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1. Introduction
Bladder cancer is a heterogeneous group of tumors, where 
transitional cell carcinoma constitutes the great majority 
of the cases. Classically, bladder cancer is diagnosed in 
two histopathological classes as ‘muscle invasive bladder 
cancer (MIBC)’ and ‘non-muscle invasive bladder cancer 
(NMIBC)’ with different prognostic and molecular 
characteristics (Jin et al., 2014). In the last decade, there 
have been a number of studies characterizing the genomic 
landscape of both MIBC and NMIBC and defining the 
molecular subgroups (Cancer Genome Atlas Research 
2014; Hedegaard et al., 2016; Robertson et al., 2017; Tan 
et al., 2019). A more recent study aimed to define the 
consensus subgroups of MIBC using the gene expression 
data in combination with several studies (Kamoun et 
al., 2020), where the six consensus subgroups were 
referred to as ‘luminal papillary’, ‘luminal nonspecified’, 
‘luminal unstable’, ‘stroma-rich’, ‘basal/squamous’, and 
‘neuroendocrine-like’. In this study, the authors, in 
addition, associated these subgroups with distinct regulon 
activities, previously defined in (Robertson et al., 2017). 

These regulons implicated in bladder carcinogenesis 
include transcription factors and growth factor receptors, 
determined according to their gene regulatory activity in 
bladder cancer (Robertson et al., 2017).  

Bladder cancer cell lines have been extensively used 
for modeling the development, progression and molecular 
characteristics of bladder cancer. In addition to the focused 
characterization of cell lines, where only two/three of them 
are used (Piantino et al., 2010; Pinto-Leite et al., 2014), 
there are a few other studies, which provided details about 
the molecular and genomic characterization of bladder 
cancer cell lines collectively.  In one study, a classification 
based on the subgroups defined by (Sjodahl et al., 2012), 
‘“Urobasal A”, “Urobasal B”, “Genomically Unstable”and 
“SCC-like” were established for 40 bladder cancer cell 
lines (Earl et al., 2015). Another study performed exome 
sequencing for 25 bladder cancer cell lines and identified 
the frequently mutated genes among analyzed cell lines 
(Nickerson et al., 2017). A more recent study provided a 
comprehensive review about molecular characteristics, 
origin, and tumorigenic properties of more than 150 
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murine and human bladder cancer cell lines (Zuiverloon et 
al., 2018). In addition, the Cancer Cell Line Encyclopedia 
of the Broad Institute (CCLE database) provides a unique 
source for the transcriptomic and genomic data produced 
in a variety of cancer cell lines including bladder cancer 
(Barretina et al., 2012). 

Although regulon activities have been significantly 
associated with primary bladder cancer subgroups 
(Robertson et al., 2017; Kamoun et al., 2020), there has not 
been yet a study, which characterized the bladder cancer 
cell lines according to regulon activities defined for the 
primary bladder cancers (Robertson et al., 2017; Kamoun 
et al., 2020). In this study, we classified the bladder cancer 
cell lines into 3 groups according to their regulon activities 
and associated the upregulated genes in each cell line 
group with the targets of the regulons. Our results reveal 
previously unknown cooperative regulatory activities in 
bladder cancer cells and can serve as a guide for modeling 
bladder cancer according to different regulon activities. 

2. Methods
2.1. Experimental methods
2.1.1. Cell culture
The two bladder cancer cell lines 5637 and RT112 were 
obtained from DSMZ and J82 was kindly provided by 
Dr. S. Senturk (Izmir Biomedicine and Genome Center, 
Izmir). 5637 and RT112 were cultured in RPMI 1640 
(Gibco BRL), J82 was cultured in DMEM (Dulbecco’s 
Modified Eagle Medium). All media were supplemented 
with %10 FBS and %1 Penicillin-Streptomycin. Cells were 
cultured at 37 °C and 5% CO2. 
2.1.2. Immunofluorescence 
In 24 well plates, J82 was plated 10000/well, RT112 was 
plated 20000/well, 5637 was plated 40000/well. Cells 
were incubated overnight on glass coverslips and rinsed 
with 1x PBS the following day. Cells were fixed with 4% 
formaldehyde for 15 min at RT, and 0.2% TritonX was 
used for permeabilization. Fixed cells were blocked with 
2% Donkey serum for 45 min. Afterwards, cells were 
incubated with β-catenin antibody (1:100, #9562, Cell 
Signaling) diluted in 2% donkey serum overnight at 4°C. 
Next day, cells were rinsed 2 times with 1x PBS. Goat 
Anti-Rabbit Alexa Fluor 594 was used as a secondary 
antibody. DAPI was used for nucleus staining. Coverslips 
were mounted onto slides for imaging with Zeiss LSM880. 
Images were acquired as Z-stack using ZEN 2 software. 
Images with maximum intensity were used for further 
analysis. Quantification of the images were done with 
ImageJ program. Splitted DAPI channel images were used 
to determine region of interests for nuclear β-catenin 
signal intensities. A total of 17 cells per cell line were used 
for quantification. Integrated Density Values (IDV) were 
used for statistical analysis.   

