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Abstract: Electricity is the most substantial energy form that significantly affects the development of modern life,
work efficiency, quality of life, production, and competitiveness of the society in the ever-growing global world. In this
respect, forecasting accurate electricity energy consumption (EEC) is fairly essential for any country’s energy consumption
planning and management regarding its growth. In this study, four time-series methods; long short-term memory (LSTM)
neural network, adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering (SC), ANFIS with fuzzy c-
means (FCM), and ANFIS with grid partition (GP) were implemented for the short-term one-day ahead EEC prediction.
Root mean square error (RMSE), correlation coefficient (R), mean absolute error (MAE) and mean absolute percentage
error (MAPE) were considered as statistical accuracy criteria. Those forecasted results by the LSTM, ANFIS-FCM,
ANFIS-SC and ANFIS-GP models were evaluated by comparing with the actual data using statistical accuracy metrics.
According to the testing process, the best MAPE values were obtained to be 4.47%, 3.21%, 2.34%, and 1.91% for the
ANFIS-GP, ANFIS-SC, ANFIS-FCM, and LSTM, respectively. Furthermore, the best RMSE values were found as
25.94 GWh, 41.17 GWh, 29.50 GWh, and 80.14 GWh for the LSTM, ANFIS-SC, ANFIS-FCM, and ANFIS-GP models,
respectively. As a consequence, the LSTM model generally outperformed all ANFIS models. The results revealed that

forecasting of short-term daily EEC time series using the LSTM approach can provide high accuracy results.
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1. Introduction

Energy is amongst the fundamental requirements of the contemporary world, and it has an unquestionable
critical role in industrial and technological development and economic progress. It has an influence on the
quality and comfort of human life (https://www.iea.org) [1]. Energy is not only an unavoidable necessity for
any country’s internal dynamics but also a strategic issue that sometimes causes political debates and even
military conflicts [2]. On the other hand, electricity, which is an important form of energy, cannot be physically
stored. It is generally produced to the extent of need [3]. In an ever-growing global world, it significantly
affects the quality of life of the society, the productivity of the business world, industrial and agricultural
production, and the quality of competitiveness [4]. Furthermore, electrification is crucial for increasing the
economic and social development of societies. The electricity sector gains a considerable amount of budget from
the government and international development agencies. The sector has planned to invest almost $ 3.9 trillion
in the period of 2021-2030 [5].
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Recently, global electricity energy consumption (EEC) has been increasing due to the growth in popula-
tion, emerging technologies, the progress of living standards and industrialization of the developing countries
[6]. In this respect, the increase in electricity demand also requires a cheaper and safer electricity supply. Thus,
predicting the electric charge is fairly essential for this aim. Literature survey shows that short-term accurate
forecasting of EEC, which is one of the most substantial topics for today’s developed and developing countries,
ensures to carry out investments of the electricity sector properly [7]. In order to make important decisions
on electricity production and scheduling, resource management, electricity purchasing, network security and
stability in the grid energy management system, it is crucial to accurately build a prediction model for the
EEC. In this sense, a simple and accurate EEC estimation model is required to obtain an accurate and reliable
energy management system. In addition, a correctly predicted value can supply information for power system
failures ensuring the smart grid’s safe operation. Nonetheless, the nonstationary and linear features of the EEC
series and its dependence on many variable components such as social activities, economic conditions, seasonal

differences, weather, and time complicate the EEC forecast [8].

