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Abstract: Recently, modern people have excessive stress in their daily lives. With the advances in physiological sensors
and wearable technology, people’s physiological status can be tracked, and stress levels can be recognized for providing
beneficial services. Smartwatches and smartbands constitute the majority of wearable devices. Although they have an
excellent potential for physiological stress recognition, some crucial issues need to be addressed, such as the resemblance
of physiological reaction to stress and physical activity, artifacts caused by movements and low data quality. This paper
focused on examining and differentiating physiological responses to both stressors and physical activity. Physiological
data are collected in the laboratory environment, which contain relaxed, stressful and physically active states and they
are differentiated successfully by using machine learning.
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1. Introduction
Stress is one of the significant issues in modern society. It is generally experienced when individuals fail to
respond to mental, emotional, or physical demands competently [1]. Hence, the major causes of stress can
be listed as the exposure to the demands and pressures from physical or mental activities or self-imposed
requirements, obligations and self-criticism [2]. Severe illnesses can be caused by stress such as depression,
cardiovascular diseases, infectious diseases, and cancer [3] and therefore, continuous measurement of stress
in daily life gains importance. In behavioral science, researchers usually employ self-reports by periodically
collecting instantaneous assessments of perceived stress. However, it is not possible to recognize stress levels
with this approach continuously because of its burden and obtrusiveness. Therefore, researchers investigated
different sensing techniques for recognizing stress levels automatically, such as facial expressions, physiological
signals, speech and gestures. Due to their noninvasiveness, privacy and ease of use in daily lives, detecting stress
by using smartbands and smartwatches from physiological signals attracted more attention.

Notwithstanding the high potential of smartbands and smartwatches in stress detection, researchers need
to deal with several issues in exploiting physiological reactions. The first one is the similar physiological reactions
to stressors and changes in physical or mental conditions. A physiological pattern might not necessarily indicate
a stress level change [4, 5]. Similar physiological reactions can be seen under demanding physical activities,
physical discomfort, noise, changes in posture, lighting conditions, demanding mental task and emotional stress
[1]. The second issue is the limitations of these devices for detecting physiological signals. They are sensitive to
noise, might miss samples, and have problems with battery life. The third issue is the different types of stress
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can have varying physiological expressions. Under physical stress, the sympathetic nervous reaction is more
dominant, but under cognitive stress, the adrenal reaction is more dominant. Finally, physiological reactions to
stressors depend on individuals. Personalizing stress models might be necessary for accurate systems.

With the widespread usage of these wrist-worn wearables, health applications have been developed for
improving the life quality of users. However, these devices are not without challenges. Periodical stress detection
apps were developed by consumer smartwatch companies, but they require users to be still during these periodic
measurements. The exact instruction is “during a stress test, wear your watch correctly and keep still”. This
means that these applications are not appropriate for recognizing the stress levels of individuals in their daily
lives because the movements are unlimited. The reasons for this requirement could be artifacts caused by
movements or difficulty in differentiating physical activity and stress from physiological responses.

In this study, a stress and physical activity differentiation system is developed, which is implemented for
unobtrusive smart wearable devices. To the best of our knowledge, this study is the first one to differentiate
stress and physical activity system works with smart bands. The system is tested on 14 participants in the
laboratory environment. Heart rate variability (HRV) and electrodermal activity (EDA) signals obtained from
an Empatica E4 smartband are used for this purpose. After cleaning the artifacts, most discriminative features
were extracted. A variety of classifiers were tested for differentiating stressful, relaxed, physically active states.

The rest of the paper is organized as follows: In Section 2, the related work is provided for automatic
stress and physical activity recognition systems that use smart bands or smartwatches. In Section 3, the data
collection procedure is explained. In Section 4, the proposed smart band-based stress and physical activity
differentiation scheme is presented. In Section 5, the experimental results of the proposed system are discussed.
In Section 6, the findings of the study are evaluated and future work of the current research is discussed.

