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Abstract: In this paper, by using fixed point theorem we establish the Hyers-Ulam stability and Hyers-Ulam-Rassias
stability of certain homogeneous Fredholm Integral equation of the second kind

φ(x) = λ

∫ 1

0

(1 + x+ t)φ(t) dt

and the nonhomogeneous equation

φ(x) = x+ λ

∫ 1

0

(1 + x+ t)φ(t) dt

for all x ∈ [0, 1] and 0 < λ < 2
5

.

Key words: Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Fredholm integral equation of second kind, fixed point
theorem

1. Introduction
The Ulam stability problem for various functional equation was initiated by S.M. Ulam [31] in 1940. Then, in
the next year, D.H. Hyers [16] solved the Ulam problem for Cauchy additive functional equation on Banach
spaces. After that Aoki [3], Bourgin [6] and Rassias [25] have generalized the Hyers result. These days the Hyers-
Ulam stability for different functional equations was proved by many mathematicians (see [4, 5, 11, 26]). A
generalization Ulam problem was recently proposed by replacing functional equations with differential equations.
In 1998, Alsina et al., [1] proved the Hyers-Ulam stability of differential equation of first order of the form
y′(t) = y(t) . This result was generalized by Takahasi [30] for Banach space valued differential equation
y′(t) = λy(t) . Then several researchers have studied the Hyers-Ulam stability of differential equations in
various directions, for example (see [7, 10, 17–24, 29, 32]).

Nowadays, the Hyers-Ulam stability of integral equations has been given attention. In 2015, L. Hua et
al., [15] studied the Hyers-Ulam stability of some kinds of Fredholm integral equations. Also, in 2015, Z. Gu
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and J. Huang [14] investigated the Hyers-Ulam stability of the Fredholm integral equation

φ(x) = f(x) + λ

∫ b

a

K(x, s)φ(s) ds

by fixed point theorem. Recently, only few authors are investigating the Hyers-Ulam stability of the various
integral equations (see [2, 8, 9, 12, 13, 27, 28]). Motivated by the above ideas, our foremost aim is to study
the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the certain Fredholm integral equations of second
kind

φ(x) = λ

∫ 1

0

(1 + x+ t)φ(t) dt (1.1)

and

φ(x) = x+ λ

∫ 1

0

(1 + x+ t)φ(t) dt (1.2)

for all x ∈ [0, 1] and 0 < λ < 2
5 in the sense of Z. Gu and J. Huang [14].

2. Preliminaries
The following theorems and definitions are very useful to prove our main results.

Theorem 2.1 (fixed point theorem) Let (X, ρ) be a complete metric space. Assume that T : X → X is a
strictly contractive operator with ρ(Tx, Ty) ≤ θ ρ(x, y) where 0 < θ < 1 . Then

(i) there exists an unique fixed point x∗ of T ;

(ii) the sequence {Tn x}n∈N converges to the fixed point x∗ of T .

Theorem 2.2 (Hölder’s inequality) Let p > 1 , 1
p + 1

q = 1 , x ∈ Lp(E) and y ∈ Lq(E) . Then xy ∈ L(E) and

∫
E

|x(t)y(t)| dt ≤
(∫

E

|xp(t)| dt
) 1

p
(∫

E

|yq(t)| dt
) 1

q

.

Now, we give the definition of Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the Fredholm integral
equations (1.1) and (1.2).

Definition 2.3 We say that the Fredholm integral equations (1.1) has the Hyers-Ulam stability, if there exists
a real constant S which satisfies the following conditions: For every ϵ > 0 , and for each solution φ : [0, 1] → R
satisfying the inequation ∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ,

then there is some ψ : [0, 1] → R satisfying the integral equation (1.1) such that

|φ(x)− ψ(x)| ≤ S ϵ, ∀x ∈ [0, 1].
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Definition 2.4 We say that the Fredholm integral equations (1.2) have the Hyers-Ulam stability, if there exists
a real constant S which satisfies the following conditions: For every ϵ > 0 , and for each solution φ : [0, 1] → R
satisfying the inequality ∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ,

then there exists a solution ψ : [0, 1] → R satisfies the integral equation (1.2) such that

|φ(x)− ψ(x)| ≤ S ϵ, ∀x ∈ [0, 1].