2.2. Data acquisition
CCLE RNAseq gene expression data for bladder cancer 
cell lines (RPKM) were downloaded from Cancer Cell Line 
Encyclopedia (CCLE) database (Barretina et al., 2012) and 
were accessed at cbioportal (Cerami et al., 2012; Gao et al., 
2013). Regulon definitions were based on (Robertson et 
al., 2017; Kamoun et al., 2020). Mutation data for bladder 
cancer cell lines were obtained using cbioportal (Cerami et 
al., 2012; Gao et al., 2013). Neuroendocrine differentiation 
gene definitions are based on the information provided in 
Supplementary Table 3 from (Kamoun et al., 2020).
2.3. Data analysis
2.3.1. Clustering of the cell lines according to regulon ex-
pression levels
Using the gene expression values for the regulon genes, we 
clustered 25 bladder cancer cell lines using kmeans option 
(k = 6), within pheatmap package (Kolde 2019). Only the 
regulons that have min 1 rpkm (log2 scale) expression 
value in at least one cell type analyzed were included in 
clustering. This resulted in 19 number of regulons which 
contributed to the clustering analysis. 
2.3.2. Consensus classification of bladder cancer cell lines
In order to determine the consensus classification of bladder 
cancer cell lines, we utilized the “Molecular Classification 
of Bladder Cancer”  classifier developed by  Kamoun 
et al., (Kamoun et al., 2020) (134.157.229.105:3838/
BLCAclassify). Gene expression matrix for the cell lines 
in rpkm (obtained from CCLE database (Barretina et 
al., 2012)) was uploaded to the classifier and resulting 
consensus classifications are presented in Figure 1b and 
Supplementary Table S1.
2.3.3. Differential gene expression analysis
Differential gene expression analysis, where one cell 
line group was compared with the other groups, was 
performed using cbioportal (Cerami et al., 2012; Gao et 
al., 2013). Basically, custom cell line groups were formed 
based on our classifications (Figure 1), and differentially 
expressed genes were identified using ‘Compare’ and 
‘mRNA’ options.  Upregulated genes were defined using q 
value threshold of 0.1 and log Ratio of 0.5. 
2.3.4. Gene ontology analysis and visualization
Gene ontology analysis for the upregulated gene sets was 
performed using the ConsensusPathDB (CPDB) database 
of Max Planck Institute (Kamburov et al., 2009; Kamburov 
et al., 2011). Overrepresentation function of the CPDB 
was used, and only Level 4 GO terms (Biological Process) 
were included for further analysis. “GOChord” function 
of “GOplot” R package was used for visualization (Walter 
et al., 2015). In chord graphs, maximum top 20 GO 
terms with adjusted p-value <0.05 were shown. For the 
limit parameter of the “GOChord” function, a minimum 
number of genes belonging to a specific GO term was 
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determined as 5 if the number of the genes in upregulated 
gene set was >100, otherwise the number was set as 4 genes 
minimum. Genes, which are linked with at least 4 different 
GO terms, were displayed on the plots together with their 
logFC value representations. 
2.3.5. Association of differentially expressed genes with 
the target genes of regulons
Regulon – target gene association table was downloaded 
from (Robertson et al., 2017) (Table S2.25) (Robertson et 
al., 2017). Genes, which are positively associated with the 
regulons (having value=1), were referred to as the target 
of the respective regulons. Afterwards, upregulated genes 
for each cell line group were intersected with the targets 
of the regulons and the results were presented as percent 
intersection rate (Figure 2). 
2.4. Statistical analysis
Statistical analyzes were performed utilizing the R/
Bioconductor packages (www.bioconductor.org). ANOVA 
was used to check the statistical difference among the 
groups for Figures 3a, 4a, 5a, and Supplementary Figure 

