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Abstract: We consider convolution-type nonlinear integral operators endowed with Musielak-Orlicz φ -variation. Our
aim is to get more powerful approximation results with the help of summability methods. In this study, we use φ -
absolutely continuous functions for our convergence results. Moreover, we study the order of approximation using suitable
Lipschitz class of continuous functions. A general characterization theorem for φ -absolutely continuous functions is also
obtained. We also give some examples of kernels in order to verify our approximations. At the end, we indicate our
approximations in figures together with some numerical computations.
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1. Introduction
In [3], Angeloni studied the following convolution-type integral operators in BV φ spaces,

Tw (f ;x) =

∫
RN

Kw (t,f (x− t)) dt (w > 0, x ∈ RN ), (1.1)

where Kw : RN × R → R fulfills some suitable conditions (see [4, 6] for univariate approximations in φ -
variation of these operators). Now, our purpose is to improve and generalize these operators by using general
summability methods (for other results of these type of operators under summability methods, we refer to
[9, 11, 12]). Dealing with Tonelli-sense BV φ spaces, we mainly study the convergence in φ -variation in N -
dimension. Then, we investigate the rate of approximation. In addition, a general characterization theorem
for ACφ spaces is obtained. In the last section, certain sequence of nonlinear kernels, which satisfy all of our
generalized conditions will be pointed out. Moreover, using these kernels, we visualize our approximations to
better understand why we need such kind of summability methods [16, 17]. At the end, we evalute the error of
these approximations.

Recall that variation of a function was first given by Jordan in the study in [25]. Later, this theory
generalized to φ -variation concept, which is also known as Musielak-Orlicz φ -variation ([27, 29, 33–35]). Then,
utilizing from Tonelli’s idea in the study in [31], Angeloni and Vinti extended it to N -dimensional case in their
study in [5]. For further studies about φ -variation, we refer to the studies in [6–8, 10, 15, 29].
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We must remind that a summability method gives us alternative ways for the convergence of divergent
sequences. Here, we refer to recent papers [1, 9, 11, 12, 19, 20, 22, 23, 30, 32, 36], to show the effect of
summability methods in linear and nonlinear settings of different type of operators. Throughout the paper, we
consider Bell-type summability method A = {Aυ}υ∈N = {[aυnk]}υ∈N (k, n ∈ N) with nonnegative real entries.
A sequence x = (xn)n∈N is called “A -summable to L” if both A -transform of x , that is,

∑∞
k=1 a

υ
nkxk , is

convergent for each υ, n ∈ N, and limn→∞
∑∞

k=1 a
υ
nkxk = L uniformly in υ. This approximation is denoted by

“A - limx = L”. Furthermore, we say that A is regular, if limn→∞ xn = L implies A - limx = L. It is shown in
[17] that A is regular if and only if the following expressions hold

• for each k ∈ N, aυnk → 0 (uniformly in υ ) as n→ ∞,

•
∑∞

k=1 a
υ
nk → 1 (uniformly in υ ) as n→ ∞,

• for each υ, n ∈ N,
∑∞

k=1 |aυnk| < ∞ and there exist integers N,M such that supn≥N,υ∈N
∑∞

k=1 |aυnk| ≤
M <∞.

We denote by Φ that the class of all convex functions φ : R+
0 → R+

0 such that φ is continuous,
nondecreasing, φ (0) = 0, φ (x) > 0 for all x > 0 and limx→∞ φ (x) = ∞.

From now on, we assume that φ ∈ Φ and limx→0+ φ (x) /x = 0. Note that due to the lack of integral
representation of BV φ -spaces (defined below), we require this limit condition to be able to use φ -modulus of
continuity (see [2]).

Since we deal with N -dimensional Tonelli-sense φ -variation, we need the following notations ([3, 5]).

• For any x : = (x1, . . . , xN ) , if we are considering the j -th term of x, we write x : = (x′j , xj) , where

x′j := (x1, . . . , xj−1, xj+1, . . . , xN ) ∈ RN−1,

• |x| denotes the Euclidean norm of x,

• any closed N -dimensional interval will be denoted by I := ΠN
i=1 [ai, bi] , and the following N − 1 -

dimensional interval ΠN
i=1,i̸=j [ai, bi] will be denoted by I ′j := [a′j , b

′
j ] for j = 1, . . . , N,

• by gj (xj) , we mean the j -th section of f, namely for every fixed x′j ∈ RN−1, gj (xj) := f(x′j , xj) for
j = 1, . . . , N,

• we define the following (N − 1) -dimensional integral such that

Φφ
j (f, I) :=

∫ b′j

a′
j

V φ
[aj ,bj ]

[f(x′j , ·)]dx′j for every j = 1, . . . , N,

where V φ
[aj ,bj ]

[f(x′j , ·)] denotes the one-dimensional φ -variation of j -th section of f,

• recall that, one-dimensional φ -variation of g : [a, b] → R is defined by

V φ
[a,b][g] := sup

U

n∑
i=1

φ (|g (xi)− g (xi−1)|) ,
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where U forms a partition of [a, b] . Here g is called “bounded φ -variation”, if there exists a λ > 0 such
that V φ

[a,b][λg] <∞. The space of all functions of bounded φ -variation will be denoted by BV φ [a, b] ,

• the Euclidean norm of (Φφ
1 (f, I) , . . . ,Φφ

N (f, I)) is denoted by Φφ (f, I) and therefore Φφ (f, I) = ∞ if
Φφ

j (f, I) = ∞ for some j = 1, . . . , N.