In recent years, researches have generally been performed on the analysis, planning and operation of
electrical power systems to provide a reliable, uninterrupted, safe and economical electricity supply on the
importance of the EEC, which is envisaged by various research communities [7]. For example, Kavaklioglu [4]
depicted that avoiding the costly errors above-mentioned can be achieved by modeling the EEC with a high
degree of accuracy. Tutun et al. [9] stated that the EEC should be forecasted with the optimum production
model. Otherwise, estimation errors can lead to deficiencies or excess capacity in energy planning. Kaytez et al.
[10] stated the EEC forecast, which forms the basis of energy investment planning, is an element that should
be taken into consideration for developing countries. Yang et al. [11] depicted that the EEC estimate, which
is a vital tool in the electricity market, not only reduces production costs but also has a key importance in
power services. This can protect energy resources, which is important in terms of making forecasting methods
crucial for the energy system. Considering the literature, the accurate estimation of EEC can prevent energy
wastage and system failure. This situation is critical in case of no requirement to produce power above a
certain level and in the absence of heavy load conditions in normal operation [12]. In addition, forecasting of
EEC correctly leads to power grid planning, investment and transaction [13]. Mohan et al. [8] stated that the
EEC forecasting only means obtaining a value for the expected future demand and primarily makes a long-term
forecast of 5-20 years. The main purpose of EEC forecasting is managing the investment in power systems, long-
term planning and resource management. Secondly, the mid-term forecasting from several months to certain
years, e.g., b years, can be utilized for financial and operational planning, and energy generation. Thirdly,
the short-term forecasting from several hours to weeks mainly concentrates on the planning and analysis of the
distribution network. Furthermore, short-term EEC estimation contributes to improving management efficiency
and reducing network operating costs that are needed for safe and reliable operation of the electricity network.
An accurate short-term EEC forecasting model should be considered as nonlinear in order to evolve properties

of the load series for predicting future demand efficiently [8, 10, 14].

Literature studies show that the significance of EEC forecasting methods has been gradually increasing in
the world. Recently, many models have been proposed by researchers in order to forecast the EEC. In general,
two major categories are valid for classification such as regression model and time series approach [5, 11]. In
order to estimate the EEC with good precision in the regression model, some descriptive or independent variables
that may affect EEC in that country must be accurately determined [15]. In general, independent indicators
and historical data that are thought to be effective on the EEC should be considered for the model [10]. For
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example, although the population is amongst the highly correlated driving forces with the EEC, it is not enough
to give a reason for the changes in the EEC over the years. In addition, it is ordinary to take some economic
signs into account in connection with the EEC. Gross domestic product (GDP) is one of the factors that can
be considered with this aim. Due to the increase in GDP per capita, people’s living standards are improving
and, accordingly, they become more dependent on devices that consume energy. Additionally, inflation rates,
employment and electricity price are among the other economic factors that can change the EEC. On the other
hand, climate situations such as the average temperature variations in winter and summer also influence the
EEC. This situation causes more electricity consumption for irrigation and residential cooling depending on
the high temperature in the summer months and more electricity consumption for electricity based heating of
the residential due to the low temperature in the winter months [15]. Consequently, this regression model is
not operational since the descriptive variables (e.g., population) for future predictions are uncertain. For this
reason, the EEC is generally estimated by forecasting the descriptive variables for different scenarios, which are

very arbitrary in some cases.

Concerning the time-series approach, the EEC or electricity demand can be considered as a function
of the historical demand data to predict the probable future demand. In this method, even though results
can be obtained correctly, the changes in electricity demand cannot be analyzed properly [15]. Literature
studies on short-term EEC or electricity consumption forecasting are generally classified into 4 categories in
terms of the forecasting techniques: (i) deep learning-based models, (ii) ensemble techniques, (iii) nonlinear
methods, and (iv) linear methods [8]. The literature survey reveals that various forecasting tools depending on
the regression model and time series approach were utilized for the prediction of the energy demand or future
electricity [15-33]. Artificial neural network (ANN) [15-18, 22, 27, 29], linear regression (LR) [26], multiple
linear regression (MLR) [15, 17, 22], multiple nonlinear regression (MNLR) [17, 22], random forest regression
(RFR) [26], support vector regression (SVR) [4, 18, 19, 26], trigonometric grey model with rolling mechanism
(TGMRM) [17], Holt-Winters exponential smoothing model (HWESM) [17], multilayered perceptron (MLP)
regression [26], long short-term memory (LSTM) network [14, 19, 25, 27], structural time series model (STSM)
[20], ANN with improved particle swarm optimization (ANN-IPSO) [5], ANN with teaching-learning-based
optimization (ANN-TLBO) [21], seasonal auto-regressive iterative moving average (SARIMA) [9], nonlinear
autoregressive ANN (NARANN) [9], grey model (GM) [23, 28], least squares support vector machines (LS-
SVMs) [10], support vector machine (SVM) [27], wavelet neural network optimized by fruit fly optimization
algorithm (WNN-FOA) [13], autoregressive integrated moving average (ARIMA) [13], improved empirical
mode decomposition (IEMD) [13], back-propagation neural network (BPNN) [11], recurrent extreme learning
machine (RELM) [24], recurrent neural network (RNN) [27], difference seasonal autoregressive integrated moving
average (dif-SARIMA) [11], adaptive network-based fuzzy inference system (ANFIS) [11], ensemble empirical
mode decomposition-LSTM (EEMD-LSTM) [26], empirical mode decomposition-LSTM (EMD-LSTM) [26],
convolutional neural network-LSTM (CNN-LSTM) [30], LSTM with the differential evolution (DE-LSTM)
algorithm [31], echo state network (ESN) [32], ESN improved by differential evolution (ESN-DE) algorithm
[32], ESN improved by genetic algorithm (ESN-GA) [32], and the BPNN model supported by an adaptive
differential evolution algorithm (ADE-BPNN) [33], methodologies have been widely applied for this purpose.
On the other hand, deep learning approaches are used quite successfully in prediction studies that require high
accuracy. Compared to traditional neural networks, deep learning is a very successful method in solving the