2. Literature review
After the emergence of smartbands and smartwatches, researchers used them to improve the quality of life. In the
literature, there are studies for recognizing physical activity and mental stress levels. Physical activity intensity
level detection studies were accelerated with the emergence of smartphones. The motion sensors (accelerometer
and gyroscope) were used for this purpose [6]. After smartphones, smartwatches and smartbands were also
employed for physical activity detection. Degroote et al. [7] used Polar M600, Huawei watch and Asus Zenwatch
for detecting physical activity levels. The accelerometer sensors were employed in these devices. In daily life,
they achieved approximately 72.25% accuracy. Dobbins and Rawssizadeh [8] developed a physical activity
level recognition system. They used an LG watch and Samsung Gear S watch and utilized the combination of
acceleration data of smartwatches and a smartphone for physical activity level detection. They achieved 78.61%
accuracy. Davoudi et al. [9] conducted a validity study of Samsung Gear S devices for physical activity level
recognition and showed that they have 87% accuracy.

Another widely conducted research field with smartwatches and smartbands is automatic stress recogni-
tion. Stress has a physiological reaction and it can be measured from physiological signals such as electrodermal
activity (EDA), HRV, skin temperature (ST) and acceleration (ACC). Samsung Gear S, S2 and Microsoft Band
2 are among the widely used commercial smartwatches and Empatica E4 is a commonly used research-oriented
smartband for stress level recognition. Hao et al. [10] used Empatica E4 PPG sensor for extracting HRV
information and detected stress levels in real-life settings. De Arriba-Perez et al. [11] used Microsoft Band 2
for detecting mental stress in laboratory settings and achieved 85% accuracy. Siirtola et al. [12] used a public
dataset WESAD and performed experiments. This dataset contains physiological data of participants in a
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laboratory environment collected with Empatica E4. Can et al. [13] used a combination of smartwatches and
smartbands for collecting data in a real-life event. By using HRV and EDA, they achieved 90% accuracy for
detecting mental stress. They also analyzed the difference in physiological reactions between cognitive load and
mental stress. As it can be seen from the literature, physical activity intensity and mental stress are studied
separately in several studies. However, to the best of our knowledge, there is not any study that investigates
both physical activity and mental stress and tries to differentiate them.

3. Laboratory data collection

The laboratory data is collected through a psychological experiment by using an implementation of the Trier
Social Test (TSST) [14]. TSST is commonly used to induce stress in the literature. Controlled laboratory data
were obtained from the 14 subjects who participated in the experiment. All participants followed the same
process. They were college students whose ages are between 20 and 25. Nine of them were males and five of
them were females. The experiment took approximately 1 h and it consists of baseline (prestress), mental stress,
recovery and physical activity sessions (see Figure 1).

Interviewers and the participants communicated in Turkish which is the mother tongue of all participants.
Furthermore, they can speak English as a foreign language. This fact is utilized for inducing stress on the
participants. The participants wear the Empatica E4 smartbands during the experiment and the sessions were
recorded with a camera. The physiological signals of a participant during the experiment are shown in Figure
2.

Figure 1. The experiment procedure is shown.

In total, we collected 14 h of physiological data and 56 self-reports in the laboratory environment. The
data is imbalanced in terms of labels. Approximately 50% of the data is stressed data, 33% of the data is
relaxed data, and the remaining 16% of the data is divided into physically active and recovery sessions equally.
In order to overcome the class imbalance problem, the randomly undersampling method is used while extracting
the results.
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Figure 2. The changes in physiological signals of a participant during the experiment. The top signal is EDA, the
middle signal is acceleration and the bottom one is heart rate signal.

3.1. Set up
In the set-up phase;

1. Experiment areas are prepared, the camera is set and we check the Empatica E4 smartband battery and
functionalities.

2. Interviewers are prepared. They keep eye contact with the participant during the experiment. Their
gestures and mimics should be neutral.

3. We informed the participants about the procedure and then they sign the consent forms.

4. The participant wears the smartband (Empatica E4).

5. The participants are asked to turn off their cellphones to refrain from distraction.

3.2. Prestress phase
In the prestress phase;

1. Perceived Stress Scale (PSS-14) form is filled.

2. The participants stay in the waiting area and relax for 10 min. We put emotionally neutral magazines
such as home, garden, car, furniture, fashion related ones for them to read.