Considering the above expressions, Tonelli-sense multidimensional φ -variation of f on I ⊂ RN is given
as

V φ
I [f ] := sup

{J1,...,Jm}

m∑
k=1

Φφ (f, Jk) ,

where {J1, . . . , Jm} forms a partition of I . Then φ -variation of f on RN is given as

V φ [f ] := sup
I⊂RN

V φ
I [f ] .

Finally, the space of functions of bounded φ -variation on RN is defined by

BV φ
(
RN
)
:=
{
f ∈ L1

(
RN
)
: ∃λ > 0, V φ [λf ] <∞

}
.

An important property of φ -variation in one dimension is that if f1, . . . , fn ∈ L1 (R) , then

V φ

[
n∑

i=1

fi

]
≤ 1

n

n∑
i=1

V φ [nfi] . (1.2)

In N -dimension (N > 1), similar expression is hold by changing 1
n with 1√

n
([5]) .

In our approximating operator, we will use φ -absolutely continuous functions. For this reason, we also
need the following definitions.

Let g : [a, b] ⊂ R → R be given. Then g is called “φ -absolutely continuous”, if one can find a λ > 0

satisfying that
m∑

k=1

φ (λ |g (βi)− g (αi)|) < ε

for every (finite) collections of nonoverlapping intervals [αi, βi] ⊂ [a, b] , (i = 1, . . . ,m) such that

m∑
k=1

φ (βi − αi) < δ.

For a given f : RN → R , if for all interval I = ΠN
i=1 [ai, bi] and for all j = 1, . . . , N, the j -th section

of f, namely, gj : [aj , bj ] → R is (uniformly) φ -absolutely continuous for almost all x′j ∈ [a′j , b
′
j ], then f is

called “locally φ -absolutely continuous” in Tonelli sense. We denote by ACφ
loc

(
RN
)
, the space of all locally

φ -absolutely continuous functions.
Now, we say that f is “φ -absolutely continuous on RN ”, if f ∈ BV φ

(
RN
)
∩ACφ

loc

(
RN
)
:= ACφ

(
RN
)
.

In Section 2, considering the new general conditions we introduce our new operator, which is generalized
and improved by the summability method. Our main approximation theorem is also given in this section. Section
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3 is devoted to the rate of approximations by means of Lipschitz class of absolutely continuous functions (in
particular Zygmund-type classes). In Section 4, we obtain a general characterization theorem for the space of
φ -absolutely continuous on RN . Then, in Section 5, we will mention about the special cases of our operator.
Afterwards, defining nontrivial examples of our kernels we give two illustrative examples for our approximation
and characterization theorems. We also investigate the error of these approximation numerically. Finally we
show that our theory can be extended to Fφ -variation.

2. Multivariate approximation in φ-variation

Our operator, which is the A -transform of the operator (1.1), is given as follows:

Tn,υ (f ;x) =
∞∑

k=k0

aυnk

∫
RN

Kk (t, f (x− t)) dt (υ, n ∈ N, x ∈ RN ). (2.1)

Here, the sequence of nonlinear kernels are given by Kk : RN × R → R , Kk (t, u) := Lk (t)Hk (u) , where
Lk : RN→ R and Hk : R → R. In addition, {Lk} ⊂ L1

(
RN
)

endowed with the L1 norm (∥·∥1 ) and Hk

satisfies the following assumption:

(∗) denoted by Gk (u) := Hk (u) − u, u ∈ R, for all γ > 0, there can be found a λ > 0 satisfying that

lim
k→∞

V φ[λGk,J]
φ(γm(J)) = 0 (uniformly in every proper bounded interval J ⊂ R), namely, for all γ > 0, there

exists a λ > 0 such that for a given ε > 0, there exists a number k0 satisfying that Vφ[λGk,J]
φ(γm(J)) < ε for all

k ≥ k0 (m (J) denotes the length of J ) .

Assumption (∗) is natural in this setting and an example is given in the last section (for more examples,
see [3, 4, 6, 9]).

We remark that the sum in the operator (2.1) starts from k0, where k0 is sufficiently large for which
(2.1) is well-defined (see also Remark 3.1 in [9]).

Here are our kernel assumptions on Lk :

(I) There exists a constant A > 0 such that ∥Lk∥1 ≤ A <∞ for all k ∈ N.

(II) for every fixed δ > 0, A - lim
( ∫
|t|≥δ

|Lk (t)| dt

)
= 0 ,

(III) A - lim
( ∫
RN

Lk (t) dt

)
= 1 .

Taking A as identity matrix, it is possible to see that the above conditions turn into classical approximate
identities ([3–5]).

Lemma 2.1 Assume that (I) holds. Then there can be found a µ > 0 satisfying that V φ [µTn,υ (f)] < ∞ for
all f ∈ BV φ

(
RN
)
∩ C0

(
RN
)
, where C0

(
RN
)

is the space of all continuous functions f : RN → R.
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Proof Let I = ΠN
i=1 [ai, bi] ⊂ RN and {J1, . . . , Jm} be a partition of I, where Jq = ΠN

j=1 [
qaj ,

q bj ] for

q = 1, . . . ,m. For a given j = 1, . . . , N and q = 1, . . . ,m, consider the partition
{
s0j =q aj , . . . , s

η
j =q bj

}
of

the interval [qaj ,
q bj ] . Now for all µ > 0,

S =
η∑

ζ=1

φ
(
µ
∣∣∣Tn,υ(f ; (s′j , sζj ))− Tn,υ(f ; (s′j , s

ζ−1
j ))

∣∣∣)