S2. Subsequently, Bonferroni post-hoc test was applied 
to the results of ANOVA test. Spearman correlation test 
was applied for Figures 3c, 3d, 4c, 4d, and 5b. Dunnett’s 
multiple comparisons test was used for statistical analysis 
of the immunostaining images (Figure 6b). 

3. Results
3.1. Grouping of bladder cancer cell lines according to 
regulon activity
We determined the expression of the regulon genes in 
25 bladder cancer cell lines and classified these cell lines 
according to the expression profile of the regulon genes. 
Our unsupervised clustering analysis using kmeans (k = 
6) clustered the bladder cell lines into 3 groups (Figure 
1a). In order to find out to what extent our regulon-based 
classifications are legitimate, we additionally classified the 
cell lines using the consensus classifier algorithm provided 
in (Kamoun et al., 2020). This analysis identified 5 out of 9 
cell lines in group 1 to be assigned to neuroendocrine-like 
subgroup; 6 out of 6 cell lines in group 2 were identified to 
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Figure 1. Clustering of bladder cancer cell lines according to regulon expressions (a) Heatmap visualization for the k-means clustering 
(k = 6) of regulon expressions in bladder cancer cell lines. Three cell line groups were represented as follows: the first group defined 
as Neuronal-Basal (NB), the second group defined as Luminal-Papillary (LP), the third group defined as Basal-Squamous (BS). (b) 
Consensus class assigned to bladder cancer cell lines. The table shows the consensus classes of the cell lines (output from the classifier 
for muscle invasive bladder cancer (Kamoun, et al. 2020).
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belong to luminal papillary and 10 out of 10 cell lines in 
group 3 as basal-squamous (Figure 1b). Among the group 
1 cell lines, one cell line (J82) had almost equal annotation 
scores (0.383 vs 0.385) for neuroendocrine-like and basal 
squamous classes, and, for two of the cell lines (SW1710 
and TCCSUP), annotation scores were rather close as well 
(Supplementary Table S1). Therefore, we named the group 
1-3 as ‘neuronal-basal (NB)’, ‘luminal papillary (LP)’ and 
‘basal squamous (BS)’, respectively.

Although luminal and basal terms are classically used 
for bladder cancer cell lines (Choi et al., 2014; Zuiverloon 
et al., 2018), our regulon expression-based analysis here 
brought additional features, characteristics of each group. 
Our analysis revealed that the expression status of FGFR1, 
which is highly enriched in ‘stromal-rich’ subgroup in 
consensus classification of bladder cancer (Kamoun et al., 
2020), mainly separates the NB group from the two other 
groups. The regulon cluster 4 driven by the expression of 
FGFR3, ERBB3, TP63, and FOXA1 was mainly enriched 
for LP class; regulon cluster 6 constituted by PPARG and 
GATA3 expression was enriched in LP class and partially 

in BS class.  Regulon cluster 5, driven by luminal-papillary 
markers RARG, RXRA (Kamoun et al., 2020) and basal 
marker KLF4 (Kamoun et al., 2020) was relatively enriched 
in LP class, with partial enrichments in NB and BS classes.  
Regulon cluster 3, dominated by the basal markers, EGFR, 
FOXM1, STAT3 ,and HIF1A (Kamoun et al., 2020) were 
similarly enriched in all cell line groups. 
3.2. Differential gene expression in bladder cell line 
groups and association with regulon activity 
For each of the 3 groups, we determined with the clustering 
analysis (Figure 1a), we performed differential gene 
expression analysis contrasting one group with all other 
groups and determined the upregulated genes for each 
group. This analysis identified 327 and 570 upregulated 
genes in NB and LP classes, respectively. However, within 
the significance thresholds we used, we failed to detect 
upregulated genes for the BS class. The reason behind this 
can be attributed to the heterogeneous structure of this 
group, as it can be seen in the heatmap (Figure 1a) and in 
PCA analysis (Supplementary Figure S1) as well.

