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Abstract: Let A be an algebra over a field F with char(F ) ̸= 2 . If A is generated as an algebra by [[A,A], [A,A]] ,
then for every skew-symmetric bilinear map Φ : A×A → X , where X is an arbitrary vector space over F , the condition
that Φ(x2, x) = 0 for all x ∈ A implies that Φ(xy, z) + Φ(zx, y) + Φ(yz, x) = 0 for all x, y, z ∈ A . This is applicable
to the question of whether A is zero Lie product determined and is also used in proving that a Jordan homomorphism
from A onto a semiprime algebra B is the sum of a homomorphism and an antihomomorphism.
Key words: Bilinear map, zero Lie product determined algebra, derivation, Jordan derivation, Jordan homomorphism,
functional identity

1. Introduction
This paper is centered around the following question. Given an algebra A , does every bilinear map Φ : A×A →
X , where X is an arbitrary vector space, which satisfies

Φ(x2, x) = 0 (1.1)

for all x ∈ A also satisfies
Φ(xy, z) + Φ(zx, y) + Φ(yz, x) = 0 (1.2)

for all x, y, z ∈ A? This question is intimately connected with zero Lie product determined algebras and is also
related to some problems that can be solved by using functional identities. Let us explain this more precisely.

An algebra A over a field F is said to be zero Lie product determined (zLpd for short) if, for every
bilinear map Φ : A × A → X where X is a vector space over F , the condition that Φ(x, y) = 0 whenever
[x, y] = 0 implies that there exists a linear map τ : A → X such that

Φ(x, y) = τ([x, y]) (1.3)

for all x, y ∈ A ; here, [x, y] of course stands for xy − yx . These algebras are one of the topics of the recently
published book [6] (it should be remarked that in the above definition it is enough to require that X is 1-
dimensional, see [6, Proposition 1.3]). Note that Φ(x, y) = 0 whenever [x, y] = 0 implies that Φ satisfies (1.1)
and is skew-symmetric (the latter follows from Φ(x, x) = 0 for every x). On the other hand, (1.3) implies
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(1.2). The converse implication is not true. However, when applying the condition that an algebra is zLpd it is
sometimes enough to use the fact that the corresponding bilinear map satisfies (1.2). This has been the case in
the recent paper [5] (and also [6, Section 7.2]) where the techniques of functional identities [7] have been applied
to the problem of describing commutativity preserving linear maps in zLpd algebras. It seems plausible that a
similar approach can be used for some other problems to which functional identities are applicable.

Throughout, we assume that char(F ) ̸= 2 . Our basic result, Theorem 2.1, from which all the others
follow in particular shows that (1.1) implies (1.2) provided that A is equal to Alg([[A,A], [A,A]]) , the subalgebra
generated by all elements of the form [[x, y], [z, w]] , x, y, z, w ∈ A . This is fulfilled for every noncommutative
simple algebra A (Corollary 2.3), which reduces the question of whether a simple algebra A is zLpd to the
question of whether every derivation from A to its dual A∗ is inner (Corollary 2.5) as well as to the question
of triviality of the second cohomology group H2(A,F ) (Corollary 2.7). In Section 3, we apply Theorem 2.1 to
show that every surjective Jordan homomorphism from an algebra A satisfying A = Alg([[A,A], [A,A]]) to a
semiprime algebra B is the sum of a homomorphism and an antihomomorphism (Theorem 3.1).

The proof of Theorem 2.1 is based on the idea that a bilinear map satisfying (1.1) gives rise to a Jordan
derivation from A to its dual A∗ (which makes it possible for us to use a general result on Jordan derivations
from [3]). This idea is known from the analytic study of zLpd algebras, see [6, Section 6.2]. In the course of
writing the book [6], the author somehow overlooked that it is applicable also in the algebraic context. The
present paper may be viewed as a supplement to the book.