=
η∑

ζ=1

φ

(
µ

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Kk(t, f(s
′
j − t′j , s

ζ
j − tj))dt−

∞∑
k=k0

aυnk
∫
RN

Kk(t, f(s
′
j − t′j , s

ζ−1
j − tj))dt

∣∣∣∣∣
)

≤
η∑

ζ=1

φ

(
µ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|
∣∣∣Hk(f(s

′
j − t′j , s

ζ
j − tj))−Hk(f(s

′
j − t′j , s

ζ−1
j − tj))

∣∣∣ dt) .
From Jensen’s inequality (discrete version), we get

S ≤
η∑

ζ=1

∞∑
k=k0

aυnk
an,υ

φ

(
µan,υ

∫
RN

|Lk (t)|
∣∣∣Hk(f(s

′
j − t′j , s

ζ
j − tj))−Hk(f(s

′
j − t′j , s

ζ−1
j − tj))

∣∣∣ dt) ,
where an,υ :=

∞∑
k=k0

aυnk. Since φ is convex and ∥Lk∥1 ≤ A , by the Jensen’s inequality,

S ≤ 1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|
η∑

ζ=1

φ
(
µAan,υ

∣∣∣Hk(f(s
′
j − t′j , s

ζ
j − tj))−Hk(f(s

′
j − t′j , s

ζ−1
j − tj))

∣∣∣) dt
≤ 1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ
[qaj ,qbj ]

[
µAan,υHk(f(s

′
j − t′j , · − tj))

]
dt

holds. Now, using two times Fubini-Tonelli theorem, for all j = 1, . . . , N

Φφ
j (µTn,υ (f) , Jq) =

qb′j∫
qa′

j

V φ
[qaj ,qbj ]

[
µTn,υ(f ; (s′j , ·))

]
ds′j

≤ 1

Aan,υ

qb′j∫
qa′

j

(
∞∑

k=k0

aυnk
∫
RN

|Lk (t)|V φ
[qaj ,qbj ]

[
µAan,υHk(f(s

′
j − t′j , · − tj))

]
dt

)
ds′j

=
1

Aan,υ

∞∑
k=k0

aυnk

qb′j∫
qa′

j

( ∫
RN

|Lk (t)|V φ
[qaj ,qbj ]

[
µAan,υHk(f(s

′
j − t′j , · − tj))

]
dt

)
ds′j

=
1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|

 qb′j∫
qa′

j

V φ
[qaj ,qbj ]

[
µAan,υHk(f(s

′
j − t′j , · − tj))

]
ds′j

 dt

=
1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|
{
Φφ

j (µAan,υHk(f(· − t)), Jq)
}
dt

281



ASLAN/Turk J Math

yields. Then by the generalized Minkowski inequality, one can observe that

Φφ (µTn,υ (f) , Jq) :=

{
N∑
j=1

[
Φφ

j (µTn,υ (f) , Jq)
]2} 1

2

≤ 1

Aan,υ

 N∑
j=1

[
∞∑

k=k0

aυnk
∫
RN

|Lk (t)|
{
Φφ

j (µAan,υHk(f(· − t)), Jq)
}
dt

]2
1
2

≤ 1

Aan,υ

∞∑
k=k0

aυnk

 N∑
j=1

( ∫
RN

|Lk (t)|
{
Φφ

j (µAan,υHk(f(· − t)), Jq)
}
dt

)2


1
2

≤ 1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|

(
N∑
j=1

{
Φφ

j (µAan,υHk(f(· − t)), Jq)
}2) 1

2

dt

=
1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|Φφ (µAan,υHk(f(· − t)), Jq) dt

for every q = 1, . . . ,m. Summing over q from 1 to m and taking supremum over {J1, . . . , Jm} , we immediately
get

V φ
I [µTn,υ (f)] ≤

1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ
I [µAan,υHk(f(· − t))] dt.

Then taking supremum over all I ⊂ RN , from (I) there holds

V φ [µTn,υ (f)] ≤
1

Aan,υ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ [µAan,υHk(f(· − t))] dt

=
1

Aan,υ

∞∑
k=k0

aυnkV
φ [µAan,υHk(f)]

∫
RN

|Lk (t)| dt

≤ 1

an,υ

∞∑
k=k0

aυnkV
φ [µAan,υHk(f)] .

By Proposition 4.1 in [3], condition (∗) implies that, for every γ > 0, there can be found a λ > 0 satisfying
that for every ε > 0

V φ [λ (Hk ◦ f − f)] < εV φ [γf ]

holds for sufficiently large k ∈ N. Then for ε = 1, we can find a k′0 ∈ N such that

V φ [λ (Hk ◦ f − f)] < V φ [γf ]

holds for all k ≥ k′0 , where γ is sufficiently small for which V φ [γf ] <∞ . Considering (1.2) and taking k0 = k′0,

we immediately observe

V φ [µTn,υ (f)] ≤
1√
2an,υ

{
∞∑

k=k0

aυnkV
φ [2µAan,υ(Hk(f)− f)] +

∞∑
k=k0

aυnkV
φ [2µAan,υf ]

}

≤ 1√
2
{V φ [γf ] + V φ [2µAan,υf ]}
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for sufficiently small µ > 0. Here µ ≤ min
{
λ/2Aan,υ, λ̄/2Aan,υ

}
, where V φ

[
λ̄f
]
< ∞. Finally, since

f ∈ BV φ
(
RN
)
, the proof completes. 2

We should state that our operator becomes well-defined for k0 = k′0, where k′0 is given in the above
proof. Thus, from now on we will assume k0 = k′0.

Now, we state our main approximation theorem, which includes many summation methods such as almost
convergence method and Cesàro summability as well as conventional convergence (for details, see Section 5).