Having determined the upregulated genes in different 
cell line groups we defined, next, we tempted to relate 
those genes with the regulon targets. We identified the 
genes positively associated with the regulons using the 
information provided in (Robertson et al., 2017). This 
analysis showed that cell line groups constituted according 
to regulon expression profiles were in concordance with the 
regulon activity. For the NB group, upregulated genes had 
the highest intersection rate with FGFR1 targets (18.96%), 
followed by GATA6 (4.89%) and FOXM1 (4.89%) (Figure 
2). FGFR1 was also significantly upregulated in the NB 
group (Figure 3a). FGFR1 targets, which are upregulated in 
the NB class were mainly involved in neurogenesis, neuron 
differentiation, nervous system development (Figure 3b). 
Further, expression of the genes VIM and ZEB1 implicated 
in epithelial to mesenchymal transition (Takeyama et al., 
2010; Pluciennik et al., 2015; Larsen et al., 2016; Wu et al., 
2018), highly correlated with the expression of FGFR1, 
emphasizing the role of this regulon in the transcriptomic 
constitution of the NB group (Figure 3c-3d).

Upregulated genes in the LP class mainly intersected 
with ERBB2, FOXA1, PPARG, ERBB3, FGFR3, RARG, 
and GATA3 targets (Figure 2). We identified that almost 
all these regulons were significantly upregulated in the 
LP class (Figure 4a, Supplementary Figure S2). Target 
genes of the regulons upregulated in LP class were 
involved in epithelial cell differentiation, cell junction 
organization, and urogenital system development (Figure 
4b, Supplementary Figure S2). Remarkably, expressions 
of FOXA1 (ρ = 0.71) and GRHL3 (ρ = 0.60) significantly 
correlated with the expression of ERBB2 (Figure 4c-4d), 
indicating the luminal characteristics of the LP group. 

Figure 2. Concordance of upregulated genes in cell line groups 
with regulon targeting. Percentages of NB and LP upregulated 
genes intersecting with regulon target genes. Intersection rates 
are displayed from red to green (red: high, green: low). 
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3.3. Cell lines belonging to NB-group expresses neuroen-
docrine differentiation marker genes
Our finding, which shows the enrichment of neurogenesis-
related genes in the FGFR1 targets upregulated in the NB 
group, prompted us to decipher this connection in more 
detail. As FGFR1 is the main player characterizing this 
group, we checked the enrichment of FGFR1 regulon 
activity in each consensus subgroup of primary bladder 
cancer (Kamoun et al., 2020). We discovered that although 
FGFR1 has the highest enrichment score in stromal-rich 
consensus subgroup (Fisher’s test p-value=4.20E-41), 
it was also moderately enriched in neuroendocrine-
like subgroup (Fisher’s test p-value= 3.18E-04) (Based 
on the information from Supplementary Table 3, 
(Kamoun et al., 2020)). To strengthen this association 
further, we checked the expression of genes marker of 
neuroendocrine differentiation (Kamoun et al., 2020) 
in the cell line groups we determined. This analysis 
also revealed that genes involved in neuroendocrine 
differentiation were significantly higher expressed in 
NB group (p-value=0.0146) (Figure 5a).  Additionally, 
expression of FGFR1 highly correlated with the expression 
of neuroendocrine markers (Figure 5b). Collectively, these 
results highly argue for the neuronal characteristics of the 
NE group and involvement of FGFR1 in this signature. 
3.4. J82 cells belonging to NB group show nucleocyto-
plasmic staining of β-catenin
We recently showed that the WNT/β-catenin pathway 
is associated with the active regulatory elements 
characterizing neuronal bladder cancer (Eray et al., 
2020). Within this frame, to check any connection of the 
NB group with WNT/β-catenin pathway deregulation, 
we scanned the cell lines we used in this study for the 
mutation status of β-catenin and β-catenin destruction 
complex components. Among the NB group cell lines, 3 of 
them had APC mutation and one had CTNNB1 mutation. 
On the contrary 2 had APC or CTNNB1 mutation in the 
two other cell line groups (Supplementary Figure S3). 
Based on this information, we checked the β-catenin 
localization in one of the NB group cell lines we had in 
lab J82 and the other two cell lines, 5637 (BS group) and 
RT112 (LP group) as controls (no mutation in CTNNB1 
or APC). The staining of β-catenin in 5637 and RT112 was 
concentrated at the cytoplasm and the membrane while in 
J82 it was concentrated at the nucleus of the cells. Our data 
showed that β-catenin showed significantly higher nuclear 
localization in J82 compared to the other two cell lines 
(Figure 6a-6b). This finding strengthens our conclusions 
about the involvement of WNT/β-catenin pathway in 
neuronal differentiation of bladder cancer cells. The 
information we provide for the potential involvement 
of FGFR1 in neuroendocrine features of bladder cancer 
(Figure 5), identification of significantly increased  nuclear 
localization of β-catenin in a cell line belonging to NB 

