−1)|a||b|b∗a∗ , for any
homogeneous elements a, b ∈ A0 ∪A1 . Here |c| denotes the homogeneous degree of c ∈ A0 ∪A1.

Notice that, if a ∈ A1 , then a∗∗ = −a and so there are no symmetric or skew-symmetric elements of
homogeneous degree 1 . Moreover, the hypothesis that F is an algebraically closed field ensure us the existence
of an element i such that i2 = −1 . Furthermore, since charF = 0 , we can write

A = A+
0 ⊕A−

0 ⊕Ai
1 ⊕A−i

1 ,

where A+
0 = {a ∈ A0 | a∗ = a} and A−

0 = {a ∈ A0 | a∗ = −a} denote the sets of symmetric and skew elements
of A0 and Ai

1 = {a ∈ A1 | a∗ = ia} and A−i
1 = {a ∈ A1 | a∗ = −ia} denote the sets of i -symmetric and i -skew

elements of A1 , respectively.
We shall write F 〈Y ∪ Z, ∗〉 for the free superalgebra with pseudoinvolution on the countable set Y ∪ Z

over F. It is useful to regard F 〈Y ∪ Z, ∗〉 as generated by (even) symmetric and skew variables and by (odd)
i -symmetric and i -skew variables: if for j = 1, 2, . . . , we let y+j = yj + y∗j , y

−
j = yj − y∗j , zij = zj − iz∗j and

z−i
j = zj + iz∗j , thus

F 〈Y ∪ Z, ∗〉 = F 〈y+1 , y
−
1 , z

i
1, z

−i
1 , y+2 , y

−
2 , z

i
2, z

−i
2 , . . .〉.

A polynomial f(y+1 , . . . , y+m, y−1 , . . . , y−n , zi1, . . . , zir, z−i
1 , . . . , z−i

s ) ∈ F 〈Y ∪Z, ∗〉 is a ∗ -polynomial identity
of A (or simply a ∗ -identity), and we write f ≡ 0, if for all u+1 , . . . , u+m ∈ A+

0 , u
−
1 , . . . , u

−
n ∈ A−

0 , v
i
1, . . . , v

i
r ∈ Ai

1

and v−i
1 , . . . , v−i

s ∈ A−i
1 , we get

f(u+1 , . . . , u
+
m, u

−
1 , . . . , u

−
n , v

i
1, . . . , v

i
r, v

−i
1 , . . . , v−i

s ) = 0.

We denote by Id∗(A) = {f ∈ F 〈Y ∪ Z, ∗〉 | f ≡ 0 on A} the T ∗
2 -ideal of ∗ -identities of A, i.e. an ideal

of F 〈Y ∪ Z, ∗〉 invariant under all graded endomorphisms of F 〈Y ∪ Z〉 commuting with the pseudoinvolution
∗ . Given polynomials f1, . . . , fn ∈ F 〈Y ∪ Z, ∗〉 we shall denote by 〈f1, . . . , fn〉T∗

2
the T ∗

2 -ideal generated by
f1, . . . , fn . Moreover, in order to simplify the notation, we shall denote by y any even variable, by z any odd
variable and by x an arbitrary variable.

As in the ordinary case, in characteristic zero, every ∗ -identity is equivalent to a system of multilinear
∗ -identities. Hence, in order to study Id∗(A), one can define

P ∗
n = spanF {wσ(1) · · ·wσ(n) | σ ∈ Sn, wj = y+j or wj = y−j or wj = zij or wj = z−i

j , j = 1, . . . , n}

as the space of multilinear polynomials of degree n in the variables y+1 , y−1 , zi1, z−i
1 , . . . , y+n , y

−
n , z

i
n, z

−i
n and then

analyze P ∗
n ∩ Id∗(A) , for all n ≥ 1 . The non-negative integer

c∗n(A) = dimF
P ∗
n

P ∗
n ∩ Id∗(A)

, n ≥ 1,

is called the n -th ∗ -codimension of A.
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Let n ≥ 1 and write n = n1 + · · · + n4 as a sum of four non-negative integers. We denote by
Pn1,...,n4

⊆ P ∗
n the vector space of multilinear polynomials in which the first n1 variables are symmetric,

the next n2 variables are skew, the next n3 variables are i -symmetric and the last n4 variables are i -skew.

Now if we set cn1,...,n4
(A) = dimF

Pn1,...,n4

Pn1,...,n4
∩ Id∗(A)

then

c∗n(A) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
cn1,...,n4

(A), (2.1)

where
(

n
n1,...,n4

)
= n!

n1!···n4!
stands for the multinomial coefficient. Hence the growth of c∗n(A) is related to the

growth of multinomial coefficients and of cn1,...,n4
(A), for any n = n1 + · · ·+ n4.

Lemma 2.1 Let A be a superalgebra with pseudoinvolution satisfying an ordinary identity. Then, for n ≥ 1 ,

cn(A) ≤ c∗n(A) ≤ 4ncn(A).