Theorem 2.2 Let f ∈ ACφ
(
RN
)
. If (I)− (III) hold, then there can be found a µ > 0 satisfying that

lim
n→∞

V φ [µ (Tn,υ (f)− f)] = 0, uniformly in υ ∈ N.

Proof From the previous lemma, it is clear that Tn,υ (f) − f ∈ BV φ
(
RN
)
. Let I = ΠN

i=1 [ai, bi] ⊂ RN

and {J1, . . . , Jm} be a partition of I, where Jq = ΠN
j=1 [

qaj ,
q bj ] for q = 1, . . . ,m. Considering the partition{

s0j =q aj , . . . , s
η
j =q bj

}
of the interval [qaj ,

q bj ] , then for all µ > 0

L :=
η∑

ζ=1

φ
(
µ
∣∣∣Tn,υ(f ; (s′j , sζj ))− f(s′j , s

ζ
j )− Tn,υ(f ; (s′j , s

ζ−1
j )) + f(s′j , s

ζ−1
j )

∣∣∣)
≤

η∑
ζ=1

φ

(
µ

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t)
{
Hk(f(s

′
j − t′j , s

ζ
j − tj))− f(s′j − t′j , s

ζ
j − tj)

−Hk(f(s
′
j − t′j , s

ζ−1
j − tj)) + f(s′j − t′j , s

ζ−1
j − tj)

}
dt

+
∞∑

k=k0

aυnk
∫
RN

Lk (t)
{
f(s′j − t′j , s

ζ
j − tj)− f(s′j , s

ζ
j )− f(s′j − t′j , s

ζ−1
j − tj) + f(s′j , s

ζ−1
j )

}
dt

+
{
f(s′j , s

ζ
j )− f(s′j , s

ζ−1
j )

}( ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

)∣∣∣∣∣
)

≤
η∑

ζ=1

1
3φ

(
3µ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|
∣∣∣Hk(f(s

′
j − t′j , s

ζ
j − tj))− f(s′j − t′j , s

ζ
j − tj)

−Hk(f(s
′
j − t′j , s

ζ−1
j − tj)) + f(s′j − t′j , s

ζ−1
j − tj)

∣∣∣ dt)
+

η∑
ζ=1

1
3φ

(
3µ

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|
∣∣∣f(s′j − t′j , s

ζ
j − tj)− f(s′j , s

ζ
j )

−f(s′j − t′j , s
ζ−1
j − tj) + f(s′j , s

ζ−1
j )

∣∣∣ dt)
+

η∑
ζ=1

1
3φ

(
3µ
∣∣∣f(s′j , sζj )− f(s′j , s

ζ−1
j )

∣∣∣ ∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣
)

:= L1 + L2 + L3

holds. Using (I) , convexity of φ and two times Jensen’s inequality in L1 and L2 , we have the followings

L1 ≤ 1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|
η∑

ζ=1

φ
(
3µAM

∣∣∣Hk(f(s
′
j − t′j , s

ζ
j − tj))− f(s′j − t′j , s

ζ
j − tj)

−Hk(f(s
′
j − t′j , s

ζ−1
j − tj)) + f(s′j − t′j , s

ζ−1
j − tj)

∣∣∣) dt
≤ 1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ
[qaj ,qbj ]

[
3µAM(Hk ◦ f − f)(s′j − t′j , · − tj)

]
dt
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and

L2 ≤ 1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ
[qaj ,qbj ]

[
3µAM(f(s′j − t′j , · − tj)− f(s′j , ·))

]
dt

for all n ≥ N. Here M,N are the numbers coming from the regularity of A such that supn≥N,υ∈N
∑∞

k=1 |aυnk| ≤
M . Now by (III) and by the convexity of φ, one can clearly observe that

L3 ≤ 1

3

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣V φ
[qaj ,qbj ]

[
3µf(s′j , ·)

]

for sufficiently large n ∈ N. Afterwards, applying Fubini-Tonelli theorem, we get

Φφ
j (µ (Tn,υ (f)− f) , Jq) :=

qb′j∫
qa′

j

V φ
[qaj ,qbj ]

[
µ
(
Tn,υ(f ; (s′j , ·))− f(s′j , ·)

)]
ds′j

≤ 1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|Φφ
j (3µAM(Hk ◦ f − f)(· − t), Jq) dt

+
1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|Φφ
j (3µAM(f(· − t)− f(·)), Jq) dt

+
1

3

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣Φφ
j (3µf, Jq).

Now using Minkowski inequality

Φφ (µ (Tn,υ (f)− f) , Jq) :=

{
N∑
j=1

[
Φφ

j (µ(Tn,υ (f)− f), Jq)
]2} 1

2

≤ 1

3AM

 N∑
j=1

[
∞∑

k=k0

aυnk
∫
RN

|Lk (t)|Φφ
j (3µAM(Hk ◦ f − f)(· − t), Jq) dt

]2
1
2

+
1

3AM

 N∑
j=1

[
∞∑

k=k0

aυnk
∫
RN

|Lk (t)|Φφ
j (3µAM(f(· − t)− f(·)), Jq) dt

]2
1
2

+
1

3

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣
{

N∑
j=1

[
Φφ

j (3µf, Jq)
]2} 1

2

:= I1 + I2 + I3
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and considering two times generalized Minkowski inequality, we have

I1 ≤ 1

3AM

∞∑
k=k0

aυnk

 N∑
j=1

[ ∫
RN

|Lk (t)|Φφ
j (3µAM(Hk ◦ f − f)(· − t), Jq) dt

]2
1
2

≤ 1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|

{
N∑
j=1

[
Φφ

j (3µAM(Hk ◦ f − f)(· − t), Jq)
]2} 1

2

dt

=
1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|Φφ (3µAM(Hk ◦ f − f)(· − t), Jq) dt.