group (Figure 6) collectively strengthens the neuronal/
neuroendocrine characteristics of the cell lines present in 
NB group according to our classifications. 

4. Discussion
Bladder cancer cell lines serve as important models for 
modeling bladder tumorigenesis, invasive characteristics 
and treatment responses (Brown et al., 1990; Makridakis et 
al., 2009). So far, several studies characterized the genomic 
and transcriptomic properties of bladder cancer cell lines 
(Earl et al., 2015; Nickerson et al., 2017). In this study, we 
aimed to characterize the bladder cancer lines in terms 
of their regulon activity, defined for the primary bladder 
cancers in literature (Robertson et al., 2017; Lindskrog 
et al., 2021). Our results showed that bladder cancer 
cell lines have differential regulon activities, reflecting 
their transcriptomic signatures and their consensus 
classifications (Kamoun et al., 2020). 

Genes significantly upregulated in cell lines belonging 
to the NB group were mainly intersected the targets of 
FGFR1 and were involved in neuronal differentiation. 
Accordingly, the expression of the genes marker of 
neuroendocrine differentiation (Kamoun et al., 2020) 
was significantly higher in the NB group compared to the 
two other cell line groups. In literature, FGFR1 has been 
shown be expressed at higher levels in bladder cancers 
showing mesenchymal features (Cheng et al., 2013). 
Knock-down of FGFR1 in JMSU1 and UMUC3 cell 
lines, belonging to NB group in our results, resulted in a 
significant reduction in the anchorage-independent ability 
of these cells (Tomlinson et al., 2009). Further FGFR1 
expression was high in most small cell carcinoma of the 
bladder (Yang et al., 2020), which is a rare type of bladder 
cancer with neuroendocrine differentiation (Ghervan et 
al., 2017; Wang et al., 2019). These existing literature and 
our findings highly support the association of FGFR1 with 
NB characteristics and neuronal differentiation of bladder 
cancer. 

We previously showed that WNT/β-catenin pathway is 
deregulated in neuronal subtype of bladder cancer (Eray et 
al., 2020). In this study, we identified significantly higher 
accumulation β-catenin in nucleus in J82 cell line belonging 
to NB group, which has a mutation in APC, a component 
of β-catenin destruction complex (Krishnamurthy and 
Kurzrock 2018; Parker and Neufeld 2020). It is known 
that the immune gene expression signature is relatively 
depleted from small cell neuroendocrine carcinoma of 
the bladder (Yang et al., 2020), and neuroendocrine-like 
bladder cancer show decreased levels of immune infiltrate 
(Kamoun et al., 2020). It was also identified that Wnt/β-
catenin signaling can decrease the T-cell infiltration 
in melanoma mouse models. Thus, inhibition of Wnt 
signaling has been suggested to prevent immunotherapy 
resistance (Chehrazi-Raffle et al., 2021). In addition, 
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inhibition of FGFR1 has been shown to enhance the 
immune checkpoint inhibitor response in breast cancer 
(Akhand et al., 2020). Based on all these information, we 
checked the expression of CXCL16, T cell chemoattractant 
(Akhand et al., 2020) in bladder cancer cell lines and 
identified a significant negative correlation with FGFR1 
expression (Supplementary Figure S4). Our data and 
existing literature together suggest a regulatory axis 
involving FGFR1, WNT/ β-catenin signaling, and tumor 
immune microenvironment in regulation of NB cell 
lines. Therefore, we suggest that combinatorial treatment 
strategies disrupting this regulatory axis can be applied on 
NB cell lines. 