Since the ordinary codimension sequence of a PI-algebra is exponentially bounded (see [13]), we get the
following. Recall that those algebras satisfying at least one non-trivial ordinary identity are called PI-algebras.

Corollary 2.2 If A is a PI-superalgebra with pseudoinvolution, then c∗n(A) , n = 1, 2, . . . , is exponentially
bounded.

3. Full matrix algebras and pseudoinvolutions

In this section we focus our attention on matrix superalgebras. Let us consider the full matrix algebra Mn(F ) of
n×n matrices. Since we are dealing with a field F of characteristic zero, it is well known that, up to isomorphism,
there is only one non trivial Z2 -grading on Mn(F ) . More precisely, if n = k + h , then A =Mn(F ) becomes a
superalgebra A = A0 ⊕A1 , where the homogeneous components are

A0 =

{(
X 0
0 T

)
| X ∈Mk(F ), T ∈Mh(F )

}
and A1 =

{(
0 Y
Z 0

)
| Y ∈Mk×h(F ), Z ∈Mh×k(F )

}
.

Such a superalgebra is denoted by Mk,h(F ) .
In [8, Theorems 4.3 and 4.4], Jaber proved that, up to equivalence, there are only two classes of

inequivalent pseudoinvolutions on Mk,h(F ) . Recall that if A and B are two algebras with pseudoinvolutions
∗ and ⋆ respectively, then (A, ∗) and (B, ⋆) are isomorphic, as superalgebras with pseudoinvolution, if there
exists an isomorphism of superalgebras ψ : A→ B such that ψ(x∗) = ψ(x)⋆ , for all x ∈ A.

For all k ≥ h ≥ 0 , the superalgebra Mk,h(F ) can be endowed with the pseudotranspose pseudoinvolution
pt defined by: (

X Y
Z T

)pt

=

(
Xt Zt

−Y t T t

)
,

where t denotes the usual transpose involution.
If h = k , the superalgebra Mk,k(F ) can be also endowed with the pseudosymplectic pseudoinvolutions

psi and ps−i defined, respectively, by:(
X Y
Z T

)psi

=

(
T t iY t

iZt Xt

)
and

(
X Y
Z T

)ps−i

=

(
T t −iY t

−iZt Xt

)
.
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In what follows we shall present the results of [2], in which the authors gave the generators of the T ∗
2 -

ideal of identities of the superalgebra M1,1(F ) endowed first with the pseudoinvolution pt and then with the
pseudoinvolutions psi and ps−i .

Consider first the algebra (M1,1(F ), pt) . Since
(
a b
c d

)pt

=

(
a c
−b d

)
, it is not difficult to see that

(M1,1(F ), pt) =

{(
a 0
0 d

)}
⊕
{(

0 0
0 0

)}
⊕

{(
0 c
ic 0

)}
⊕

{(
0 c

−ic 0

)}
.

Theorem 3.1 The T ∗
2 -ideal of identities of (M1,1(F ), pt) is generated by the following polynomials

[y+1 , y
+
2 ], y−, [zi1, z

i
2], [z−i

1 , z−i
2 ], zi1 ◦ z−i

2 , z±i
1 y+2 z

±i
3 − z±i

3 y+2 z
±i
1 , z±i

1 y+2 z
∓i
3 + z∓i

3 y+2 z
±i
1 .

Proof (Sketch).
Let J be the T ∗

2 -ideal generated by the above polynomials. It is easy to prove that J ⊆ Id∗ (M1,1(F ), pt) .
In order to prove the opposite inclusion, let f ∈ Id∗ (M1,1(F ), pt) , deg f = n , and assume, as we may, that
f is multilinear. We want to show that f is the zero polynomial modulo J . By taking into account also
the identities [z1z2, y

+
3 ] ≡ 0 and [y+1 , z2y

+
3 z4] ≡ 0 , it follows that f is a linear combination (modulo J ) of

monomials of the type
y+i1 · · · y

+
ia
zl1y

+
j1
· · · y+jbzl2 · · · zlh , (3.1)

where h = 0, . . . , n is the number of variables z ’s, a + b = n − h counts the number of variables y+ ’s and
i1 < · · · < ia , j1 < · · · < jb , l1 < · · · < lh . In what follows, we may assume that the z ’s are just z+ ’s. Then,
we can take into account that there are exactly 2h monomials of each kind.

Now assume that αi1,...,ia,j1,...,jb,l1,...,lh is the coefficient with which the above monomial appears in f .
In order to show that f is the zero polynomial, it is sufficient to consider the following evaluation:

• y+i1 = · · · = y+ia = e11 .

• y+j1 = · · · = y+jb = e22 .

• y+s = 0 , for any s 6∈ {i1, . . . , ia, j1, . . . , jb} .

• z+l1 = · · · = z+lh = e12 + ie21 .

• z+t = 0 , for any t 6∈ {l1, . . . , lh} .

There are several possibilities but in any case it follows that f is the zero polynomial and we are done. 2

Corollary 3.2 c∗n (M1,1(F ), pt) = 4n − 2n + 1 .