Similarly, one can deduce that

I2 ≤ 1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|Φφ (3µAM(f(· − t)− f(·)), Jq) dt

and

I3 ≤ 1

3

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣Φφ(3µf, Jq).

Then, if we sum up over q from 1 to m and take supremum over {J1, . . . , Jm} , then we see that

V φ
I [µ (Tn,υ (f)− f)] ≤ 1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ
I [3µAM(Hk ◦ f − f)(· − t)] dt

+
1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ
I [3µAM(f(· − t)− f(·))] dt

+
1

3

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣V φ
I [3µf ] .

Since I ⊂ RN is arbitrary, having supremum over all I ⊂ RN , we get

V φ [µ (Tn,υ (f)− f)] ≤ 1

3AM

∞∑
k=k0

aυnkV
φ [3µAM(Hk ◦ f − f)]

∫
RN

|Lk (t)| dt

+
1

3AM

∞∑
k=k0

aυnk
∫
RN

|Lk (t)|V φ [3µAM(f(· − t)− f(·))] dt

+
1

3

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣V φ [3µf ]

:= P1 + P2 + P3

From Proposition 4.1. in [3], (∗) implies that there exists a ξ > 0 such that

lim
k→∞

V φ [ξ (Hk ◦ f − f)] = 0.

In this manner, for every γ > 0 there exists a λ > 0 such that for all 1 > ε > 0 there can be found a number
k′′0 ∈ N such that for every k > k′′0

V φ [3µAM(Hk ◦ f − f)] < εV φ [γf ] ,
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where 3µAM ≤ λ. Then dividing P1 into two parts and considering (I) and regularity of A in the previous
inequality, we observe that

P1 =
1

3AM

(
k′′
0∑

k=k0

aυnk+
∞∑

k=k′′
0 +1

aυnk

)
V φ [3µAM(Hk ◦ f − f)]

∫
RN

|Lk (t)| dt

≤
(
(k′′0 − k0 + 1)D

3M
+
V φ [γf ]

3

)
ε,

where D := maxk∈{k0,...,k′′
0 } V

φ [3µAM(Hk ◦ f − f)] .

For P2, by Theorem 5 and Remark 4 in [2], it is known that

lim
|t|→0

V φ [9µAM(f(· − t)− f (·))] = 0

for some µ > 0, i.e. there exists a µ > 0 such that for every ε > 0 there exists a δ > 0 satisfying that

V φ [9µAM(f(· − t)− f (·))] < ε (2.3)

whenever |t| < δ. If we consider this in P2 and divide it into two parts as follows, there holds

P2 =
1

3AM

∞∑
k=k0

aυnk
∫

|t|<δ

|Lk (t)|V φ [3µAM(f(· − t)− f (·))] dt

+
1

3AM

∞∑
k=k0

aυnk
∫

|t|≥δ

|Lk (t)|V φ [3µAM(f(· − t)− f (·))] dt

:= P 1
2 + P 2

2 ,

where

P 1
2 ≤ ε

3AM

∞∑
k=k0

aυnk
∫

|t|<δ

|Lk (t)| dt <
ε

3

from (2.3), regularity of A and (I) .

On the other hand, using (1.2) and (II) ,

P 2
2 ≤

√
2

3AM
V φ [6µAMf ]

∞∑
k=k0

aυnk
∫

|t|≥δ

|Lk (t)| dt

<

√
2

3AM
V φ [6µAMf ] ε

holds for sufficiently large n ∈ N small µ > 0. And finally we conclude from (III) that

P3 <
ε

3
V φ [3µf ]

for sufficiently large n ∈ N and for some µ > 0 , which completes the proof. 2
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3. Rate of approximation

In this section, we investigate the order of approximation by means of the following classes of functions.
Γ :=

{
τ : RN → R+

0 : τ is measurable and continuous at t = 0 s.t. τ (0) = 0

and τ (t) > 0 for t ̸= 0} .
Taking this definition into account, for a given τ ∈ Γ , we may define the following Lipschitz class:

V φLipN (τ)

:=
{
f ∈ ACφ

(
RN
)
: ∃µ > 0 s.t. V φ [µ (f (· − t)− f (·))] = O (τ (t)) as t → 0

}
,

where f (t) = O (g (t)) , that is one can find L, δ > 0 satisfying that |f (t)| ≤ L |g (t)| whenever |t| ≤ δ.

We remark that taking τ (t) = |t|α (t ∈ RN and α > 0) and ξ (u) = uα (u ∈ R+
0 ) in the above

definition, we obtain Zygmund-type class.
Let Ψ be defined by

Ψ :=
{
ξ : R+

0 → R+
0 : ξ is continuous at u = 0, ξ (0) = 0 and ξ (u) > 0 for u > 0

}
.

Then for a fixed τ ∈ Γ and for any fixed δ > 0 , we may write the following rate assumptions:

(I ′)
∞∑

k=k0

aυnk
∫

|t|≥δ

|Lk (t)| dt = O (ξ (1/n)) as n→ ∞ uniformly in υ,

(II ′)
∞∑

k=k0

aυnk
∫

|t|<δ

|Lk (t)| τ (t) dt = O (ξ (1/n)) as n→ ∞ uniformly in υ,

(III ′)

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt− 1

∣∣∣∣∣ = O (ξ (1/n)) as n→ ∞ uniformly in υ.