problems of slow training speed and overadaptation [34, 35]. Recently, EEC has shown an increase in Turkey
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due to population growth and emerging technologies. In this regard, thanks to EEC planning, which is crucial
for the country’s energy policies, capacity planning can be made with low-cost investments. To achieve optimal
planning, decision-makers have focused on modeling and predicting projections that can provide quality and
trouble-free conditions [9]. As a result of estimating the energy demand correctly, the differences between supply
and demand will have an adverse effect on the country’s economy. When the electricity supply is higher than
demand, this will cause excess energy and waste of available energy. Otherwise, the resulting energy deficit will
bring about interruptions and system conflicts [36]. Moreover, Turkey’s energy policy, which is a transit point
between Europe and Asia, must have a solid foundation due to the increasing energy demand and strategic
location. Rapid urbanization, industrialization, GDP, and population increase in the last twenty years have
grown rapidly in the electricity market in Turkey. Ministry of Energy and Natural Resources (MINES) and the
Ministry of Development (MD) is responsible for the prediction of long-term energy demand in Turkey. However,
the development of reliable methods and alternative techniques are of great importance for Turkey’s estimated
future EEC [23]. Therefore, EEC forecasting studies over energy demand have become very important in
recent years, especially for Turkey. Moreover, since Turkey is largely dependent on foreign sources of electricity
generation, making the EEC accurate and precise forecasting is very important.

Currently, for Turkey, there are only a few studies in the literature to predict short-term daily EEC using
the LSTM network based on deep learning. Thereby, the aims of the current study are (a) development of an
LSTM model for Turkey’s daily short-term EEC forecasting with high accuracy, (b) introducing a deep learning
time series forecasting based on LSTM to investigate and use the implicit information of EEC time series for
daily EEC forecasting. In this paper, the LSTM approach is proposed for daily EEC data series estimation to
attempt a high level of abstraction from data given through a combination of various nonlinear transformations.
In addition, in order to reveal the efficiency of the proposed approach, the results of the LSTM method were
compared with the findings of the ANFIS-GP, ANFIS-SC and ANFIS-FCM models.

2. Methods and performance metrics
2.1. Adaptive neuro fuzzy inference system (ANFIS)

Jang [37] provided information on the ANFIS architecture and mechanism. ANFIS integrates the neural network
(NN) with fuzzy logic. It approaches any true continuous function to any accuracy degree using nonlinear
approach. ANFIS takes advantage of the superiority of FIS and ANN via converting them into a single system
(38, 39].

The neuro-fuzzy model, utilized in this research, has five layers as a multilayered NN-based fuzzy system.
The hidden layer nodes can be taken into account as MFs and rules. Typical ANFIS structure can be given in
Figure 1. In this structure, a fixed node can be mentioned as a circle and an adaptive node can be represented
as a square. The inputs are symbolized by x and y, while z is considered as one output. General information
regarding ANFIS structure is available in the literature [37-40].