Definition 2.5 The Fredholm integral equations (1.1) are said to have the Hyers-Ulam-Rassias stability, if
there exists a real constant S which fulfills the following: For every θ ∈ C(R+,R+) , and for each solution
φ : [0, 1] → R satisfying the inequality

∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x),

then there is a solution ψ : [0, 1] → R satisfying the integral equation (1.1) such that

|φ(x)− ψ(x)| ≤ S θ(x), ∀x ∈ [0, 1].

Definition 2.6 We say that the Fredholm integral equations (1.2) have the Hyers-Ulam-Rassias stability, if
there exists a real constant S which fulfills the following properties: For every θ ∈ C(R+,R+) , and for each
solution φ : [0, 1] → R satisfying the inequation

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x),

then there exists some ψ : [0, 1] → R satisfying the integral equation (1.2) such that

|φ(x)− ψ(x)| ≤ S θ(x), ∀x ∈ [0, 1].

3. Main results
In this section, we are going to prove the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of the
homogeneous and nonhomogeneous Fredholm integral equations of second kind (1.1) and (1.2) with λ < 2

5 .
First, we investigate the two stabilities of the homogeneous Fredholm integral equation of second kind (1.1).

Theorem 3.1 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t . If φ is such that

∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ, (3.1)

where ϵ ≥ 0 then there exists a solution ψ : [0, 1] → R of the Fredholm integral equation (1.1) and a real constant
S such that |φ(x)− ψ(x)| ≤ S ϵ for all x ∈ [0, 1].
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Proof Firstly, we define an operator T by,

(Tφ)(x) = λ

∫ 1

0

(1 + x+ t)φ(t) dt, φ ∈ L2([0, 1]). (3.2)

We have for each x ∈ [0, 1] ,

∣∣∣∣∫ 1

0

(1 + x+ t) dt

∣∣∣∣ ≤ H and
∣∣∣∣∣
(∫ 1

0

∫ 1

0

(1 + x+ t)2 dtdx

) 1
2

∣∣∣∣∣ ≤ H,

for any H ≥ 5
2 .

Now, we define a metric ρ as follows,

ρ(φ1, φ2) =


(∫ 1

0

∣∣∣∣φ1(x)− φ2(x)

λH

∣∣∣∣2 dx
) 1

2

: φ1, φ2 ∈ L2([0, 1]), λH < 1

 .

By using the Hölder’s inequality, we obtain that∫ 1

0

∣∣∣∣∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣2 dx ≤
∫ 1

0

(∫ 1

0

(1 + x+ t)2 dt

∫ 1

0

φ2(t) dt

)
dx

≤
∫ 1

0

φ2(t) dt

∫ 1

0

∫ 1

0

(1 + x+ t)2 dtdx <∞.

This implies that Tφ ∈ L2([0, 1]) and T is a self–mapping of L2([0, 1]) . Thus, the solution of the equation
(3.2) is the fixed point of T . So,

ρ(Tφ1, Tφ2) =

(∫ 1

0

∣∣∣∣ (Tφ1)(x)− (Tφ2)(x)

λH

∣∣∣∣2 dx
) 1

2

=
1

H

(∫ 1

0

∣∣∣∣∫ 1

0

(1 + x+ t) (φ1(t)− φ2(t)) dt

∣∣∣∣2 dx
) 1

2

≤ 1

H

(∫ 1

0

∫ 1

0

(1 + x+ t)
2
dtdx

) 1
2
(∫ 1

0

|φ1(t)− φ2(t)|2 dt
) 1

2

≤
(∫ 1

0

|φ1(t)− φ2(t)|2 dt
) 1

2

= λH

(∫ 1

0

∣∣∣∣φ1(t)− φ2(t)

λH

∣∣∣∣2 dt
) 1

2

= λHρ(φ1, φ2).