3.3. The TSST phase
The TSST is implemented as follows;
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1. The participant enters the interview area.

2. For preparing the TSST speech, we read the following text to all the participants: “This is the speech
preparation portion of the task; you are expected to prepare a five-min speech describing why you study
[name of the degree that the participant studies/studied] and why you would be a good candidate for your
ideal job. Your speech will be videotaped and reviewed by the psychologists that we conduct the research.
You have five min to prepare and your time begins now.”

3. After that, the participants prepare their speech. The digital timer is set to five min. Interviewers leave
the room during this phase.

4. At the end of the speech preparation phase we inform them by reading the following text: “This is the
speech portion of the task. You should speak for the entire five-min time period. Your time begins now”.
Interviewers should start the recording of the camera.

5. TSST speech performance period: If the participant stops during this period, interviewers allow him/her
to stay silent for around 20 s and then prompt: “You still have time remaining.”

6. After the first 2 min of the speech period, the participants are interrupted and asked to continue their
speech in English by telling them: “Could you continue in English from now on, please ?”

7. At the end of 2.5 min, if the participant does not attempt to reply to both questions, interviewers prompt
the participant to answer the other question.

8. At the end of the speech performance period, the communication between interviewers and the participant
resumes in Turkish. Interviewers reset the timer to 5 min and read the following to the participant: “During
the final five-min math portion of this task, you will be asked to sequentially subtract 13 from 1022. You
will verbally report your answers aloud and be asked to start over from 1022 if a mistake is made. Your
time begins now.” If the participant makes any mistake, the interviewer says the following: ”That is
incorrect, please start over from 1022.”

3.4. Poststress recovery phase

In order to decrease the stress levels of participants, we applied a biofeedback-based intervention technique
which is the built-in breathing application of Apple Watch. The technique is applied as follows;

1. Participants sit on the couch as a relaxing place.

2. Participants wear the Apple Watch provided to them and follow the breathing exercise built in the Apple
Watch for a minute and then follow a mindfulness video, for the remaining four min, on a comfortable
couch, while sitting or lying as they prefer.

3. Interviewers leave the room after giving the Apple Watch to the participants.

4. At the end of the five-min-long recovery period, interviewers return to the room.
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3.5. Physical activity phase
1. Interviewers leave the room in order not to induce stress during the physical-activity period.

2. Participant follows a five-min-long exercise on Youtube. It is an intense cardio workout without using any
equipment. The link could be accessed at ”https://www.youtube.com/watch?v=Tz9d7By2ytQ”

3. Interviewers return to the room and return the pieces of equipment.

4. Mental stress and physical activity level detection method
An unobtrusive stress and physical activity detection system which is suitable for daily life use is proposed
(see Figure 3). Empatica E4 smart wristband is selected as the unobtrusive device. The battery life of this
device is around forty eight h and it has a 3D accelerometer sensor, a photoplethysmography (PPG) sensor, an
skin temperature sensor and an EDA sensor. However, it has lower data quality than medical-grade devices
and it is more sensitive to unrestricted motions in daily life. Therefore, state-of-the-art preprocessing, feature
extraction and machine learning algorithms are required for daily life stress and physical activity level detection
and differentiation system. Preprocessing and feature extraction modules were developed in our previous study
[15].

Figure 3. The high-level block diagram of the proposed system is shown.

4.1. Preprocessing
Physiological time-series data obtained from various sensors of the smartband were divided into nonoverlapping
windows. The window sizes are determined as 120 s because stress stimulation and recovery processes lasted
around 3-4 min and selected window lengths can capture them 1.

4.1.1. HRV artifact detection and removal module
An artifact detection percentage threshold between each R to R interval and the local average was applied for
the heart rate signal. The threshold was selected as 20% because it is unlikely that RR intervals can deviate
from the local mean with that amount [16]. The removed artifact data points were replaced with a cubic spline

1Harvard University (2021) Understanding the stress response [online]. https://www.health.harvard.edu/staying-healthy/
understanding-the-stress-response [accessed 27 July 2021].
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interpolation function, as implemented in Kubios [16]. The interpolation technique achieved better results, and
therefore it is preferred to the application of minimum consecutive time and sample constraints on the remaining
data [17]. The windows that contain more than 10% artifacts were discarded.