The Sugeno fuzzy model with first order and two if-then rules can be given by:
Rulel :ifxis Ayandyis By, thenz = p1x + q1y + 1 (1)

Rule?2 :if xis Ay andyis By, then zo = pox + qoy + 72 (2)

where A; and B; are the fuzzy clusters, p;, ¢;, and r; are model’s design variables specified in the

training step. As stated above, the ANFIS structure consists of five layers:
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Figure 1. The illustration of the ANFIS architecture structure [40].

Layer 1: In this layer, an input parameter for each appropriate fuzzy set is mentioned via MFs that is

presented by the nodes. The i'" node function with p4, and pup, MFs can be given as follows:

O} = pa,(x), i=1,2 (3)

Oz1 = HKB;_» (y), 1=3,4 (4)

The variables in this layer are called preliminary variables.
Layer 2: In Layer 2, incoming signals from the Layer 1 are duplicated and forwarded to next layer.
Each node computes a rule’s firing strength, which adjusts the degree to which the rule matches the inputs, by

multiplication.

O = w; = pua,(2)pp, (), i=1,2 (5)
Layer 3: In Layer 3, the i*" node computes the firing strength of the i*" rule’s ratio to the sum of the
firing strengths of all rules:

Wy

— i=1,2 (6)
w1 + wo

3 —
Oi:wi:

where w; is called the normalized firing strengths.
Layer 4: In Layer 4, node i determines the effect of i** rule on the output via the node function shown

below.

Of = Wiz = Wi(piw + qiy +14), i=1,2 (7)
w; denotes the output of node 4 in Layer 3, and r;, ¢;, and p; are named the consequent parameters.

Layer 5: In this layer, a single node’s result as output is obtained from the sum of all coming signals:

2

_ w121 + Wa2s
0% = = 22 8
PV ®
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As a result, the output z in Figure 1 can be given by:
Z = (w1z)pr + (01y)q1 + (01)r1 + (W2)p2 + (W2y)ga + (W2)r2 9)

2.2. Long short-term memory (LSTM) neural network

In deep learning approaches, a different combination of nonlinear transformations is used to obtain a high
level of information from the data. Deep neural network (DNN), LSTM, CNN, and RNN can be replaced by
conventional signal processing methods in various research topics [41, 42].

The LSTM method is introduced by [43]. This method is a distinctive kind of RNN that deals with
vanishing gradient issues in conventional RNN by adding memory cells or cell states with constant errors.
The LSTM network is managed by input gate, output gate, and forget gate [44, 45]. The training processing
is maintained until the minimum error or maximum epoch is achieved [44]. LSTM networks are effective in

time-series forecasting [43]. LSTM neural network is formed by a connected series of LSTM units (Figure 2).

h, ¢, hy,¢;, -+ h.;,¢,, he ¢
Y y 1 A Y
1
]
i
h, :
| LSTM Unit LSTM Unit| *=-| LSTM Unit LSTM Unit
co Y 4 Y Y
X, 12 E’Ea Xy |

Figure 2. The architecture of LSTM network.

In Figure 2, x = (1,2, x3,,:), the time-series data, refers to input data, which is used for obtaining
cell state ¢ = (cy,ca,c3,,¢t) and hidden (output) state h = (hq, ho, hs,,ht). The first input variable z(z) is
used to retrieve the first updated cell state (¢;) and the first value of the hidden state (hq) in the first LSTM
unit. At time step ¢, the LSTM unit is fed by h:—1 and ¢;—1 to acquire h; and ¢;. The hidden state (h:) at

time t is computed by:

hy = oy © tanh(cy) (10)

where ©® is element-wise multiplication of vectors, named the Hadamard product. o; is called the
output gate, managing the cell state’s level connected with the hidden state. The cell state adds to or removes
information from the LSTM structure with the help of the gates to control the LSTM network. At the time

step t, the cell state (¢;) involves knowledge from the previous units and is given by:

a=fiOc -1+ 0g (11)

where forget gate (f;) directs the degree of cell state reset, and input gate (i;) manages the cell state
update’s level. Cell candidate (g;) feeds the cell state by adding information. These are calculated by the

following equations.