Since λH < 1 , T is a strictly contractive operator. Then by Theorem 2.1 the equation (3.2) has a unique
solution φ∗ ∈ L2([0, 1]) , where φ∗ = lim

r→∞
φr for

φr(x) = λ

∫ 1

0

(1 + x+ t)φr−1(t) dt

90



SIMÕES and SELVAN/Turk J Math

and φ0 ∈ L2([0, 1]) is an arbitrary function.
Let ψ ∈ L2([0, 1]) be a solution of inequality (3.1) and

ψ(x)− λ

∫ 1

0

(1 + x+ t)ψ(t) dt =: h(x). (3.3)

Obviously, we have |h(x)| ≤ ϵ for all x ∈ [0, 1] . Then we can conclude that the solution of equation

ψ(x) = h(x) + λ

∫ 1

0

(1 + x+ t)ψ(t) dt

is ψ∗ ∈ L2([0, 1]) , where ψ∗ = lim
r→∞

ψr for

ψr(x) = h(x) + λ

∫ 1

0

(1 + x+ t)ψr−1(t) dt

and ψ0 ∈ L2([0, 1]) is an arbitrary function.
For φ0(x) = ψ0(x) = 0 , we get,

|φ1(x)− ψ1(x)| = |h(x)| ≤ ϵ,

|φ2(x)− ψ2(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t)(ψ1(t)− φ1(t))dt

∣∣∣∣ ≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ t| dt
)

|φ3(x)− ψ3(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t2)(ψ2(t2)− φ2(t2))dt2

∣∣∣∣
≤ ϵ+ ϵ λ

∫ 1

0

|1 + x+ t2|
(
1 + λ

∫ 1

0

|1 + t2 + t1|dt1
)
dt2

≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ t2|dt2 + λ2
∫ 1

0

|1 + x+ t2|
∫ 1

0

|1 + t2 + t1|dt1dt2
)

· · · · · · · · ·

|φr(x)− ψr(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t) (ψr−1(x)− φr−1(x)) dt

∣∣∣∣
≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ tr−1|dtr−1

+ λ2
∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|dtr−2dtr−1 + · · ·

· · ·+ λr−1

∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|
∫ 1

0

|1 + tr−2 + tr−3| · · ·

· · ·
∫ 1

0

|1 + t2 + t1|dt1 · · · dtr−3dtr−2dtr−1

)
≤ ϵ

(
1 + λH + (λH)2 + ...+ (λH)r−1

)
= ϵ

(
1− (λH)r

1− λH

)
,
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as r → ∞ , we obtain

|φ∗(x)− ψ∗(x)| ≤ 1

1− λH
ϵ.

Let us choose S =
1

1− λH
, hence |φ∗(x) − ψ∗(x)| ≤ Sϵ, and 0 < λH < 1 , where S is the Hyers-Ulam

stability constant for (1.1). Hence, by the virtue of Definition 2.3 the Fredholm integral equation (1.1) has the
Hyers-Ulam stability. 2

The following theorem shows the Hyers-Ulam-Rassias stability of the homogeneous Fredholm integral
equation of second kind (1.1).

Theorem 3.2 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t such that

∫ 1

0

|1 + x+ t|θ(t)dt ≤ θ(x)

∫ 1

0

|1 + x+ t|dt,

for all x ∈ [0, 1] , where θ ∈ C(R+,R+) . If φ is such that

∣∣∣∣φ(x)− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x), (3.4)

then there exists a solution ψ : [0, 1] → R of the Fredholm integral equation (1.1) and a real constant S such
that |φ(x)− ψ(x)| ≤ S θ(x) for all x ∈ [0, 1].

Proof By a similar procedure to the previous we define a strictly contractive operator T as in (3.2) since
λH < 1 . By (3.3) we have |h(x)| ≤ θ(x) for all x ∈ [0, 1] . As in the previous proof, for φ0(x) = ψ0(x) = 0 , we
get,

|φ1(x)− ψ1(x)| = |h(x)| ≤ θ(x),

|φ2(x)− ψ2(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t)(ψ1(t)− φ1(t))dt

∣∣∣∣ ≤ θ(x)

(
1 + λ

∫ 1

0

|1 + x+ t| dt
)

|φ3(x)− ψ3(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t2)(ψ2(t2)− φ2(t2))dt2