Proof We need just to count the monomials in (3.1). For fixed a , b and h > 0 , it is easy to see that they are:

(
n

h

) n−h∑
j=0

(
n− h

j

)
.
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Recalling that we have to consider that each z can be i -symmetric or i -skew (2h possibilities) and by taking
into account the monomial y+1 · · · y+n , we get that

c∗n (M1,1(F ), pt) = 1 +

n∑
h=0

2h

(
n

h

) n−h∑
j=0

(
n− h

j

) = 4n − 2n + 1.

2

Now let us consider the algebra (M1,1(F ), psi) . Since
(
a b
c d

)psi

=

(
d ib
ic a

)
, we get

(M1,1(F ), psi) =

{(
a 0
0 a

)}
⊕
{(

a 0
0 −a

)}
⊕

{(
0 b
c 0

)}
⊕

{(
0 0
0 0

)}
.

Theorem 3.3 The T ∗
2 -ideal of identities of (M1,1(F ), psi) is generated by the following polynomials

[y+, x], [y−1 , y
−
2 ], y− ◦ zi, z−i, zi1z

i
2z

i
3 − zi3z

i
2z

i
1.

Proof (Sketch).
Let J be the T ∗

2 -ideal generated by the above polynomials. It is easy to prove that J ⊆ Id∗ (M1,1(F ), psi) .
Now let f ∈ Id∗ (M1,1(F ), psi) , deg f = n , and assume, as we may, that f is multilinear. We want to show
that f is the zero polynomial modulo J . Clearly, f is a linear combination (modulo J ) of monomials of the
type

y+i1 · · · y
+
in1
y−j1 · · · y

−
jn2
z+l1 · · · z

+
ln−n1−n2

, (3.2)

where i1 < · · · < in1
, j1 < · · · < jn2

, l1 < l3 < · · · , l2 < l4 < · · · . Moreover, assume that αI,J,l1,...,ln−n1−n2
is

the coefficient with which the above monomial appears in f . In order to show that f is the zero polynomial,
it is sufficient to consider the following evaluation:

• y+i1 = · · · = y+in1
= e11 + e22 and y+r = 0 , for any r 6∈ {i1, . . . , in1} .

• y−j1 = · · · = y−jn2
= e11 − e22 and y−s = 0 , for any s 6∈ {j1, . . . , jn2} .

• z+l1 = z+l3 = · · · = e12 , z+l2 = z+l4 = · · · = e21 and z+t = 0 , for any t 6∈ {l1, . . . , ln−n1−n2} .

We get αI,J,l1,...,ln−n1−n2e11 ±αI,J,ln−n1−n2,...,l1e22 if n−n1 −n2 is even and αI,J,l1,...,ln−n1−n2e12 otherwise. In
any case we are done. 2

Corollary 3.4 c∗n (M1,1(F ), psi) =

(
2n+ 1

n+ 1

)
≈ 4n .

Proof We need just to count the monomials in (3.2). For fixed n1 and n2 , it is not difficult to see that they
are: (

n

n1

)(
n− n1
n2

)(
n− n1 − n2
bn−n1−n2

2 c

)
.
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Hence we get that

c∗n (M1,1(F ), ps) =
∑
n1,n2

(
n

n1

)(
n− n1
n2

)(
n− n1 − n2
bn−n1−n2

2 c

)
=

(
2n+ 1

n+ 1

)
≈ 4n.

2

Finally, if we consider the pseudoinvolution ps−i on M1,1(F ) given by
(
a b
c d

)ps−i

=

(
d −ib

−ic a

)
, we

get

(M1,1(F ), ps−i) =

{(
a 0
0 a

)}
⊕
{(

a 0
0 −a

)}
⊕

{(
0 0
0 0

)}
⊕

{(
0 b
c 0

)}
.

With the same approach of Theorem 3.3 and of Corollary 3.4, we get the following result.

Theorem 3.5 The T ∗
2 -ideal of identities of (M1,1(F ), ps−i) is generated by the following polynomials

[y+, x], [y−1 , y
−
2 ], y− ◦ z−i, zi, z−i

1 z−i
2 z−i

3 − z−i
3 z−i

2 z−i
1 .

Moreover, c∗n (M1,1(F ), ps−i) =

(
2n+ 1

n+ 1

)
≈ 4n .

4. Pseudoinvolutions on upper-triangular matrices

In [4], the author gave a classification of the pseudoinvolutions on the superalgebra UTn(F ) of n × n upper-
triangular matrices. Such a classification was obtained by making use of the notion of the so-called superauto-
morphisms and of a strict relation between pseudoinvolutions and graded involutions. In what follows we shall
recall these results.

Let us start by presenting two involutions on UTn(F ) . The so-called reflection involution ◦ : UTn(F ) →
UTn(F ) is defined on the matrix units by the formula:

e◦ij = en+1−j,n+1−i, for any 1 ≤ i, j ≤ n.