it = O'(Wi%g -+ Riht_1 + bl) (12)
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ft ZO'(fot—f—tht_l +bf) (13)
g¢ = tanh(Wyx; + Ryhy—1 + by) (14)
ot = o(Woxt + Rohi—1 + b,) (15)

where ¢ is the sigmoid function given by sigma(z) = (1 + e(=%))~1. R refers to the recurrent weights,
while W is the input weights, and b is the bias. These parameters are shown in Equation 16.

w; R; b;
_\Wrl o |Ry| 5 _ by

W = W R= R b= b (16)
W, R, b,

Figure 3 represents the structure a single LSTM unit obtained from Figure 2 (https://www.mathwor
ks.com/help/deeplearning/ug/long-short-term-memory-networks.html). Generally, it is not simple to capture
long-term time dependencies in time series during the implementation of RNNs. LSTM models have been
designed to overcome this limitation. They are expressed as an extended version of RNN that can effectively
handle time dependency in data. They are flexible and effective to explain time-dependent data and have been
successfully applied in various fields of science. Furthermore, LSTM is one of the most applied RNN models for

time series data prediction, which fits perfectly to EEC forecasting problems.

Cia ®ft OC, ® Ct
—-
f, &t 1 ®°t
o tanh I_o'—l *
hy, I I J _ht

J \ ‘ | E—

x,  Forget Update Output

Figure 3. The structure of a single LSTM unit.

3. Material and experimental results

Electrical energy in Turkey is generated from power stations such as thermal, hydro, geothermal, wind and
solar types, but there are no nuclear power plants for electricity production. Thermal and hydropower have
the most rapidly growing installed capacities in the country. However, geothermal, solar and wind power have
comparatively small installed capacities. While the cumulative installed capacity in Turkey was 33 MW in 1923,

Turkey’s overall electricity generation rose to 304,252 GWh in 2019 (http://www.gwec.net). Keeping in mind
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the electricity generation of 2019, the thermal power plant ratio was 56.06 %, corresponding to 170,555 GWh.
On the other hand, hydropower accounted for 29.21 %, corresponding to 88,886 GWh. Currently, the Turkish
market has large natural gas, crude oil pipelines and other similar projects under negotiation. A total installed
electricity generation capacity of about 10 GW is estimated to be available in the next decade according to the
current regulatory framework, but this may even become 20 GW with amendments to the regulatory framework

proposed by the Turkish Wind Power Association (http://www.gwec.net).

In this study, the LSTM and ANFIS methods are used to the EEC data for forecasting in Turkey. The
EEC data were obtained from the Turkish Electricity Transmission Corporation (TETC) (http://www.teias.gov.tr),
Turkey as daily basis from 1 January 2016 to 31 December 2019 without any missing data. Turkey’s daily EEC
ranged from 523.81 GWh to 979.21 GWh between 2016 and 2019. The minimum and maximum daily EEC
was realized on September 12, 2016 and August 02, 2018, respectively. During these four years, the average
and standard deviation of daily EEC were calculated as 785.39 GWh and 78.56 GWh, respectively.

In the LSTM and ANFIS applications, measurement data were split into training and testing datasets.
The training dataset was used to train the model, while the testing dataset was used for over-fitting model
validation. The RMSE, MAPE, MAE and R were used as statistical metrics to evaluate the model performances.
The daily sampled EEC data from January 1, 2016 to December 31, 2019 were used to perform short-term daily
EEC time series forecasting. The total 1460 measurements were split into two parts (25% as the test set and

75% as the train set).

In this study, the time-series technique was considered based on past observations of the EEC values
as an input to train the model. The time-series approach may capture the stochastic component of the time
series data and it may forecast the determinative part of the time series data. So, in this study, a forecasting
model using machine learning and the time-series methods together is considered for the time series data of
EEC. MATLAB R2018a (Trace Version) was used to realize these objectives and models. A summary of the
developed and implemented program for the LSTM neural network is presented in Appendix A.