Note that, although they are equivalent, instead of (∗) , for suitability we use condition (3.1) in the
following theorem.

Theorem 3.1 Let τ ∈ Γ, ξ ∈ Ψ, δ > 0 and (I) , (I ′)− (III ′) hold. Also assume that {βk} is a null sequence
(that is, βk → 0 as k → ∞) of positive real numbers such that:
for all γ > 0, there can be found a λ > 0 satisfying that

V φ [λGk, J ]

φ (γm (J))
≤ βk (3.1)

for all bounded interval J ⊂ R and k ∈ N, and

∞∑
k=k0

aυnkβk = O (ξ (1/n)) as n→ ∞ uniformly in υ. (3.2)

If f ∈ V φLipN (τ) , then there holds

V φ [µ (Tn,υ (f)− f)] = O (ξ (1/n)) as n→ ∞ uniformly in υ

for sufficiently large n ∈ N.
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Proof From Theorem 2.2,

V φ [µ (Tn,υ (f)− f)] ≤ 1

3M

∞∑
k=k0

aυnkV
φ [3µAM(Hk ◦ f − f)]

+
1

3AM

∞∑
k=k0

aυnk
∫

|t|<δ

|Lk (t)|V φ [3µAM(f(· − t)− f (·))] dt

+
V φ [6µAMf ]

3AM

∞∑
k=k0

aυnk
∫

|t|≥δ

|Lk (t)| dt

+
1

3

∣∣∣∣∣ ∞∑
k=k0

aυnk
∫
RN

Lk (t) dt−1

∣∣∣∣∣V φ [3µf ]

:= A1 +A2 +A3 +A4

holds. On the other hand, from Proposition 5.1 in [3], (3.1) implies that

V φ [3µAM(Hk ◦ f − f)] ≤ βk

and therefore from (3.2),
A1 = O (ξ (1/n)) as n→ ∞ uniformly in υ.

Since f ∈ V φLipN (τ) , ∃µ > 0 and K > 0 s.t. V φ [µ (f (· − t)− f (·))] ≤ Kτ (t) as t → 0. Considering this
with (II ′) ,

A2 ≤ K

3AM

∞∑
k=k0

aυnk
∫

|t|<δ

|Lk (t)| τ (t) dt

= O (ξ (1/n)) as n→ ∞ uniformly in υ.

holds. In addition, from (I ′) ,

A3 = O (ξ (1/n)) as n→ ∞ uniformly in υ.

Finally from (III ′) , we conclude

A4 = O (ξ (1/n)) as n→ ∞ uniformly in υ.

2

4. Characterization of absolute continuity
Using φ -absolutely continuous functions, a general characterization theroem by means of the summability
method will be given in this section. To this end, we require condition (IV ) such that:

(IV ) For any N -dimensional interval I = ΠN
i=1 [ai, bi] ⊂ RN and for all nonoverlapping intervals {[qαj ,

q βj ]}rq=1 of

the interval [aj , bj ] , there exists a µ > 0 such that for every ε > 0 there exists a δ > 0 such that

r∑
q=1

∞∑
k=k0

aυnkφ(µ
∣∣Lk(s

′
j ,
q βj)− Lk(s

′
j ,
q αj)

∣∣) < ε
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holds, whenever
r∑

q=1
φ (qβj −q αj) < δ

for every j = 1, . . . , N.

Note that if A = {Aυ}υ∈N is a row finite summability method, namely, Aυ contains at most a finite
number of nonzero terms for all υ ∈ N, then condition (IV ) reduces to “Lk ∈ ACφ

loc

(
RN
)
”.

Let ψ : R+
0 → R+

0 is a nondecreasing function such that ψ(u) = 0 if and only if u = 0 and limu→∞ ψ (u) =

∞. Then we get the following lemma.

Lemma 4.1 Assume that Lk satisfies (IV ) and assume further that ∃K > 0 such that

|Hk (u)| ≤ Kψ (|u|) (4.1)

holds for every u ∈ R and k ∈ N . If f ∈ BV φ
(
RN
)
∩ C0

(
RN
)

and (ψ ◦ |f |) ∈ L1
(
RN
)
, then Tn,υ (f) ∈

ACφ
(
RN
)

for all υ ∈ N and for sufficiently large n ∈ N.

Proof From x− t = z substitution, one can rewrite the operator as follows

Tn,υ (f ;x) =
∞∑

k=k0

aυnk
∫
RN

Lk (x− z)Hk (f (z)) dz.

Using the same notations in (IV ) , let {[qαj ,
q βj ]}rq=1 be such that

∑r
q=1φ (qβj −q αj) < δ. Then by Jensen’s

inequality and Fubini-Tonelli theorem

r∑
q=1

φ (µ |Tn,υ (f ;q βj)− Tn,υ (f ;q αj)|)

≤
r∑

q=1
φ

(
Kµ

∞∑
k=k0

aυnk
∫
RN

∣∣Lk

(
x′j − z′j ,

q βj − zj
)
− Lk

(
x′j − z′j ,

q αj − zj
)∣∣ψ (|f (z)|) dz

)

≤ 1

MB

∫
RN

ψ (|f (z)|)
∞∑

k=k0

aυnk
r∑

q=1
φ
(
KMBµ

∣∣Lk

(
x′j − z′j ,

q βj − zj
)
− Lk

(
x′j − z′j ,

q αj − zj
)∣∣) dz

≤ ε

M

holds for sufficiently large n∈ N , where B ≥
∫
RNψ (|f (z)|) dz and M comes from the regularity of A . 2

Here is our characterization theorem, which is generalized and improved by the summability method.