Regulons implicated in LP group cell lines are mainly 
known for early bladder cancer, mostly non-muscle 
invasive and luminal associations. ERBB2 has been 
identified to be overexpressed in high-risk non-muscle 
invasive bladder cancer (Hedegaard et al., 2016) and as 
one of the major prognostic factors for survival status of 
the patients (Cormio et al., 2017; Moustakas et al., 2020). 
FOXA1 expression was adequate for separating non-basal 

subtype of bladder cancer from the basal subtype (Sikic et 
al., 2020). Furthermore, GATA3, FOXA1, and PPARG have 
been shown to drive the luminal fate in a collaborative 
manner (Warrick et al., 2016). Thus, within this frame, 
our regulon-based classifications confirm the luminal 
character of the LP class we defined. 

Our differential gene expression analysis did not 
identify significantly upregulated genes in the BS class, 
largely because of the heterogeneity of this group 
(Supplementary Figure S1). However, we determined 
EGFR, FOXM1 and STAT3 as the main regulons, driving 
the basal characterization of this group (cluster 3, Figure 
1a). EGFR has been previously shown to be enriched in 
basal-like bladder cancer, and some groups of muscle 
invasive bladder cancers have been determined to respond 
to EGFR inhibitors (Rebouissou et al., 2014). In addition, 
expression of FOXM1 as a prognostic factor in the survival 
of muscle invasive bladder cancer patients (Rinaldetti et 
al., 2017), STAT3 expression, and phosphorylation was 
identified to be substantially higher in basal-like bladder 
cancer (Gatta et al., 2019). Further, STAT3 activated 
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Figure 5. Expression profile of neuroendocrine marker genes in NB group (a) Boxplot shows the expression profile of genes 
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transgenic mice directly developed invasive bladder cancer 
without going through the intermediate noninvasive 
stages (Ho et al., 2012). Our results here collectively 
emphasize the role of EGFR, FOXM1, and STAT3 in basal 
characteristics of BS cell lines. 

To conclude, our regulon-based classification of 
bladder cancer cell lines may serve as an important 
guideline for studying the different regulons implicated 
in bladder cancer and trial of drug candidates relevant for 
targeting regulons. 
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Classification of bladder cancer cell lines according to regulon activity
Supplementary Information

Appendix A. Supplementary material
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representing the determined bladder cancer cell line groups. Neuronal-Basal (NB) (dark blue), Luminal-Papillary (LP) 
(green) and Basal-Squamous (BS) (orange)

Supplementary data 1: Supplementary Figures 1–4.
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Supplementary Fig. S2. Targets of regulons upregulated in LP group are mostly associated with epithelial 
differentiation. Boxplots comparing the expression of FOXA1 (ANOVA p-value= 1.89e-05 ) (a), PPARG (ANOVA 
p-value=0.00498) (b), ERBB3 (ANOVA p-value=1.35e-06) (c), FGFR3 (ANOVA p-value=3.67e-07) (d), RARG (ANOVA 
p-value=0.00395) (e) and GATA3 (ANOVA p-value=0.000106) (f) in three cell line groups: Neuronal-Basal (NB) (dark 
blue), Luminal-Papillary (LP) (green) and Basal-Squamous (BS) (orange). Bonferroni post-hoc test was used for statistical 
analysis (*p<0.05; **p<0.01; ***p<0.001). Chord plot visualizations of GO term analysis applied to the genes upregulated 
in LP group cell lines and intersecting with the respective regulon target genes.
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Supplementary Table S1. Consensus classification table of bladder cancer cell lines.