Now assume that n = 2m is even and consider the matrix J =

(
Im 0
0 −Im

)
. Then, for any Y ∈ UTn(F ) ,

s : UTn(F ) −→ UTn(F )

Y 7−→ JY ◦J

is an involution on UTn(F ) . In [3], the authors proved the following.

Theorem 4.1 [3, Proposition 2.5] If F is a field of characteristic different from 2 , every involution on UTn(F )

is equivalent to ◦ or to s . Moreover, s can occur only if n is even.

Now let us give a structure of superalgebra to UTn(F ) . In this direction, we have the following result of
Valenti and Zaicev, proved for any finite abelian group G and here presented just for Z2 , the cyclic group of
order 2 .
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Theorem 4.2 [14] Let F be an algebraically closed field of characteristic zero and let UTn(F ) be the algebra
of n×n upper-triangular matrices over F graded by Z2 . Then UTn(F ) , as a Z2 -graded algebra, is isomorphic
to UTn(F ) with some elementary Z2 -grading.

Recall that an n -tuple g = (g1, . . . , gn) ∈ Zn
2 defines an elementary Z2 -grading on UTn(F ) by setting

(UTn(F ))0 = span{eij | gi + gj = 0 (mod 2)} and (UTn(F ))1 = span{eij | gi + gj = 1 (mod 2)}.

Finally, recall that an involution ∗ : A → A on the superalgebra A = A0 ⊕ A1 is said to be a graded
involution if A∗

i ⊆ Ai , for all i ∈ {0, 1} . In 2009 Valenti and Zaicev classified, up to equivalence, all graded
involutions on the G -graded algebra UTn(F ) . In the following theorem we present such a result in the context
of superalgebras.

Theorem 4.3 [15, Theorem 5.4] Let F be an algebraically closed field of characteristic zero and let UTn(F )
be the superalgebra of n×n upper-triangular matrices over F . Suppose that UTn(F ) is endowed with a graded
involution ♯ . Then UTn(F ) , as a Z2 -graded algebra with graded involution, is isomorphic to UTn(F ) with an
elementary Z2 -grading defined by an n-tuple (g1, . . . , gn) such that

g1 + gn = g2 + gn−1 = · · · = g1 + gn

and with involution ◦ or s . The involution s can occur only if n is even.

Now we are almost ready to give the classification of the pseudoinvolutions on the superalgebra UTn(F ) ,
proved in [4]. To this end, recall that a bijective graded linear map φ : A→ A on a superalgebra A = A0 ⊕A1

is a superautomorphism if
φ(ab) = (−1)|a||b|φ(a)φ(b), for all a, b ∈ A0 ∪A1.

Now we introduce a particular superautomorphism that it is possible to define on any F -superalgebra
A , where F is an algebraically closed field. In fact, under this hypothesis, we may assume that there exists an
element i ∈ F such that i2 = −1 .

Definition 4.4 Let A = A0 ⊕A1 be a superalgebra over an algebraically closed field F . We define

Φ: A0 ⊕A1 −→ A0 ⊕A1

a0 + a1 7−→ a0 + ia1.

In [4] it was proved that Φ is a superautomorphism commuting with any graded linear map on a
superalgebra A and such that Φ2(a) = (−1)|a|a , for any homogeneous element a ∈ A0 ⊕A1 .

The following result will allow us to give the classification of pseudoinvolutions on UTn(F ) .

Theorem 4.5 Let A = A0 ⊕A1 be a superalgebra. A map ∗ : A→ A is a pseudoinvolution if and only if there
exists a graded involution ♯ : A→ A such that ∗ = ♯Φ .

We now define two pseudoinvolutions on the upper-triangular matrix superalgebra. Let ◦ and s be the
reflection and the symplectic graded involution defined above. We give the following definitions.
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Definition 4.6 The pseudoinvolution ◦̄ : UTn(F ) → UTn(F ) , defined by ◦̄ = ◦Φ , is called pseudo-reflection.

Definition 4.7 The pseudoinvolution s̄ : UTn(F ) → UTn(F ) , defined by s̄ = sΦ , is called pseudo-symplectic.

The following theorem is the main result of this section.

Theorem 4.8 Let F be an algebraically closed field of characteristic zero and let UTn(F ) be the superalgebra
of n × n upper-triangular matrices over F . Suppose that UTn(F ) is endowed with a pseudoinvolution ∗ .
Then UTn(F ) , as a Z2 -graded algebra with pseudoinvolution, is isomorphic to UTn(F ) with an elementary
Z2 -grading defined by an n-tuple (g1, . . . , gn) such that

g1 + gn = g2 + gn−1 = · · · = g1 + gn

and with pseudoinvolution ◦̄ or s̄ . The pseudoinvolution s̄ can occur only if n is even.

5. Polynomial identities on UT2(F )

In this section we focus our attention on 2 × 2 upper-triangular matrices. By Theorem 4.2, every Z2 -grading
on UT2(F ) is an elementary Z2 -grading and, among them, the different (non isomorphic) ones are induced by
the following pairs of elements of Z2 :

(0, 0) and (0, 1) .