∣∣∣∣
≤ θ(x) + θ(x) λ

∫ 1

0

|1 + x+ t2|
(
1 + λ

∫ 1

0

|1 + t2 + t1|dt1
)
dt2

≤ θ(x)

(
1 + λ

∫ 1

0

|1 + x+ t2|dt2 + λ2
∫ 1

0

|1 + x+ t2|
∫ 1

0

|1 + t2 + t1|dt1dt2
)

· · · · · · · · ·
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|φr(x)− ψr(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t) (ψr−1(x)− φr−1(x)) dt

∣∣∣∣
≤ θ(x)

(
1 + λ

∫ 1

0

|1 + x+ tr−1|dtr−1

+ λ2
∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|dtr−2dtr−1 + · · ·

· · ·+ λr−1

∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|
∫ 1

0

|1 + tr−2 + tr−3| · · ·

· · ·
∫ 1

0

|1 + t2 + t1|dt1 · · · dtr−3dtr−2dtr−1

)
≤ θ(x)

(
1 + λH + (λH)2 + ...+ (λH)r−1

)
= θ(x)

(
1− (λH)r

1− λH

)
,

as r → ∞ , we obtain

|φ∗(x)− ψ∗(x)| ≤ 1

1− λH
θ(x)

for all x ∈ [0, 1] . Let us choose S =
1

1− λH
, hence |φ∗(x)− ψ∗(x)| ≤ Sθ(x), and 0 < λH < 1 . Hence, by the

virtue of Definition 2.5 the Fredholm integral equation (1.1) has the Hyers-Ulam-Rassias stability. 2

Now, we are going to establish the Hyers-Ulam stability of the nonhomogeneous Fredholm integral
equation of second kind (1.2).

Theorem 3.3 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t . If φ is such that

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ ϵ, (3.5)

where ϵ ≥ 0 then there exists a solution ψ : [0, 1] → R of the nonhomogeneous Fredholm integral equation (1.2)
and a real constant S such that |φ(x)− ψ(x)| ≤ S ϵ for all x ∈ [0, 1].

Proof Let us define an operator T as

(Tφ)(x) = x+ λ

1∫
0

(1 + x+ t) φ(t) dt, φ ∈ L2([0, 1]). (3.6)

We have Tφ ∈ L2([0, 1]) and T a self–mapping of L2([0, 1]) . The solution of the equation (3.6) is the fixed
point of the strictly contractive operator T since λH < 1 . By Theorem 2.1 the equation (3.6) has a unique
solution φ∗ ∈ L2([0, 1]) , where φ∗ = lim

r→∞
φr for

φr(x) = x+ λ

∫ 1

0

(1 + x+ t)φr−1(t) dt
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and φ0 ∈ L2([0, 1]) is an arbitrary function.
Let ψ ∈ L2([0, 1]) be a solution of inequality (4) and

ψ(x)− x− λ

∫ 1

0

(1 + x+ t)ψ(t) dt =: h(x).

We have |h(x)| ≤ ϵ for all x ∈ [0, 1] . Then we can conclude that the solution of equation

ψ(x) = h(x) + x+ λ

∫ 1

0

(1 + x+ t)ψ(t) dt

is ψ∗ ∈ L2([0, 1]) , where ψ∗ = lim
r→∞

ψr for

ψr(x) = h(x) + x+ λ

∫ 1

0

(1 + x+ t)ψr−1(t) dt

and ψ0 ∈ L2([0, 1]) is an arbitrary function.
For φ0(x) = ψ0(x) = 0 , we get,

|φr(x)− ψr(x)| =
∣∣∣∣h(x) + λ

∫ 1

0

(1 + x+ t) (ψr−1(x)− φr−1(x)) dt

∣∣∣∣
≤ ϵ

(
1 + λ

∫ 1

0

|1 + x+ tr−1|dtr−1

+ λ2
∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|dtr−2dtr−1 + · · ·

· · ·+ λr−1

∫ 1

0

|1 + x+ tr−1|
∫ 1

0

|1 + tr−1 + tr−2|
∫ 1

0

|1 + tr−2 + tr−3| · · ·

· · ·
∫ 1

0

|1 + t2 + t1|dt1 · · · dtr−3dtr−2dtr−1

)
≤ ϵ

(
1 + λH + (λH)2 + ...+ (λH)r−1

)
= ϵ

(
1− (λH)r

1− λH

)
,

as r → ∞ , we obtain

|φ∗(x)− ψ∗(x)| ≤ 1

1− λH
ϵ.