2. Main results
Let A be an algebra over a field F and M be an A -bimodule. Recall that a linear map δ : A → M is called a
Jordan derivation if

δ(yz + zy) = δ(y) · z + y · δ(z) + δ(z) · y + z · δ(y) (2.1)

for all y, z ∈ A . If δ satisfies
δ(yz) = δ(y) · z + y · δ(z)

for all y, z ∈ A , then it is called a derivation. Obviously, a derivation is also a Jordan derivation. The converse is
not always true. However, [3, Theorem 3.1] states that if char(F ) ̸= 2 , then every Jordan derivation δ : A → M

satisfies
δ(yu) = δ(y) · u+ y · δ(u) (2.2)

for all u ∈ Alg([[A,A], [A,A]]) and all y ∈ A . This result is the key to our basic theorem, which we now state.

Theorem 2.1 Let A be an algebra over a field F with char(F ) ̸= 2 . If a skew-symmetric bilinear map
Φ : A×A → X , where X is an arbitrary vector space over F , satisfies

Φ(x2, x) = 0

for all x ∈ A , then
Φ(xy, u) + Φ(ux, y) + Φ(yu, x) = 0

for all u ∈ Alg([[A,A], [A,A]]) and all x, y ∈ A .

1692



BREŠAR/Turk J Math

Proof By considering ω ◦Φ , where ω is an arbitrary linear functional on X , we see that we may assume that
X = F .

Note that the dual space A∗ of A becomes an A -bimodule by setting

(x · f)(y) = f(yx) and (f · x)(y) = f(xy)

for all x, y ∈ A , f ∈ A∗ . Define δ : A → A∗ by

δ(y)(x) = Φ(y, x).

We claim that δ is a Jordan derivation. Indeed, linearizing Φ(x2, x) = 0 we obtain

Φ(xy + yx, z) + Φ(zx+ xz, y) + Φ(yz + zy, x) = 0

for all x, y, z ∈ A . Since Φ is skew-symmetric, this can be rewritten as

Φ(yz + zy, x) = Φ(z, xy + yx) + Φ(y, zx+ xz). (2.3)

One easily checks that (2.3) implies (2.1), which proves our claim.
By [3, Theorem 3.1], δ satisfies (2.2) for all u ∈ Alg([[A,A], [A,A]]) and all y ∈ A , which yields the

desired conclusion. 2

We continue with an example showing that (1.1) does not always imply (1.2), so the involvement
of Alg([[A,A], [A,A]]) in Theorem 2.1 is necessary. Note that the algebra A in this example satisfies
[[A,A], [A,A]] = {0} .

Example 2.2 Let F be any field and let A be the unital F -algebra with generators x1, x2, y1, y2 satisfying the
relations

x1x2 + x2x1 = y1y2 + y2y1 = x2
i = y2i = xiyj = yjxi = 0

for all i, j = 1, 2 . That is, A is the direct product of two copies of the Grassmann algebra in two generators
without unity, to which we adjoin a unity. Observe that the elements 1, x1, x2, x1x2, y1, y2, y1y2 form a basis
of A , which is, thus, a 7-dimensional algebra. Every element in the linear span of x1, x2, x1x2, y1, y2, y1y2 has
square 0 , so every bilinear functional Φ : A×A → F that satisfies Φ(x, x) = Φ(1, x) = 0 for every x ∈ A also
satisfies Φ(x2, x) = 0 for every x ∈ A . Therefore, if Φ is such that

Φ(x1x2, y1) = −Φ(y1, x1x2) = 1

and Φ(u, v) = 0 for all other elements u, v from our basis, then Φ is skew-symmetric and satisfies Φ(x2, x) = 0

for every x ∈ A . However, for x = x1 , y = x2 , and z = y1 we have

Φ(xy, z) + Φ(zx, y) + Φ(yz, x) = 1.

If A is equal to Alg([[A,A], [A,A]]) , then Theorem 2.1 gives a definitive conclusion. Many algebras
satisfy this condition. In particular, the following corollary holds.

Corollary 2.3 Let A be a simple algebra over a field F with char(F ) ̸= 2 . If a skew-symmetric bilinear map
Φ : A×A → X , where X is an arbitrary vector space over F , satisfies

Φ(x2, x) = 0
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for all x ∈ A , then
Φ(xy, z) + Φ(zx, y) + Φ(yz, x) = 0

for all x, y, z ∈ A .