In this current study, the ANFIS model design was composed of training part and construction part.
The number and type of membership functions (MFs) are determined in the construction section. Input/output
data are divided into rule patches due to the nature of the ANFIS model. In the training part, training data
pairs (inputs and related output) were first created to train an ANFIS model. In this study ANFIS with
GP, SC, and FCM were implemented to achieve daily short-term EEC forecasting. The fuzzy approach of
Sugeno was utilized to estimate the values for the output parameter from the given input data provided to
the FIS structure. The transfer functions, the number of the hidden layer, the number of MFs, and the most
suitable model structures were determined by trial and error. Then, the performance of the ANFIS models were
evaluated via the statistical metrics. Gaussian membership function (Gaussmf) and linear membership function
as input and output were used, respectively. Each training data sample set consists of 5 inputs and one output.
The ANFIS membership functions after the training process are presented in Figure 4. As seen from the figure
that the MF types of 5 inputs are a Gaussian function. Figures 5a and 5b present the RMSE criteria and loss
function of the LSTM in terms of iteration numbers, respectively. It is seen from the figures that the RMSE
value and the loss function converge when the number of periods is around 150.

According to the obtained results, the LSTM neural network is a successful deep learning approach based
on a sophisticated network structure. It uses memory units in the model to capture time-series correlations.
These memory units can store information over-time periods. While traditional methods perform the estima-

tion without understanding the physical processes of the estimation domain, the LSTM neural network can
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Figure 4. The ANFIS membership functions after the training process (number of MFs=6, input size=5).
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Figure 5. RMSE criteria and loss function curves in the training process of LSTM neural network.

comprehend the correlation between output data and input data automatically. The advantage of this feature
has made LSTM the predictive model that is most widely applied in scientific research areas. In this regard,
the LSTM neural network model has been successfully implemented in daily EEC forecasting due to its sophis-
ticated network structure, ability to learn long-term behavior, and the ability to model the deterministic part
of the time-series data.

The statistical evaluation criteria for the daily EEC forecasting are given in Table 1. The best results
are given in bold by taking all metric results into account. The number of MFs for the ANFIS-FCM method
was varied between 2 and 6. The quality metrics varied from 18.30 GWh to 19.69 GWh (MAE), 2.36 % to 2.51
% (MAPE), 29.50 GWh to 30.66 GWh (RMSE), and 0.9138 to 0.9201 (R), respectively. The best obtained
RMSE is 29.50 GWh for MF=6 in ANFIS-FCM. It is clear that all the statistical quality metrics show similar
results for this method. For the ANFIS-SC, the influence radius was considered between 0.2 and 0.7. The
quality metrics were ranged from 25.01 GWh to 39.62 GWh (MAE), 3.21 % to 5.18 % (MAPE), 41.17 GWh
to 50.54 GWh (RMSE), and 0.7362 to 0.8443 (R), respectively. The best obtained RMSE was 41.17 GWh
in ANFIS-SC (influence radius equal to 0.4). There were discrepancies between the obtained results for this
method. Furthermore, the statistical measures were 33.80 GWh (MAE), 4.47 % (MAPE), 80.14 GWh (RMSE),
and 0.6076 (R), respectively, for the best result of the ANFIS-GP method (MF=2).

The selected hidden layer number in the LSTM neural network ranged from 50 to 250. The statistical
metrics of LSTM neural network models were varied from 14.78 GWh to 16.45 GWh (MAE), 1.91% to 2.13%
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Table 1. The statistical evaluation criteria for the daily EEC forecasting. The best results are shown in bold.
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No | Model Properties MAE | MAPE | RMSE | R
(GWh) | (%) (GWh)