4.1.2. EDA artifact detection and removal module
The toolbox developed by Taylor et al. [18] was used to detect and remove the artifacts in the EDA signal.
The EDAExplorer toolbox employs the SVM algorithm and determines artifact data points in the EDA signal
with less than 5% error by examining ST, ACC, and EDA signals. The artifacts were automatically removed
after being detected by this tool. The batch processing feature was further added. Then, the cleaned signal is
passed to the EDA feature extraction unit.

4.2. Feature extraction
For each modality, discriminative features are extracted. These state-of-the-art features were commonly used in
the literature [19–21]. The feature extraction methodologies for each of the physiological signals are described
in this section.

4.2.1. HRV feature extraction module
Thirteen HRV features were computed by analyzing the RR intervals. To extract frequency-domain features,
two methods are applied. Firstly, RR intervals are resampled at 4 Hz [22] and Fast Fourier transform (FFT)
is applied. In a second way, the Lomb-Scargle technique is applied, which is a special technique for converting
nonequidistant sampled signals to the frequency domain. The extracted heart rate variability features are listed
as: 1. Mean value of the inter-beat (RR) intervals 2. Standard deviation of the inter-beat interval 3. Root
mean square of the successive difference of the RR intervals. 4. Percentage of the number of the successive RR
intervals varying more than 50 ms from the previous interval 5. Total number of RR intervals divided by the
height of the histogram of all RR intervals measured on a scale with bins of 1/128 s 6. Triangular interpolation
of RR interval histogram 7. Power in the low-frequency band (0.04–0.15 Hz) 8. Power in the high-frequency
band (0.15–0.4 Hz) 9. Ratio of LF to HF. 10. Prevalent low-frequency oscillation of the heart rate 11. Prevalent
high-frequency oscillation of the heart rate 12. Power in the very low-frequency band (0.00–0.04 Hz) 13. Related
standard deviation of successive RR interval differences.

4.2.2. EDA feature extraction module
EDA signal is decomposed into phasic and tonic components using the convex optimization-based EDAcvx tool
[18]. EDAcvx also cleanses the Gaussian noise. Ten discriminative features from both the tonic and phasic
components of the EDA signal were extracted. Percentiles are very usable for examining the distribution of
number sets using various EDA graphs, and different percentiles were used. The following EDA features were
selected from the literature [19, 24]. 1. Mean value 2. Maximum value 3. Standard deviation 4. Minimum value
5. Number of peaks 6. Derivative 7. Number of strong peaks 8. Twentieth percentile 9. Eightieth percentile
10. Quartile deviation.

4.2.3. ACC feature extraction module
The sensor data of the accelerometer is employed for two different purposes. First, features are extracted
from this sensor. This sensor was further used to clean the EDA signal in the EDAExplorer tool. Extracted
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accelerometer features are Mean X (Mean acceleration over x-axis), Mean Y (Mean acceleration over y-axis),
Mean Z (Mean acceleration over z-axis), Mean ACC MAG (Mean acceleration over acceleration magnitude
axis).

4.3. Machine learning classification algorithms
To detect stress and physical activity levels separately and differentiate them, the Python Keras and Scikit
libraries are employed. Several preprocessing tools were applied to the data before initiating the classification
process. When the number of instances in each class is concerned, our dataset is not balanced. Extra samples of
the majority class were removed, and this issue was solved. Therefore, the biasing of the classifiers towards the
majority classes was prevented. Five different machine learning classifiers were used. They are the most widely
applied classifiers in the literature [19], [25], Logistic Regression (LR), kNN, multi-layer perceptron (MLP),
support vector machine (SVM) and random forest (RF). Python scikit library was used for the implementation
of these classifiers. The default parameters were used. In order to evaluate the performance of the classifiers,
10-fold cross-validation was applied.

4.3.1. Support vector machines (SVM)

SVM creates decision planes that define decision boundaries. A decision plane can be defined as the plane
that divides objects belonging to different classes. In some classification tasks, complex decision structures are
needed to separate these objects into their classes correctly. Support vector machines are designed to cope with
this kind of task. SVM rearranges objects using kernels which are a set of mathematical functions [26]. The
objects are mapped or transformed so that they can be easily separated by less complex planes.