Sample ID consensusClass cor_pval separationLevel LumP LumNS LumU Stroma-rich Ba/Sq NE-like

253JBV_URINARY_TRACT NE-like 4,68948E-24 0,093787156 0,2574151 0,189735587 0,247377733 0,198824769 0,329468504 0,337444966

253J_URINARY_TRACT NE-like 8,42273E-21 0,053871132 0,255865753 0,193039385 0,244510671 0,196392919 0,309972265 0,313376277

5637_URINARY_TRACT Ba/Sq 3,10386E-52 0,777526879 0,320335243 0,222932533 0,285254683 0,249088958 0,488967135 0,258914796

639V_URINARY_TRACT NE-like 5,88916E-42 0,480284829 0,192728703 0,142214341 0,22542168 0,197533365 0,331390213 0,442205232

647V_URINARY_TRACT Ba/Sq 1,54644E-47 0,853265862 0,360508926 0,299953032 0,363097861 0,315952481 0,468489991 0,32943872

BC3C_URINARY_TRACT Ba/Sq 3,85491E-47 0,775646138 0,308196594 0,213172802 0,253708029 0,239951443 0,466695478 0,270994284

BFTC905_URINARY_TRACT Ba/Sq 1,52316E-76 0,584423412 0,422818212 0,288666156 0,335488698 0,290741175 0,577093414 0,21967185

CAL29_URINARY_TRACT Ba/Sq 3,30704E-59 0,220002263 0,492824834 0,387673587 0,426484928 0,350598546 0,517009803 0,247840408

HT1197_URINARY_TRACT Ba/Sq 6,09385E-43 0,664541223 0,373748743 0,30814758 0,365380334 0,29417652 0,447015315 0,277811389

HT1376_URINARY_TRACT Ba/Sq 4,64879E-57 0,592003049 0,418565222 0,331541917 0,381424854 0,303431822 0,508645886 0,236359508

J82_URINARY_TRACT Ba/Sq 2,34935E-31 0,012885797 0,255052604 0,215409058 0,279418652 0,275533116 0,384827653 0,383444339

JMSU1_URINARY_TRACT NE-like 1,00507E-30 0,435240446 0,192029012 0,134416904 0,211183064 0,181166748 0,302936915 0,381029081

KMBC2_URINARY_TRACT LumP 3,86982E-71 0,721042702 0,559638686 0,43980401 0,477951587 0,344787233 0,452892887 0,162528213

KU1919_URINARY_TRACT Ba/Sq 1,50534E-41 0,765579351 0,31610755 0,216494475 0,27204855 0,242037133 0,440192423 0,328330276

RT112_URINARY_TRACT LumP 4,55157E-70 0,475389501 0,556054737 0,411844479 0,444996894 0,352912892 0,49537885 0,220265266

RT4_URINARY_TRACT LumP 2,18981E-90 0,488905979 0,617489047 0,48873091 0,51529522 0,328196143 0,32483191 0,179469076

SCABER_URINARY_TRACT Ba/Sq 1,23879E-63 0,778203729 0,28314435 0,1705654 0,210240712 0,213314677 0,5335444 0,159793097

SW1710_URINARY_TRACT Ba/Sq 8,01706E-28 0,223664926 0,235561407 0,18319918 0,238596488 0,243605788 0,362888249 0,335648744

SW780_URINARY_TRACT LumP 3,23431E-85 0,677347617 0,603068728 0,47822204 0,496243374 0,366094419 0,412492873 0,197484157

T24_URINARY_TRACT Ba/Sq 1,04177E-35 0,281996728 0,288417557 0,206595387 0,2757358 0,257842078 0,409752767 0,373748528

TCCSUP_URINARY_TRACT Ba/Sq 4,14267E-39 0,600646896 0,269844645 0,243464373 0,281987659 0,330848122 0,427852909 0,354913342

UBLC1_URINARY_TRACT Ba/Sq 6,13272E-33 0,745331532 0,314657849 0,248066126 0,321962335 0,265617883 0,394141414 0,279941831

UMUC1_URINARY_TRACT LumP 5,49414E-75 0,439865763 0,572170984 0,457405107 0,47096898 0,408079974 0,524672546 0,213547081

UMUC3_URINARY_TRACT NE-like 1,6174E-28 0,416702796 0,157234364 0,089970968 0,170911571 0,135505835 0,282638522 0,367340793

VMCUB1_URINARY_TRACT Ba/Sq 1,05499E-63 0,614207938 0,389584383 0,273083351 0,313249594 0,284754548 0,533797757 0,21824899