First we consider the case of UT2(F ) with the elementary Z2 -grading defined by the pair (0, 0) . From
now on, UT2(F )(0,0) shall denote this superalgebra with trivial Z2 -grading. Since

(
UT2(F )(0,0)

)
1
= 0 , it is

clear that the pseudoinvolutions on UT2(F )(0,0) coincide with the involutions. In [3], the authors proved that
it is possible to define on UT2(F ) only the two involutions ◦ and s we have presented before. Here we recall
the definition of such involutions in the case of 2× 2 upper-triangular matrices.

Let
(
a c
0 b

)
∈ UT2(F ) , then we have:

(
a c
0 b

)◦

=

(
b c
0 a

)
and

(
a c
0 b

)s

=

(
b −c
0 a

)
.

It is important to remark that, since UT2(F )(0,0) is a superalgebra with trivial grading, the superauto-
morphism Φ is the identity map and hence the pseudoinvolutions ◦̄ and s̄ defined before are exactly the
involutions ◦ and s .

In the following theorems we present the results of [3] in which the authors found a basis of the T ∗
2 -ideal

of UT2(F ) in the settings of superalgebras with pseudoinvolution, for convenience of the reader.

Theorem 5.1 [3, Theorem 3.1] Let
(
UT2(F )(0,0), ◦

)
be the superalgebra of 2 × 2 upper-triangular matrices

with trivial Z2 -grading and endowed with the pseudoinvolution ◦ . Then the T ∗
2 -ideal of identities of this algebra

is generated, as a T ∗
2 -ideal, by the following polynomials:

[y+1 , y
+
2 ], [y−1 , y

−
2 ], [y+1 , y

−
1 ][y

+
2 , y

−
2 ], y−1 y

+y−2 − y−2 y
+y−1 , zi, z−i.
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Theorem 5.2 [3, Theorem 3.2] Let
(
UT2(F )(0,0), s

)
be the superalgebra of 2 × 2 upper-triangular matrices

with trivial Z2 -grading and endowed with the pseudoinvolution s . Then the T ∗
2 -ideal of identities of this algebra

is generated, as a T ∗
2 -ideal, by the following polynomials:

[y+1 , y
+
2 ], [y−, y+], [y−1 , y

−
2 ][y

−
3 , y

−
4 ], y−1 y

−
2 y

−
3 − y−3 y

−
2 y

−
1 , zi, z−i.

Let now focus our attention on UT2(F )(0,1) , the superalgebra of 2 × 2 upper-triangular matrices with
elementary Z2 -grading defined by the pair (0, 1) . In this case the subspaces of homogeneous elements of degree
0 and 1 are: (

UT2(F )(0,1)
)
0
= Fe11 ⊕ Fe22, and

(
UT2(F )(0,1)

)
1
= Fe12.

Since the pair (0, 1) satisfies the property 0 + 1 = 1 + 0 , according to Theorem 4.8, we have that on
UT2(F )(0,1) we can define the pseudoinvolutions ◦̄ and s̄ .

Let us start by considering A =
(
UT2(F )(0,1), ◦̄

)
, the superalgebra UT2(F )(0,1) endowed with the

pseudoinvolution ◦̄ . We have that (
a c
0 b

)◦̄

=

(
b ic
0 a

)
.

The four sets of symmetric and skew even elements and of i -symmetric and i -skew odd elements are:

A+
0 = F (e11 + e22) , A−

0 = F (e11 − e22) , Ai
1 = Fe12, A−i

1 = 0.

In the following we compute a basis for the T ∗
2 -ideal of identities of A . In order to simplify the notation,

we denote by x an arbitrary variable.

Theorem 5.3 The T ∗
2 -ideal of identities of A =

(
UT2(F )(0,1), ◦̄

)
is generated by the following polynomials

[y+, x], [y−1 , y
−
2 ], y−zi + ziy−, zi1z

i
2, z−i.

Proof Let J be the T ∗
2 -ideal generated by the above polynomials. It is easy to prove that J ⊆ Id∗(A) .

In order to prove the opposite inclusion, let f ∈ Id∗(A) , deg f = n , and assume, as we may, that f is
multilinear and f ∈ Pn1,...,n4

, where n = n1+ · · ·+n4 . We want to show that f is the zero polynomial modulo
J . Since z−i ≡ 0 and zi1z

i
2 ≡ 0 , if n4 6= 0 or n3 ≥ 2 , it is obvious that f is the zero polynomial. Then let

n4 = 0 and 0 ≤ n3 ≤ 1 . By the other identities it is easy to see that

f ≡ αy+1 · · · y+n1
y−1 · · · y−n2

(mod J ), n1 + n2 = n,

or
f ≡ β y+1 · · · y+n1

y−1 · · · y−n2
z+ (mod J ), n1 + n2 + 1 = n.