4.3.2. K nearest neighbors (kNN)

This method relies on memory for saving instances with known outputs. Labels of these instances are known.
When a new test instance is to be decided, the output of the closest known objects is examined. The majority
of votes rule is applied. The output that has emerged on the majority among these neighbors is assigned to the
test instance. The distance formula (Euclidean, Mahalanobis, etc.) and the number of closest objects that are
being evaluated (k number) are important parameters for the kNN algorithm.

4.3.3. Decision tree / random forest

Decision trees are ML tools that are used for regression or classification of both continuous and discrete variables
[26]. The structure of this ML model inspired its name. The decision tree mechanism is as follows: For each
iteration, local regions are created recursively. It is a supervised, and hierarchical model [27]. The decision tree
comprises of decision nodes and leaves. Each decision divides the data. Low entropy divisions are created in
this manner. Appropriate sized tree generation requires expert knowledge [26]. A random forest is a variation
of a decision tree that uses multiple trees instead of a single one.

4.3.4. Logistic regression

Logistic regression (LR) is a method of representing the probability of a discrete outcome provided by an input
[28]. The most widely used LR model is the model with a binary output, such as true/false, yes/no, and so
on. Multinomial logistic regression can be employed if there are more than two possible discrete outputs. LR
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is also a helpful analysis tool for classification problems where researchers try to decide whether a new sample
fits best into a category.

4.3.5. Multilayer perceptron

The Multilayer perceptron (MLP) is a feedforward artificial neural network [29]. It has a minimum of three
layers which are the input layer, hidden layer(s) and the output layer. The hidden layer (s) uses the activation
functions to capture nonlinear data relations. Therefore, MLPs can discriminate between classes that are
nonlinearly separated. We selected them as representative of a shallow neural network to compare with the
traditional machine learning algorithms. Unipolar sigmoid function was used as an activation function in hidden
volumes of MLP. We used a plain MLP with only one hidden layer.

5. Experimental results and discussion
Three different states were differentiated which are physically active, stressed and relaxed states by using
machine learning classifiers. The performance metrics were defined first the results which are obtained with
data coming from EDA, ACC, and PPG sensors were presented separately.

5.1. Metrics
To evaluate our system performance, we used four different metrics. These metrics are widely used in stress
detection studies.

5.1.1. Classification accuracy
The first metric is accuracy. It can be calculated by dividing the accurately classified windows by the number
of all windows of all participants (it is calculated for all tuples separately).

5.1.2. Precision, recall and f_Measure
We also computed and presented the precision, recall and F_measure metrics. Recall and precision metrics are
employed to compute the F_measure. Their formulas are as follows:

Precision =
TruePositive

TruePositive+ FalsePositive
(1)

Recall =
TruePositive

TruePositive+ FalseNegative
(2)

Fmeasure =
2× Precision×Recall

Precision+Recall
(3)

5.2. Differentiation of physically active and relaxed states
First, physically active and relaxed states were differentiated. The classification accuracies are presented in
Tables 1, 2 and 3. Since the movements of participants are constrained in relaxed states, it is more convenient
to use acceleration data to differentiate them from physically active states. Furthermore, the EDA signal is
also sensitive to movements and it is the most distinctive signal along with the acceleration signal. The heart
activity signal obtained from the PPG sensor achieves the lowest accuracy for distinguishing these two states.
This could be explained by the contamination of this signal by the increased artifacts during physical activity.
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Table 1. The differentiation results of physically active and relaxed sessions by using the accelerometer sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.926 0.926 0.926 92.647 0.982
RF 0.899 0.897 0.897 89.706 0.957
kNN 0.905 0.904 0.904 90.124 0.911
SVM 0.921 0.912 0.911 91.176 0.914
LR 0.907 0.904 0.904 90.441 0.966