Proof If A is commutative, then the desired conclusion follows immediately from the linearized form
(2.3) of our condition Φ(x2, x) = 0 . Thus, assume that A is not commutative. Then, we claim that
A = Alg([[A,A], [A,A]]) . Indeed, this follows from the classical results by Herstein. Observe first that the
Jacobi identity implies that L = [[A,A], [A,A]] , the linear span of all elements of the form [[x, y], [z, w]] ,
x, y, z, w ∈ A , is a Lie ideal of A (i.e., [L,A] ⊆ L). Therefore, [9, Theorem 1.3] tells us that either L = [A,A]

or L is contained in the center Z of A . In the former case, the desired conclusion A = Alg(L) follows from
[9, Corollary on p. 6]. Assuming that L ⊆ Z , we may use [10, Lemma 1] which states that if T is any Lie
ideal of A , then [T, T ] ⊆ Z implies T ⊆ Z . Thus, L ⊆ Z yields [A,A] ⊆ Z which, in turn, implies A ⊆ Z , a
contradiction. 2

The next example shows that the assumption that char(F ) ̸= 2 is necessary in Corollary 2.3.

Example 2.4 Let F be a field with char(F ) = 2 and let A = F (X) be the rational function field over F .
Note that x2 ∈ F (X2) for every x ∈ A , i.e., the set of all squares in A is contained in the subfield of rational
functionals in X2 . If Φ : A×A → F is any skew-symmetric (= symmetric in this context) bilinear functional
such that

Φ
(
F (X2), A

)
= {0}, Φ(X3, X3) = 0, and Φ(X5, X) = 1,

then Φ satisfies Φ(x2, x) = 0 for every x ∈ A , but

Φ(xy, z) + Φ(zx, y) + Φ(yz, x) = 1

for x = X , y = X2 , and z = X3 .

We conclude this section with two results giving criteria for a simple algebra to be zLpd. In the statement
of the first one, we consider the dual space A∗ as an A -bimodule (as in the proof of Theorem 2.1). Recall that
a derivation δ from A to a bimodule M is said to be inner if there exists a τ ∈ M such that δ(x) = τ ·x−x · τ
for all x ∈ A .

Corollary 2.5 Let A be a simple algebra over a field F with char(F ) ̸= 2 . If every derivation from A to A∗

is inner, then A is zLpd.

Proof Let Φ : A × A → F be a bilinear functional such that Φ(x, y) = 0 whenever [x, y] = 0 . Then
Φ is skew-symmetric and satisfies Φ(x2, x) = 0 for every x ∈ A . By Corollary 2.3, Φ satisfies Φ(xy, z) =

Φ(y, zx) + Φ(x, yz) for all x, y, z ∈ A , which means that δ : A → A∗ defined by δ(x)(z) = Φ(x, z) is a
derivation. By our assumption, there exists a τ ∈ A∗ such that δ(x) = τ · x− x · τ for all x ∈ A . Hence,

Φ(x, y) = δ(x)(y) = (τ · x− x · τ)(y) = τ(xy − yx)

for all x, y ∈ A , which proves that A is zLpd. 2
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Remark 2.6 Let A be a finite-dimensional simple algebra over a field F with char(F ) ̸= 2 . If A is separable,
then every derivation from A to any A-bimodule M is inner [8, Theorem 8.1.19], so A is zLpd by Corollary
2.5. Furthermore, since the direct product of finitely many zLpd algebras is again a zLpd algebra [6, Theorem
1.16], it follows that every separable algebra (over a field F with char(F ) ̸= 2) is zLpd. In particular, every
finite-dimensional semisimple algebra over a perfect field F with char(F ) ̸= 2 is zLpd. This result is new, but
we do not know whether it actually holds for finite-dimensional semisimple algebras over arbitrary fields.