Let us choose S =
1

1− λH
, hence |φ∗(x)−ψ∗(x)| ≤ Sϵ, and 0 < λH < 1 , where S is the Hyers-Ulam stability

constant for (1.2). Hence, by the virtue of Definition 2.4 the nonhomogeneous Fredholm integral equation (1.2)
has the Hyers-Ulam stability. 2

Finally, the following corollary proves the Hyers-Ulam-Rassias stability of the nonhomogeneous Fredholm
integral equation of second kind (1.2).
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Corollary 3.4 Consider H a fixed real number such that H ≥ 5
2 and λH < 1 . Let φ : [0, 1] → R a continuous

function and the kernel K : [0, 1]× [0, 1] → R defined by K(x, t) = 1 + x+ t such that∫ 1

0

|1 + x+ t|θ(t)dt ≤ θ(x)

∫ 1

0

|1 + x+ t|dt,

for all x ∈ [0, 1] , where θ ∈ C(R+,R+) . If φ is such that

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ ≤ θ(x), (3.7)

then there exists a solution ψ : [0, 1] → R of the nonhomogeneous Fredholm integral equation (1.2) and a real
constant S such that |φ(x)− ψ(x)| ≤ S θ(x) for all x ∈ [0, 1].

4. Examples
In order to illustrate our results we will present some examples.

Let us consider the nonhomogeneous Fredholm integral equation of second kind (1.2) defined by

φ(x) = x+ λ

∫ 1

0

(1 + x+ t)φ(t) dt

for all x ∈ [0, 1] and λ = 1
5 . Let H = 13

5 and the perturbation of the solution φ(x) = 587
500x+ 28

100 .

We realize that all conditions of Theorem 3.3 are satisfied. In fact λH = 13
25 < 1 and φ is a continuous

function such that ∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ = ∣∣∣∣ 3

5000
x+

1

3000

∣∣∣∣ ≤ 7

7500
:= ϵ.

By the exact solution ψ(x) = 210
179x+ 50

179 , we realize that

|φ(x)− ψ(x)| =
∣∣∣∣ 73

89500
x+

3

4475

∣∣∣∣ ≤ 1

1− λH
ϵ =

7

3600
. (4.1)

To illustrate the inequality (4.1), we have the Figure 1.
Let us consider the same nonhomogeneous Fredholm integral equation of second kind (1.2) but now with

λ = 1
100 . Let H = 3 and the perturbation of the solution φ(x) = 10052

10000x+
851

100000 . We have λH = 3
100 < 1 and

φ a continuous function such that

∣∣∣∣φ(x)− x− λ

∫ 1

0

(1 + x+ t)φ(t) dt

∣∣∣∣ = ∣∣∣∣ 5334

60000000
x+

341

60000000

∣∣∣∣ ≤ 227

2400000
:= ϵ.

By the exact solution ψ(x) = 118200
117599x+ 1000

117599 , we realize that

|φ(x)− ψ(x)| =
∣∣∣∣ 26287

293997500
x+

76749

11759900000

∣∣∣∣ ≤ 1

1− λH
ϵ =

227

2328000
. (4.2)
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Figure 1.

If we consider H = 30 , we get a worse result but still acceptable. We get,

|φ(x)− ψ(x)| =
∣∣∣∣ 26287

293997500
x+

76749

11759900000

∣∣∣∣ ≤ 1

1− λH
ϵ =

227

1680000
. (4.3)

Therefore, we have that the nonhomogeneous Fredholm integral equation of second kind (1.2) has the
Hyers-Ulam stability.

To illustrate the inequalities (4.2) and (4.3), we have the Figure 2.

Figure 2.
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