In the first case, by making the evaluation y+i = e11 + e22 , 1 ≤ i ≤ n1 and y−j = e11 − e22 , 1 ≤ j ≤ n2 ,

we get α(e11 ± e22) = 0 . Thus α = 0 . Similarly, if f ≡ β y+1 · · · y+n1
y−1 · · · y−n2

z+ (mod J ), by making the
evaluation y+i = e11 + e22 , 1 ≤ i ≤ n1 , y−j = e11 − e22 , 1 ≤ j ≤ n2 and zi = e12 , we get βe12 = 0 and so
β = 0 . Hence f is the zero polynomial modulo J and the proof is complete. 2

An easy computation allows us to obtain the following result.
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Corollary 5.4 Let A =
(
UT2(F )(0,1), ◦̄

)
be the superalgebra UT2(F )(0,1) with the pseudoinvolution ◦̄ . Then

c∗n(A) = 2n−1(n+ 2).

Let now B =
(
UT2(F )(0,1), s̄

)
be the superalgebra UT2(F )(0,1) with the pseudoinvolution s̄ . We have

that (
a c
0 b

)s̄

=

(
b −ic
0 a

)
.

The four sets of symmetric and skew even elements and of i -symmetric and i -skew odd elements are:

B+
0 = F (e11 + e22) , B−

0 = F (e11 − e22) , Bi
1 = 0, B−i

1 = Fe12.

The following result can be proved in a similar way as the preceding one, so we omit the proof.

Theorem 5.5 The T ∗
2 -ideal of identities of B =

(
UT2(F )(0,1), s̄

)
is generated by the following polynomials

[y+, x], [y−1 , y
−
2 ], y−z−i + z−iy−, zi, z−i

1 z−i
2 .

Moreover, c∗n(B) = 2n−1(n+ 2) .

6. Polynomial identities on UT3(F )

In this section we focus our attention on 3 × 3 upper-triangular matrices. By Theorem 4.2, every Z2 -grading
on UT3 is an elementary Z2 -grading and, among them, the different (non isomorphic) ones are induced by the
following triples of elements of Z2 :

(0, 0, 0) , (0, 0, 1) , (0, 1, 1) , (0, 1, 0) .

First we consider the case of UT3(F ) with the elementary Z2 -grading defined by the triple (0, 0, 0) .
From now on, UT3(F )(0,0,0) shall denote this superalgebra with trivial Z2 -grading. Since

(
UT3(F )(0,0,0)

)
1
= 0 ,

it follows that the pseudoinvolutions on UT3(F )(0,0,0) coincide with the involutions. In [3], the authors proved
that it is possible to define on UT3(F ) just the involution ◦ (it is not possible to define the involution s since
3 is odd). Recall that a b c

0 d e
0 0 f

◦

=

f e c
0 d b
0 0 a

 , for all

a b c
0 d e
0 0 f

 ∈ UT3(F ).

In the following theorem we present the results of [3] in the language of superalgebras with pseudoin-
volution, for convenience of the reader. In order to simplify the notation, if the variable can be indifferently
y+i or y−i we shall denote it as y±i . Moreover we put |y−i | = 0 and |y+i | = 1 . Here we observe that [y+i , y

+
j ]

and [y−i , y
−
j ] are skew elements while [y+i , y

−
j ] is symmetric. We shall use the notation |y±i y

±
j | for |[y±i , y

±
j ]| .

In other words |y±i y
±
j | equals 0 when the commutator [y±i , y

±
j ] is skew and it equals 1 if the commutator is

symmetric.
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Theorem 6.1 [3, Theorem 6.6] Let
(
UT3(F )(0,0,0), ◦

)
be the superalgebra of 3 × 3 upper-triangular matrices

with trivial Z2 -grading and endowed with the pseudoinvolution ◦ . Then the T ∗
2 -ideal of identities of this algebra

is generated, as a T ∗
2 -ideal, by the following polynomials:

1. z ,

2. St3(y
−
1 , y

−
2 , y

−
3 ) ,

3. (−1)|y
±
1 y±

2 |[y±1 , y
±
2 ][y

±
3 , y

±
4 ]− (−1)|y

±
3 y±

4 |[y±3 , y
±
4 ][y

±
1 , y

±
2 ] ,

4. y−1 [y
±
3 , y

±
4 ]y

−
2 + (−1)|y

±
3 y±

4 |y−2 [y
±
3 , y

±
4 ]y

−
1 ,

5. [y±1 , y
±
2 ]y

−
5 [y

±
3 , y

±
4 ] ,

6. y−1 [y
±
4 , y

±
5 ]y

−
2 y

±
3 + (−1)|y

±
3 |y±3 y

−
1 [y

±
4 , y

±
5 ]y

−
2 ,

7. (−1)|y
±
1 y±

2 |[y±1 , y
±
2 ][y

±
3 , y

±
4 ]− (−1)|y

±
1 y±

3 |[y±1 , y
±
3 ][y

±
2 , y

±
4 ] + (−1)|y

±
1 y±

4 |[y±1 , y
±
4 ][y

±
2 , y

±
3 ] .