1 ANFIS-FCM Number of MFs: 2 19.69 2.51 30.64 0.9171
2 ANFIS-FCM Number of MFs: 3 18.93 | 2.44 30.19 | 0.9164
3 ANFIS-FCM Number of MFs: 4 18.53 | 2.38 29.88 | 0.9180
4 ANFIS-FCM Number of MFs: 5 18.30 | 2.34 30.66 | 0.9138
5 ANFIS-FCM | Number of MFs: 6 18.37 | 2.36 29.50 | 0.9201
6 ANFIS-SC Influence radius: 0.2 25.01 3.21 42.53 | 0.8443
7 ANFIS-SC Influence radius: 0.3 26.63 3.45 45.03 0.8207
8 ANFIS-SC Influence radius: 0.4 27.91 | 3.66 41.17 | 0.8383
9 ANFIS-SC Influence radius: 0.5 39.57 5.17 50.44 0.7374
10 | ANFIS-SC Influence radius: 0.7 39.62 5.18 50.54 0.7362
11 | ANFIS-GP Number of MFs: 2 33.80 | 4.47 80.14 | 0.6076
12 | LSTM Number of hidden layer: 50 16.45 2.13 29.04 0.9302
13 | LSTM Number of hidden layer: 100 14.81 1.91 26.65 | 0.9434
14 | LSTM Number of hidden layer: 150 | 14.78 | 1.91 25.94 | 0.9480
15 | LSTM Number of hidden layer: 200 16.04 2.06 28.49 0.9341
16 | LSTM Number of hidden layer: 250 16.07 | 2.08 29.59 0.9282

(MAPE), 25.94 GWh to 29.59 GWh (RMSE), and 0.9282 to 0.9480 (R), respectively. The best performance was
obtained using the hidden layer number as 150 with the RMSE value of 25.94 GWh. It is clear that increasing
of the hidden layer up to 150 contributes to the forecasting results with the improvement of the solution. If the
hidden layer size more increases, the solution does not get higher accuracy, and the RMSE values are getting
higher. Thus, it is crucial to choose optimal parameters to get high accuracy results from both the ANFIS and
LSTM neural network. Besides, another important result in Table 1 is that all LSTM models provided higher
accuracy than any ANFIS model.

Figures 6a, 6b, 6¢, and 6d depict training and testing data with observed and forecasted daily EEC data
for ANFIS-FCM, ANFIS-SC, ANFIS-GP, and LSTM methods, respectively. 1095 sample data were utilized as
training data, whereas 365 sample data as testing data. The X-axis shows the daily variation of EEC time-
series, while Y-axis states EEC values in GWh. The observed and forecasted values are shown in blue and red,
respectively. The daily changes in energy consumption can be seen as a sinusoidal pattern. From Figures 6a,
6b, 6¢, and 6d, it is clear that the forecasted EEC data almost overlap with the observed values in the testing
part for all the methods. However, there are some spikes at forecasted values from ANFIS methods around
the sudden changes in EEC. At that point, the LSTM values give better forecast results that can be seen as a
lower value in RMSE. In general, the results show that the ANFIS methods and LSTM network model the daily
EEC with good performance for this sinusoidal data. However, if we analyze the results taking into account
RMSE values as 29.50 GWh (ANFIS-FCM), 41.17 GWh (ANFIS-SC), 80.14 GWh (ANFIS-GP), and 25.94
GWh (LSTM), the best results can be obtained from the LSTM network.

In order to visualize the quality of the forecasting in more detail, Figures 7a, 7b, 7c, and 7d are just given
for testing data. Considering Figure 7, the spikes are much more in ANFIS-GP results than the other ANFIS
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Figure 6. The daily EEC data of from January 1, 2016 to December 31, 2019 with observed (blue) and forecasted
values (red) for (a) ANFIS-FCM, (b) ANFIS-SC (c¢) ANFIS-GP and (d) LSTM methods.

models (Figure 7c). There are almost no sharp spikes at the solution from the LSTM network (Figure 7d). The
other two ANFIS methods have a few spikes that can be mentioned as quite satisfactorily (Figures 7a and 7b).

Figures 8a, 8b, 8c, and 8d show the regression plot of observed and forecasted daily EEC data for the
LSTM, ANFIS-FCM, ANFIS-SC, and ANFIS-GP methods, respectively. The correlation coefficients (R) were
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obtained as 0.9480 (LSTM), 0.9201 (ANFIS-FCM), 0.8383 (ANFIS-SC) and 0.6076 (ANFIS-GP), respectively.
It is clear from the figures that the best model fit to data was achieved by the LSTM neural network followed
by the ANFIS-FCM model.
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Figure 8. Regression plots of the observed and forecasted EEC values from (a) LSTM methods, (b) ANFIS-FCM, (c)
ANFIS-SC and (d) ANFIS-GP.