Theorem 4.2 Assume that (I) − (IV ) and (4.1) hold and assume further that (ψ ◦ |f |) ∈ L1
(
RN
)

and
f ∈ BV φ

(
RN
)
∩ C0

(
RN
)
. Then we have

f ∈ ACφ
(
RN
)
⇐⇒ ∃µ > 0 s.t. lim

n→∞
V φ [µ (Tn,υ (f)− f)] = 0 uniformly in υ ∈ N.
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Proof Since f ∈ ACφ
(
RN
)
, from the Theorem 3.1 ∃µ > 0 satisfying that

lim
n→∞

V φ [µ (Tn,υ (f)− f)] = 0 uniformly in υ ∈ N.

On the other hand, it is known from [5] that ACφ
(
RN
)

is a closed subspace of BV φ
(
RN
)

under convergence
in φ -variation. By the previous lemma, since Tn,υ (f) ∈ ACφ

(
RN
)
, we obtain f ∈ ACφ

(
RN
)
. 2

5. Conclusions and applications

5.1. Special cases

Some crucial conclusions of summability methods in our approach are as follows:

• if we consider A as the identity matrix, then our generalized operator reduces to operator Tk given in
1.1, and we get the classical approximation studied in [3]. In addition to classical one, we also get the
following approximations, so that larger class of the kernels and operators could be included into the
approximations.

• If we take A as the Cesàro matrix {[cnk]} , where cnk = 1/n if 1≤ k ≤ n; 0 if k > n, we obtain the
Cesàro approximation [24],

• if we assume A is equal to F = {[dυnk]}υ∈N (almost convergence method), where dυnk = 1/n, whenever
υ ≤ k < n+ υ; 0, otherwise, then we get almost approximation [26],

• by the help of summability method, it is possible to have different characterizations of the space ACφ
(
RN
)

(see also [13]).

5.2. Examples and graphical illustrations

In this part, we exemplify our kernels, which fulfill our kernel assumptions and then display our approximations
for certain values of n .

Now, we deal with the followings:

A = {C1} = {[cnk]} , the Cesàro matrix, N = 2, τ (t) := |t|
1
3 ,

ξ (u) :=

{
u ln

(
1 + 1

u

)
; if u > 0

0; if u = 0

Hk (u) := u+ arctan
(u
k

)
(5.1)

Lk (t1, t2) :=

{ (
(−1)

k
+ 1
)

7k7

π

(
1
k −

(
t21 + t22

) 1
6

)
; if

√
t21 + t22 ≤ 1

k3

0; if
√
t21 + t22 >

1
k3 .

(5.2)
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Since Gk (u) = arctan
(
u
k

)
, then it is clear that for all φ ∈ Φ and J = [a, b] that

V φ [λGk, J ]

φ (γm (J))
=
φ (γ (Gk (b)−Gk (a)))

φ (γ (b− a))

=
φ
(
γ
(
arctan

(
b
k

)
− arctan

(
a
k

)))
φ (γ (b− a))

≤ (1/k)φ (γ (b− a))

φ (γ (b− a))

=
1

k
,

which proves (∗) for λ = γ. In addition, letting βk := 1/k, we get

∞∑
k=1

cnkβk =
1

n

n∑
k=1

1

k

≤ 2 ln (n+ 1)

n
.

So that, we proved (3.1) and (3.2) together.

Now, let us concentrate on the kernel Lk. By the definition of Lk, it is not hard to see that condition
(I) holds.

For (II) , let δ > 0 be given. If δ > 1, then

1

n

n∑
k=1

∫∫
√

t21+t22≥δ

|Lk (t1, t2)| dt2dt1 = 0,

if 0 < δ ≤ 1, then

1

n

n∑
k=1

∫∫
√

t21+t22≥δ

|Lk (t1, t2)| dt2dt1 =
1

n

[
1
3√
δ

]∑
k=1

∫∫
√

t21+t22≥δ

|Lk (t1, t2)| dt2dt1

+
1

n

n∑
k=

[
1
3√
δ

]
+1

∫∫
√

t21+t22≥δ

|Lk (t1, t2)| dt2dt1,

where [·] denotes the integer part. From the definition of Lk, second summation must be zero. Then, there
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holds

1

n

[
1
3√
δ

]∑
k=1

∫∫
√

t21+t22≥δ

|Lk (t1, t2)| dt2dt1

=
1

n

[
1
3√
δ

]∑
k=1

∫∫
1
k3 ≥

√
t21+t22≥δ

|Lk (t1, t2)| dt2dt1

=
1

n

[
1
3√
δ

]∑
k=1

(
(−1)

k
+ 1
) 7k7

π

∫∫
1
k3 ≥

√
t21+t22≥δ

(
1

k
−
(
t21 + t22

) 1
6

)
dt2dt1

≤ B (δ)

n
,

where

B (δ) =

[
1
3√
δ

]∑
k=1

(
(−1)

k
+ 1
) 7k7

π

∫∫
1
k3 ≥

√
t21+y2≥δ

(
1

k
−
(
t21 + y2

) 1
6

)
dydt1.

Therefore, we understand

1

n

[
1
3√
δ

]∑
k=1

∫∫
√

t21+t22≥δ

|Lk (t1, t2)| dt2dt1 =
B (δ)

n
≤ 2B (δ) ln (n+ 1)

n
,

which gives us (II) and (I ′) .