According to Theorem 4.8, it is easy to see that it is not possible to define any pseudoinvolution on
UT3(F )(0,0,1) and on UT3(F )(0,1,1) .

Finally we consider the superalgebra of 3 × 3 upper-triangular matrices with elementary Z2 -grading
defined by the triple (0, 1, 0) . In this case the subspaces of homogeneous elements of degree 0 and 1 are:(

UT3(F )(0,1,0)
)
0
= Fe11 ⊕ Fe22 ⊕ Fe33 ⊕ Fe13, and

(
UT3(F )(0,1,0)

)
1
= Fe12 ⊕ Fe23.

According to Theorem 4.8, on C = UT3(F )(0,1,0) it is possible to define only the pseudo-symplectic
pseudoinvolution ◦̄ = ◦Φ given by a b c

0 d e
0 0 f

◦̄

=

f ie c
0 d ib
0 0 a

 .

The four sets of symmetric and skew even elements and of i -symmetric and i -skew odd elements are:

C+
0 = F (e11 + e33)⊕ Fe22 ⊕ Fe13, C−

0 = F (e11 − e33) , Ci
1 = F (e12 + e23) , C−i

1 = F (e12 − e23) .

In the following we compute a basis for the T ∗
2 -ideal of identities of C . In order to simplify the notation

we denote by yi any variable of homogeneous degree 0 and by zi any variable of homogeneous degree 1 .

Theorem 6.2 Let C =
(
UT3(F )(0,1,0), ◦̄

)
be the superalgebra of 3×3 upper-triangular matrices with elementary

Z2 -grading defined by the triple (0, 1, 0) and endowed with the pseudoinvolution ◦̄ . Then the T ∗
2 -ideal of

identities of this algebra is generated, as a T ∗
2 -ideal, by the following polynomials:

1. [y+1 , y
+
2 ] ,

2. [y−1 , y
−
2 ] ,

3. y+1 y
−
2 y

+
3 − y+3 y

−
2 y

+
1 ,

4. [y+1 , y
−
2 ][y

+
3 , y

−
4 ] ,

5. z[y+1 , y
−
2 ] ,

6. [y+1 , y
−
2 ]z ,
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7. y−1 zy
−
2 ,

8. z1y
−z2 ,

9. zi1y
+zi2 − zi2y

+zi1 ,

10. z−i
1 y+z−i

2 − z−i
2 y+z−i

1 ,

11. zi1y
+z−i

2 + z−i
2 y+zi1 ,

12. [zi1, z
i
2] ,

13. [z−i
1 , z−i

2 ] ,

14. ziz−i + z−izi ,

15. z1z2z3 .

Proof Let J be the T ∗
2 -ideal generated by the above polynomials. It is easy to prove that J ⊆ Id∗(C) .

In order to prove the opposite inclusion, first we find a set of generators of P ∗
n modulo P ∗

n ∩ J , for all
n ≥ 1. To this end, let us consider Pn1,...,n4

, where n1 + · · · + n4 = n. Since z1z2z3 ≡ 0 , then it must be
n3 + n4 ≤ 2. Thus we have to consider three cases.

Case 1: n3 = n4 = 0 .
By the Poincaré-Birkhoff-Witt theorem, any polynomial can be written as a linear combination of products of
the type

y+j1 · · · y
+
jp
y−k1

· · · y−kq
w1 · · ·wm,

where w1, . . . , wm are left normed commutators in the y+i s and y−i s, j1 < j2 < · · · < jp and k1 < k2 < · · · < kq .
By the identities 1.− 4. plus the identities

[y+1 , y
−, y+2 ] ≡ 0, [y+, y−1 , y

−
2 ]− [y+, y−2 , y

−
1 ] ≡ 0, [y+, y−2 , y

−
1 ] + 2y−1 [y

+, y−2 ] ≡ 0,

it is not difficult to prove that Pn1,n2,0,0 is generated modulo Pn1,n2,0,0 ∩ J by the polynomials

y+1 · · · y+n1
y−1 · · · y−n2

and y+1 · · · ŷ+l · · · y+n1
[y+l , y

−
1 , . . . , y

−
n2
], (6.1)

where 1 ≤ l ≤ n1 and ŷ+l means that the variable y+l is omitted. We next show that these polynomials
are linearly independent modulo Id∗(C) . To this end, let f ∈ Id∗(C) be a linear combination of the above
polynomials and write

f ≡ αy+1 · · · y+n1
y−1 · · · y−n2

+

n1∑
l=1

βly
+
1 · · · ŷ+l · · · y+n1

[y+l , y
−
1 , . . . , y

−
n2
] (mod J). (6.2)

By making the evaluation y+i = e11+e33 , i = 1, . . . , n1 and y−j = e11−e33 , 1 ≤ j ≤ n2, one gets α(e11±e33) = 0

and so α = 0 . Now, for any 1 ≤ l ≤ n1 , consider the evaluation

y+i = e11 + e33, i ∈ {1, . . . , n1} \ {l}, y+l = e13, y−m = e11 − e33, m ∈ {1, . . . , n2} .