Recall that a skew-symmetric bilinear functional Φ : A×A → F is called a 2-cocycle if

Φ([x, y], z) + Φ([z, x], y) + Φ([y, z], x) = 0

for all x, y, z ∈ A , and is called a coboundary if there exists a τ in A∗ such that Φ(x, y) = τ([x, y]) for all
x, y ∈ A . It is clear that every coboundary is a 2-cocycle. The condition that the converse is also true (i.e.,
every 2-cocycle is a coboundary) can be stated as that the second cohomology group H2(A,F ) is trivial.

Corollary 2.7 Let A be a simple algebra over a field F with char(F ) ̸= 2 . If the second cohomology group
H2(A,F ) is trivial, then A is zLpd.

Proof As in the preceding proof, we see that a bilinear functional Φ vanishing on pairs of commuting elements
satisfies Φ(xy, z) = Φ(y, zx) + Φ(x, yz) , x, y, z ∈ A . This readily implies that Φ is a 2 -cocycle and hence a
coboundary by our assumption. This means that A is zLpd. 2

Examples of algebras satisfying the conditions of Corollary 2.7 can be found in [11–13]. The author is
thankful to Kaiming Zhao for pointing out these references.

Let us mention that Corollaries 2.5 and 2.7 are quite similar but written in a different mathematical
language. Namely, the condition that every 2-cocycle of A is a coboundary is equivalent to the condition that
every Lie derivation δ : A → A∗ such that δ(x)(y) = −δ(y)(x) for all x, y ∈ A is inner.

3. An application to Jordan homomorphisms
Let A and B be F -algebras. A linear map J : A → B is called a Jordan homomorphism if

J(yz + zy) = J(y)J(z) + J(z)J(y)

for all y, z ∈ A . Obvious examples are homomorphisms and antihomomorphisms. A more general example is
the sum of a homomorphism and an antihomomorphism. By this we mean a linear map J : A → B for which
there exists ideals U and V of Alg(J(A)) (the subalgebra of B generated by the image of J ), a homomorphism
H : A → U , and an antihomomorphism K : A → V such that J = H +K and UV = V U = {0} .

The problem of expressing Jordan homomorphisms J through homomorphisms, antihomomorphisms,
and their sums has a long history; see [4] for a brief survey. One often assumes that J is surjective, and the
algebra B is semiprime, i.e., it has no nonzero nilpotent ideals. If, under these assumptions, J is the sum of a
homomorphism and an antihomomorphism, then [4, Lemma 2.1] states that there exist ideals U0 and V0 of A

and ideals U and V of B such that

• U0 + V0 = A and U0 ∩ V0 = kerJ ,

• U ⊕ V = B ,
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• J |U0
is a homomorphism from U0 onto U ,

• J |V0
is a homomorphism from V0 onto V .

The description of J is thus very clear in this case. However, not every Jordan homomorphism from an algebra
A onto a semiprime algebra B is the sum of a homomorphism and an antihomomorphism, see [1, p. 458] and [6,
Example 7.19]. Our goal is to use Theorem 2.1 to show that this does hold if A is equal to Alg([[A,A], [A,A]])

(and of course char(F ) ̸= 2).
We now list other results that will be needed in the proof. Assume that J : A → B is a Jordan

homomorphism, where A and B are algebras over a field F with char(F ) ̸= 2 . The following statements are
known.

(a) J satisfies
J(zyz) = J(z)J(y)J(z) (3.1)

for all y, z ∈ A , and
J(xyz + zyx) = J(x)J(y)J(z) + J(z)J(y)J(x) (3.2)

for all x, y, z ∈ A . This is standard and easy to prove: (3.1) follows from 2zyz =
(
z(zy + yz) + (zy +

yz)z
)
− (z2y + yz2) , and (3.2) follows by linearizing (3.1).

(b) If J is surjective and B is semiprime, then

(
J(zw)− J(z)J(w)

)(
J(xy)− J(y)J(x)

)
= 0 (3.3)

and (
J(wz)− J(z)J(w)

)(
J(yx)− J(y)J(x)

)
= 0 (3.4)

for all x, y, z, w ∈ A . See [2, Corollary 2.2].