Table 2. The differentiation results of physically active and relaxed sessions by using the PPG sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.863 0.826 0.822 82.638 0.833
RF 0.851 0.833 0.831 83.333 0.912
kNN 0.917 0.917 0.917 91.667 0.954
SVM 0.894 0.889 0.889 88.889 0.848
LR 0.808 0.806 0.805 80.556 0.865

Table 3. The differentiation results of physically active and relaxed sessions by using the EDA sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.916 0.899 0.898 89.923 0.908
RF 0.860 0.860 0.860 86.046 0.938
kNN 0.869 0.868 0.868 86.821 0.864
SVM 0.927 0.915 0.914 91.473 0.913
LR 0.884 0.884 0.884 88.372 0.922

5.3. Differentiation of physically active and stressed states
Physically active and stressed states were differentiated. This classification is the most challenging one since
the physiological reactions to them are similar to each other. The classification accuracies are presented in
Tables 4, 5 and 6. The acceleration signal achieved the best performance while differentiating between these
two states, which is expected because the physical activity intensity level is different in these sessions. Around
70% accuracies with heart activity signal were obtained and 60% accuracies with EDA signal were obtained.
This proves the similarity of physiological reactions.

Table 4. The differentiation results of physically active and stressed sessions by using the accelerometer sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.872 0.871 0.871 87.143 0.948
RF 0.909 0.907 0.907 90.491 0.959
kNN 0.818 0.814 0.814 81.428 0.897
SVM 0.911 0.907 0.907 90.714 0.907
LR 0.886 0.886 0.886 88.571 0.958
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Table 5. The differentiation results of physically active and stressed sessions by using the PPG sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.702 0.660 0.641 65.97 0.659
RF 0.756 0.722 0.713 72.22 0.845
kNN 0.748 0.740 0.739 74.028 0.792
SVM 0.709 0.688 0.679 68.75 0.633
LR 0.774 0.764 0.762 76.389 0.762

Table 6. The differentiation results of physically active and stressed sessions by using the EDA sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.686 0.683 0.681 68.254 0.696
RF 0.694 0.690 0.689 69.047 0.709
kNN 0.688 0.659 0.645 65.873 0.696
SVM 0.635 0.635 0.635 63.492 0.635
LR 0.682 0.675 0.671 67.46 0.681

5.4. Differentiation of relaxed and stressed states
Finally relaxed and stressed states were differentiated. The classification accuracies are presented in Tables 7,
8 and 9. The accuracies with all modalities are around 75% and 80%. The results could be higher but since
participants’ perceived stress levels could be different than the expected stress level of the known context, this
decreases the performance of our system. As an example, some participants might have lower stress levels in
the TSST session, which will cause a false ground truth and misleading training data segments.

Table 7. The differentiation results of relaxed and stressed sessions by using the accelerometer sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.715 0.712 0.711 71.212 0.783
RF 0.783 0.780 0.780 78.03 0.852
kNN 0.770 0.765 0.764 76.5153 0.746
SVM 0.690 0.689 0.689 68.939 0.689
LR 0.680 0.681 0.682 68.261 0.690

Table 8. The differentiation results of relaxed and stressed sessions by using the PPG sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.810 0.809 0.809 80.9497 0.845
RF 0.824 0.819 0.818 81.918 0.886
kNN 0.849 0.841 0.840 84.119 0.911
SVM 0.825 0.822 0.821 82.232 0.822
LR 0.791 0.791 0.791 79.088 0.884
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Table 9. The differentiation results of relaxed and stressed sessions by using the EDA sensor.

Method Precision Recall F_measure Accuracy Area under ROC
MLP 0.735 0.720 0.715 71.969 0.811
RF 0.781 0.780 0.780 78.03 0.882
kNN 0.854 0.833 0.831 83.333 0.895
SVM 0.844 0.773 0.760 77.272 0.773
LR 0.697 0.689 0.686 68.949 0.776

5.5. Discussion
The main purpose of this study is to differentiate stress and physical activity. The most successful signal is
the acceleration for this purpose. Heart activity has also around 75% accuracy for differentiating these two
signals. Combining these two signals will achieve a more robust system for differentiating stress and physical
activity. For detecting stress from relax sessions, heart activity achieves the best results. This proves that stress
detection systems must monitor heart activity. The acceleration signal is especially needed in the presence of
potential physical activity. EDA signal is affected by environmental conditions such as temperature and physical
activity, and it could be easily contaminated, and that is why it could not achieve higher results than the other
signals. The easiest task is to differentiate physical activity and relax states, and all signals can easily detect
physical activity with over 90% accuracy. SVM and random forest algorithms are the most successful classifiers
in these tasks. Furthermore, I selected the best classifiers for differentiating each tuple (relax-stress, physical
activity-stress and relax-physical activity) and draw the ROC curves (see Figures 4,5 and 6) to compare the
results visually.