For (II ′) , one may observe the followings,

1

n

n∑
k=1

∫∫
√

t21+t22<δ

|Lk (t1, t2)|
(√

t21 + t22

) 1
3

dt2dt1

≤ 1

n

n∑
k=1

∫∫
R2

|Lk (t1, t2)|
(√

t21 + t22

) 1
3

dt2dt1

=
1

n

n∑
k=1

(
(−1)

k
+ 1
) 7k7

π

∫∫
√

t21+t22<
1
k3

(
1

k
−
(
t21 + t22

) 1
6

)(√
t21 + t22

) 1
3

dt2dt1

=
3

4n

n∑
k=1

(
(−1)

k
+ 1
) 1

k
≤ K

ln (n+ 1)

n
.
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Finally, for (III) and (III ′) , we get∣∣∣∣∣ 1n n∑
k=1

∫∫
R2

|Lk (t1, t2)| dt2dt1 − 1

∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑

k=1

(
(−1)

k
+ 1
) 7k7

π

∫∫
√

t21+t22≤
1
k3

(
1

k
−
(
t21 + t22

) 1
6

)
dt2dt1 − 1

∣∣∣∣∣∣
=

∣∣∣∣ 1n n∑
k=1

(−1)
k

∣∣∣∣ ≤ 1

n
≤ 2

ln (n+ 1)

n
.

Now, we will display our approximation using the above definitions together with the following function
f (x, y) = F (x)F (y) , where

F (x) =

{
cosx; if |x| < π/2
0; if otherwise.

It is clear that f ∈ ACφ
(
R2
)
. Then our operator turns into

Tn (f ;x, y) =
1

n

n∑
k=1

∫
√

t21+t22≤1/k3

((−1)
k
+ 1) 7k

7

π

(
1
k −

(
t21 + t22

) 1
6

)(
f (x− t1, y − t2) (5.3)

+ arctan
(

f(x−t1,y−t2)
k

))
dt2dt1.

This approximation is indicated in Figure 1, 2 for some even and odd values of n.
As understood from above, our kernel examples fulfilled all of our assumptions. However, it can be clearly

seen that they do not satisfy the classical approximate identities in [3]. Moreover, the classical approximation
fails, since even and odd terms of our operator approach to different limits.

Now, we will give an application of Theorem 4.2. In this part, we assume that A = F (almost convergence
matrix). Moreover, considering the one dimensional Lk , given in [9] in Figure 3,

Lk (t) =

 2
(
k − k2 |t|

)
; if |t| ≤ 1/k and k = m2 (m ∈ N)

k − k2 |t| ; if |t| ≤ 1/k and k ̸= m2 (m ∈ N)
0; if |t| > 1/k

we construct a two dimensional kernel,

Lk (t1, t2) := Lk (t1)Lk (t2) , (5.4)

which satisfies (IV ) and all the assumptions of Theorem 4.2.
Our two dimensional kernel in (5.4) is plotted in Figure 3.
On the other hand, taking ψ (|u|) = |u| , it is not hard to see that Hk in (5.1) satisfies (4.1) for K = 2 .

293



ASLAN/Turk J Math

Figure 1. Approximation to f for even values of n .

Figure 2. Approximation to f for odd values of n .
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Figure 3. The kernel function Lk(t1, t2) for k = 2, 4, 7, 10 .

5.3. Numerical computations

We evaluated the approximation errors of the operator (5.3) with respect to φ -variation, where φ (x) = x2 .
Since all the assumptions of Theorem 2.2 are satisfied for the corresponding φ , then we obtain

lim
n→∞

V φ[Tn (f)− f ] = 0.

Some φ -variation values are indicated in Table .

Table . Error of V φ [Tn (f)− f ] for some odd and even values of n .

n (odd values) V φ[Tn(f)− f ] n (even values) V φ[Tn(f)− f ]

5 ≈ 0.033892525826214 4 ≈ 0.568313388764892
23 ≈ 0.031843086450096 18 ≈ 0.104079239418339
97 ≈ 0.005453887845341 90 ≈ 0.010299602502562
195 ≈ 0.001977860928621 168 ≈ 0.003882562638240
275 ≈ 0.001175155118425 290 ≈ 0.001616539490713
323 ≈ 0.000917628363054 358 ≈ 0.001147701794314
501 ≈ 0.000462735016275 586 ≈ 0.000511342504081

5.4. Further results
As it is pointed out in [3, 5], all this theory can be extended to Fφ -variation, where F : RN → R+

0 be a
functional satifying the following properties:

295



ASLAN/Turk J Math

1. F (p) = 0 if and only if p = 0, p ∈ RN ,

2. F (p+ q) ≤ F (p) + F (q) , p,q ∈ RN ,

3. F (αp) = αF (p) , p ∈ RN , α ∈ R+
0 ,

4. F (p) ≤ C ∥p∥ , p ∈ RN , where C is the Lipschitz constant of F .

We remark that Fφ -variation is inspired by F -variation, which is a generalization of classical variation
(φ (|u|) = |u|) and has applications in calculus of variations [14, 18, 21, 28]. As an application, we refer to
Remark 7 in [5].

Now, considering the above properties, Fφ -variation of f on the interval I ⊂ RN is given by

V φ
F [f, I] := sup

{J1,...,Jm}

m∑
k=1

F (Φφ (f, Jk))

where {Ji}i=1,...,m forms a partition of I . Then, Fφ -variation of f on RN is defined as follows:

V φ
F [f ] = sup

I⊂RN

V φ
F [f, I] .

Since taking F (p) = ∥p∥ we obtain φ -variation, we may easily see that Fφ -variation is a generalization of
φ -variation. In addition, from [5] (see Section 7), we conclude that convergence in φ -variation is equivalent to
convergence in Fφ -variation and therefore all these studies can be generalized to Fφ -variation.
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