(c) If J is a reversal homomorphism, which means that

J(xyzw + wzyx) = J(x)J(y)J(z)J(w) + J(w)J(z)J(y)J(x)

for all x, y, z, w ∈ A , and Alg(J(A)) does not contain nonzero nilpotent ideals contained in the center of
B , then the restriction of J to the commutator ideal of A (i.e., the ideal generated by all commutators
[x, y] in A) is the sum of a homomorphism and an antihomomorphism [4, Theorem 4.2].

We now have enough information to prove the following theorem.

Theorem 3.1 Let A and B be algebras over a field F with char(F ) ̸= 2 . Suppose that Alg([[A,A], [A,A]]) = A

and that B is semiprime. Then, every surjective Jordan homomorphism J : A → B is the sum of a
homomorphism and an antihomomorphism.

Proof Define Φ : A×A → B by
Φ(x, y) = J(xy)− J(x)J(y).
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It is clear that Φ is skew-symmetric and, by (3.1), Φ(x2, x) = 0 for every x ∈ A . Theorem 2.1 thus tells us
that

Φ(xy, z) + Φ(zx, y) + Φ(yz, x) = 0

for all x, y, z ∈ A . That is,

J(xyz) + J(zxy + yzx) = J(xy)J(z) + J(zx)J(y) + J(yz)J(x).

Since
J(zxy + yzx) = J((zx)y + y(zx)) = J(zx)J(y) + J(y)J(zx),

we can rewrite this as
J(xyz) = J(xy)J(z) + J(yz)J(x)− J(y)J(zx).

This gives

J(xyzw) = J((xy)zw) = J(xyz)J(w) + J(zw)J(xy)− J(z)J(wxy)

and

J(wzyx) = J(wz(yx)) = J(wz)J(yx) + J(zyx)J(w)− J(z)J(yxw).

Hence,

J(xyzw + wzyx)

=J(xyz + zyx)J(w) + J(zw)J(xy) + J(wz)J(yx)− J(z)J(wxy + yxw),

which together with (3.2) yields

J(xyzw + wzyx)

=J(zw)J(xy) + J(wz)J(yx) (3.5)

+ J(x)J(y)J(z)J(w)− J(z)J(w)J(x)J(y).

Next, by (3.3),
J(zw)J(xy) = J(z)J(w)J(xy) + J(zw)J(y)J(x)− J(z)J(w)J(y)J(x)

and by (3.4),
J(wz)J(yx) = J(z)J(w)J(yx) + J(wz)J(y)J(x)− J(z)J(w)J(y)J(x).

Accordingly,

J(zw)J(xy) + J(wz)J(xy)

=J(z)J(w)J(xy + yx) + J(zw + wz)J(y)J(x)

− 2J(z)J(w)J(y)J(x)

=J(z)J(w)J(x)J(y) + J(z)J(w)J(y)J(x)

+ J(z)J(w)J(y)J(x) + J(w)J(z)J(y)J(x)

− 2J(z)J(w)J(y)J(x)

=J(z)J(w)J(x)J(y) + J(w)J(z)J(y)J(x).
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From (3.5) it now follows that

J(xyzw + wzyx)

=J(z)J(w)J(x)J(y) + J(w)J(z)J(y)J(x)

+ J(x)J(y)J(z)J(w)− J(z)J(w)J(x)J(y)

=J(x)J(y)J(z)J(w) + J(w)J(z)J(y)J(x).

We have thus proved that J is a reversal homomorphism. Since J is surjective and B semiprime, Alg(J(A))

does not contain nonzero nilpotent ideals, and since A = Alg([[A,A], [A,A]]) , A is also equal to its commutator
ideal. The desired conclusion therefore follows from (c). 2

It is quite common that results on homomorphisms are applicable to the study of derivations. In the
proof of Theorem 3.1, a result on (Jordan) derivations was (indirectly, via the proof of Theorem 2.1) used to
obtain a result on (Jordan) homomorphisms. This, however, seems rather unusual and surprising.

Finally, we remark that the computations in the proof of Theorem 3.1 are similar to those in the proof
of [6, Theorem 7.22]. However, while this latter result also considers Jordan homomorphisms onto semiprime
algebras, the main idea of its proof is different (its main assumption is that the algebra A is zero product
determined).
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