Figure 4. The ROC curves of the best performing classifier (kNN) using heart activity signal for differentiating physical
activity and relax states. The top ROC curve belongs to the relax label and the bottom ROC curve belongs to the
physical activity label.
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Figure 5. The ROC curves of the best performing classifier (random forest) using electrodermal activity signal for
differentiating physical activity and stress states. The top ROC curve belongs to the stress label and the bottom ROC
curve belongs to the physical activity label.

Figure 6. The ROC curves of the best performing classifier (random forest) using acceleration signal for differentiating
relax and stress states. The top ROC curve belongs to stress label and the bottom ROC curve belongs to relax label.

We further compared our work with the studies that detect physical activity or stress levels (see Table
10). To the best of our knowledge, this study is the first one to differentiate stress and physical activity from
physiological signals. I also achieved over 90% accuracy, which was aligned with the best-reported results in
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the literature for recognizing mental stress levels or physical activity levels alone. This promising result shows
that the proposed system could be used to differentiate these two physiological responses with success.

Table 10. Comparison of studies that detect physical activity and mental stress levels.

Article Wearable devices Signals Mental
stress

Physical
activity

Environment Accuracy

[8] LG watch and Samsung Gear S Accelerometer X 3 Laboratory %78.61
[7] Polar M600, Huawei Watch, and Asus Zenwatch Accelerometer X 3 Daily Life %72.25
[9] Samsung Gear S Accelerometer X 3 Laboratory %87
[13] Empatica E4, Samsung Gear S, S2 HRV, EDA 3 X Real-Life

Event
%90

[12] Empatica E4 BVP, ST, HR 3 X Laboratory %87.4
[10] Empatica E4 BVP 3 X Real-Life

Event
%81

[11] Microsoft Band 2 HR, ST, EDA 3 X Laboratory %85
Our study Empatica E4 HRV, EDA,ST,ACC 3 3 Laboratory %90.71

6. Conclusion
In this study, a physiological signal-based system that can differentiate physically active, relaxed and stressed
states was developed. Artifact detection and removal, feature extraction and machine learning classification
modules were implemented. The results for differentiating different tuples of these three states by using
acceleration, heart activity and electrodermal activity signals were presented. When the physically active
session is tried to be differentiated from the other two sessions, the accelerometer signal played an important role.
Acceleration signal achieved around 90% accuracy for these classifications. Around 90% accuracies for classifying
physically active and relaxed sessions with the EDA and 70% accuracy with the HRV signal were achieved.
Stressed and relaxed sessions can be differentiated with approximately 80% accuracy with all modalities. The
accuracies could be improved by analyzing the expected stress level of context and the actual perceived stress
level of participants. The most challenging classification is between physically active and stressed states. A
maximum of 70% accuracy by using HRV signal was achieved which shows that the heart activity pattern of
physical activity and stress has differences. Multilayer perceptron and random forest are generally the most
successful classifiers. Furthermore, this study is not without limitations. In order to generalize the conclusions,
more experiments based on larger sample groups should be conducted. Furthermore, stressed, physically active
and relaxed sessions were differentiated and the success of each modality is shown. However, the physiological
signals were not analyzed when mental stress occurs during physical activity. It is planned to conduct more
experiments by including this state. It is believed that the contribution of this research will be beneficial
to both academia and industry, and it could be used to improve the stress detection algorithms running on
commercial smartbands. This study could be used for a deeper understanding of physiological reactions of
stressed and physically active states and it will guide researchers in developing more robust continuous daily
life stress detection algorithms.
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