Although a lot of studies related to the annual ECC forecasting for Turkey are available in the literature
Nevertheless, the

forecasting results of the proposed model are compared with the results obtained from some of the published

there are not many studies about the forecasting of short-term daily EEC time series.

studies based on monthly and annual EEC estimates, which are given in Table 2. The results show that the
model in this study predicts daily EEC with close accuracy to models in other studies and even more accurately
than most. As a summary, the results in this table showed that the proposed time-series prediction model was

applied successfully for one-day ahead EEC forecasting.

4. Conclusion

Electricity is the most substantial energy form that significantly has an impact on the development of modern
life, work efficiency, quality of life, production, and competitiveness of the society in the ever-growing global
world. Therefore, forecasting accurate EEC is essential for any country’s energy planning and management.
In this study, LSTM neural network, ANFIS-SC, ANFIS-FCM, and ANFIS-GP methods were performed for
forecasting the daily EEC data. The daily EEC data contained from 1 January 2016 to 31 December 2019
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Table 2. Summary of typical studies on energy type forecasting.

Reference | Method Forecasting | Independent variables Error Data
energy type criteria
[4] SVR EEC Population, year, gross national MAPE=1.51% Yearly /
product, export and import 1975-2016
[9] SARIMA, EEC Export, import, gross generation | MAPE=1.60% Yearly /
NARANN and transmitted energy 1975-2020
[10] LS-SVMs EEC Population, gross electricity MAPE=1.004% | Yearly /
generation, total subscribership 1970-2009
and installed capacity
[15] ANN, MLR | Gross Winter and summer temperatures, | RMSE=5.7 TWh | Yearly /
electricity inflation percentage, population, 1975-2028
demand gross domestic product,
unemployment percentage
[16] ANN Sectorial Past data MAPE=2.25% Yearly /
EEC 1975-2020
[17] ANN, MLR, | Energy Export, import, gross domestic MAPE=1.222% | Yearly /
MNLR consumption | product, population and 1980-2014
employment
[18] ANN, SVR | EEC Past data, time index, MAPE=3.3% Monthly /
seasonal index and month index 1970-2011
[19] SVR, MLP, | Electricity Past data R%2=0.91 Yearly /
LSTM production 1975-2017
[21] ANN-TLBO | Energy Import, export, population and MAPE=3.499% | Yearly /
consumption | gross domestic product 1980-2020
[23] GM EEC Past data MAPE=6.381% | Yearly /
2014-2030
[28] GM EEC Past data MAPE=3.28% Yearly /
1945-2025
[29] ANN Electricity Population, gross domestic MAPE=0.77% Yearly /
demand product, gross national product, 1981-2007
energy consumption, number of
tradeholds, ITP, crude oil prices
and electricity price
[33] ADE-BPNN | EEC and Export, import, population and MAPE=1.639% | Yearly /
total energy | gross domestic product 1979-2006
consumption
This LSTM EEC Past data MAPE=1.91% Daily /
study 2016-2019

were obtained from the TETC. Total 1460 daily time-series data were split into two parts as 75 % training

set and 25 % testing set. The obtained results showed that 75 % of the training data was enough for the

accurate forecasting of the one-day ahead EEC. The optimal model parameters such as the epoch number, the

number of MFs, and transfer functions were determined using trial and error. Considering the inter-comparison
of the ANFIS models, ANFIS-FCM provided better results than ANFIS-GP and ANFIS-SC in forecasting the
daily EEC. On the other hand, the LSTM network gave the best accuracy results amongst all models. The
RMSE values of LSTM (25.94 GWh), ANFIS-GP (80.14 GWh), ANFIS-SC (41.17 GWh), and ANFIS-FCM
(29.50 GWh) proved the highest performance of LSTM compared to the ANFIS models. Generally, this study

154



BILGILI et al./Turk J Elec Eng & Comp Sci

has confirmed that different ANFIS models and the LSTM neural network are powerful tools in forecasting

short-term daily EEC. As future works, hourly and monthly EEC data can be considered for both short-term

and long-term predictions.
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