We get βl(−2)n2e13 = 0 and so βl = 0 . Therefore the polynomials in (6.1) are linearly independent modulo
Pn1,n2,0,0 ∩ Id∗(C) and we are done in this case.

Case 2: n3 + n4 = 1 . We suppose that n3 = 1 , n4 = 0 (the case n3 = 0 , n4 = 1 is analogous).
Since we are considering monomials in which a zi appears, according to the identities 5. and 6. we can order
also the variables y+ ’s and y− ’s, both on the left and on the right. But by identity 7. , it is not possible to
have a variable y− both on the left and on the right of the zi . By making use also of the identities 1. and 2. ,
we get that each monomial of Pn1,n2,1,0 can be written modulo J as

y+i1 · · · y
+
ir
y−1 · · · y−n2

ziy+j1 · · · y
+
js

or y+i1 · · · y
+
ir
ziy+j1 · · · y

+
js
y−1 · · · y−n2

, (6.3)
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where r + s = n1, i1 < i2 < · · · < ir and j1 < j2 < · · · < js . So the monomials above span Pn1,n2,1,0 modulo
J. Let us show that they are linearly independent modulo Id∗(C). To this end, let f ∈ Id∗(C) be a linear
combination of these monomials and write

f ≡
∑
l,I,J

αl,I,J y
+
i1
· · · y+iry

−
1 · · · y−n2

zily
+
j1
· · · y+js +

∑
m,H,K

βm,H,K y+h1
· · · y+ht

z+my
+
k1

· · · y+ku
y−1 · · · y−n2

(mod J),

with r + s = t + u = n1 , I = {i1, . . . , ir} , J = {j1, . . . , js} , H = {h1, . . . , ht} , K = {k1, . . . , ku} and
i1 < · · · < ir , j1 < · · · < js , h1 < · · · < ht , k1 < · · · < ku . Suppose that there exists αl,I,J 6= 0 or βl,I,J 6= 0

for some l , I and J. The evaluation y+ia = e11+e33 , a = 1, . . . , r , y−b = e11−e33 , b = 1, . . . , n2 , zil = e12+e23 ,

y+ic = e22 , c = 1, . . . , s , gives αl,I,Je12 ± βl,J,Ie23 = 0 . Thus αl,I,J = βl,J,I = 0, a contradiction. Therefore the
monomials in (6.3) are linearly independent modulo Pn1,n2,1,0 ∩ Id∗(C).

Case 3: n3+n4 = 2 . We consider n3 = 2 , n4 = 0 (the cases n3 = 0 , n4 = 2 and n3 = n4 = 1 are analogous).
In this case, by using identities 1., 2., 5., 6. plus the identities from 8. to 12. (notice that, instead of identity
12. in the case n3 = 0 , n4 = 2 we will use identity 13. and in the case n3 = n4 = 1 we will use identity 14.),
each monomial in Pn1,n2,2,0 can be written modulo J as

y+i1 · · · y
+
it
y−1 · · · y−k z

i
1y

+
j1
· · · y+jsz

i
2y

+
it+1

· · · y+in1−s
y−k+1 · · · y

−
n2
, (6.4)

where i1 < · · · < it < it+1 < · · · < in1−s and j1 < · · · < js. Thus these monomials span Pn1,n2,2,0 modulo J.

Let us show now that they are linearly independent modulo Id∗(C). To this end, let f ∈ Id∗(C) be a linear
combination of the above monomials and write

f ≡
∑

a,b,I,J
a<b

αa,b,I,J y
+
i1
· · · y+ity

−
1 · · · y−k z

i
ay

+
j1
· · · y+jsz

i
by

+
it+1

· · · y+in1−s
y−k+1 · · · y

−
n2
, (6.5)

where I = {i1, . . . , in1−s} , J = {j1, . . . , js} and i1 < · · · < it < it+1 < · · · < in1−s , j1 < · · · < js .
Suppose that αa,b,I,J 6= 0 for some a < b , I and J. The evaluation y+ih = e11 + e33 , h = 1, . . . , n1 − s ,

y−k = e11 − e33 , k = 1, . . . , n2 , zia = zib = e12 + e23 , y+il = e22 , l = 1, . . . , s , gives ±αa,b,I,Je13 = 0 .
Therefore αa,b,I,J = 0, a contradiction. In conclusion the monomials in (6.4) are linearly independent modulo
Pn1,n2,2,0 ∩ Id∗(C).

By putting together the previous results, we get that the polynomials in (6.1), (6.3) and (6.4) are linearly
independent modulo P ∗

n ∩ Id∗(C), n = n1 + · · ·+ n4 , and since P ∗
n ∩ Id∗(C) ⊇ P ∗

n ∩ J, they form a basis of P ∗
n

(mod P ∗
n ∩ Id∗(C)) and so J = Id∗(C). 2
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