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Abstract: In the investigation of ordered Γ -hypersemigroups we often need counterexamples (of finite order) given by
a table of multiplication and a figure that are impossible to make by hand and very difficult to write programs as well.
So it is useful to have examples of ordered Γ -semigroups for which is much more easier to write programs and then
from these examples to obtain corresponding examples of ordered Γ -hypersemigroups. In this respect we show that from
every example of a regular, intra-regular, right (left) regular, right (left) quasi-regular, semisimple, right (left) simple,
simple, strongly regular ordered Γ -semigroup given by a table of multiplication and an order, a corresponding example
on ordered Γ -hypersemigroups can be obtained. From examples of different kind of ideals of ordered Γ -semigroups,
corresponding examples of ordered Γ -hypersemigroups can be obtained. Examples illustrate the results.
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1. Introduction-Prerequisites

In the theory of ordered hypersemigroups the regularity, intra-regularity and related topics are essential for the
investigation; in many of them, different kind of ideals play an essential role. We often need (counter)examples
that clearly are impossible to make by hand and difficult to write programs. To overcome this difficulty we
use examples from ordered semigroups [5]. As a continuation of the paper in [5], we show here that from
(finite) examples of ordered Γ -semigroups given by a table of multiplication and an order, examples of ordered
Γ -hypersemigroups can be obtained.

For nonempty sets A , B and Γ , denote by AΓB the set defined by

AΓB := {aγb | a ∈ A, b ∈ B, γ ∈ Γ}.

Let M and Γ be two nonempty sets. Then M is called a Γ -semigroup if the following assertions are satisfied:
(1) MΓM ⊆ M

(2) if a, b, c, d ∈ M and γ, µ ∈ Γ such that a = c , γ = µ and b = d , then aγb = cµd

(3) (aγb)µc = aγ(bµc) for all a, b, c ∈ M and all γ, µ ∈ Γ [3, 10].
Condition (1) can be also written as follows:

For every a, b ∈ M and every γ ∈ Γ, we have aγb ∈ M.
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If we have only the conditions (1) and (2), then this is the definition of a Γ -groupoid.
In other words, a Γ -semigroup is a nonempty set M with a set Γ of binary operations on M , satisfying

the associativity condition (aγb)µc = aγ(bµc) for all a, b, c ∈ M and all γ, µ ∈ Γ . A Γ -semigroup M is called
an ordered Γ -semigroup (shortly po -Γ -semigroup) if there exists an order relation ≤ on M such that a ≤ b

implies aγc ≤ bγc and cγa ≤ cγb for every c ∈ M and every γ ∈ Γ [11].

For the sake of completeness, we will give some definitions already given in [6].
Let M and Γ be two nonempty sets. The set M is called a Γ -hypergroupoid if the following assertions

are satisfied:
(1) if a, b ∈ M and γ ∈ Γ , then ∅ ̸= aγb ⊆ M and
(2) if a, b, c, d ∈ M and γ, µ ∈ Γ such that a = c , γ = µ and b = d , then aγb = cµd .
In other words, a Γ -hypergroupoid is a nonempty set M with a set Γ of binary hyperoperations on M .
According to [6, Definition 3.2] and [6, Definition 3.3], if M is a Γ -hypergroupoid, then for every γ ∈ Γ

we denote by γ the operation on P∗(M) (induced by the hyperoperation γ ) defined by

AγB :=
⋃

a∈A,b∈B

aγb

and by Γ the operation on P∗(M) defined by

AΓB :=
⋃
γ∈Γ

AγB

respectively (P∗(M) is the set of all nonempty subsets of M ).
As one can easily see, AΓB =

⋃
a∈A,b∈B,γ∈Γ

aγb [6, Remark 3.4]. As a consequence, if M is a Γ -

hypergroupoid, x ∈ M and A,B nonempty subsets of M , then x ∈ AΓB if and only if x ∈ aγb for some
a ∈ A , b ∈ B , γ ∈ Γ (and thus, a ∈ A , b ∈ B , γ ∈ Γ , implies aγb ⊆ AΓB ) (see also [6, Lemma 3.7]).

We also have {x}γ{y} = xγy for every x ∈ M [6, Lemma 3.5] which we often use.
In addition, if M is a Γ -hypergroupoid, A,B,C,D subsets of M such that A ̸= ∅ , C ̸= ∅ and A ⊆ B

and C ⊆ D , then AγC ⊆ BγD [6, Lemma 3.6] and AΓC ⊆ BΓD [6, Lemma 3.8].
For two nonempty subsets A and B of M , we write A ⪯ B if for any a ∈ A there exists b ∈ B such

that a ≤ b . If A ⪯ B and B ⪯ C , then A ⪯ C . Indeed: Let a ∈ A . Since A ⪯ B , we have a ≤ b for some
b ∈ B . Since B ⪯ C and b ∈ B , we have b ≤ c for some c ∈ C . For the element c ∈ C , we have a ≤ c and so
A ⪯ C .

A Γ -hypergroupoid M is called a Γ -hypersemigroup [6, Definition 3.14] if

{a}γ(bµc) = (aγb)µ{c}

for every a, b, c ∈ M and every γ, µ ∈ Γ .
For the concept of ordered Γ -hypersemigroups we refer to [9, Definition 2.3] and [9, Definition 2.4];

though the concept of Γ -hypersemigroup should be corrected in it. Thus, a Γ -hypersemigroup M is called an
ordered Γ -hypersemigroup [7] if there exists an order relation ≤ on M such that a ≤ b implies aγc ⪯ bγc and
cγa ⪯ cγb for every c ∈ M and every γ ∈ Γ . If u ≤ a and v ≤ b , then uγv ⪯ aγv and aγv ⪯ aγb and so
uγv ⪯ aγb .
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According to [7, Lemma 2], if M is a Γ -hypersemigroup then, for any nonempty subsets A,B,C of M

and any γ, µ ∈ Γ , we have
(AγB)µC = Aγ(BµC).

According to [6, Proposition 3.17], for any nonempty subsets A,B,C of a Γ -hypersemigroup M , we have

(AΓB)ΓC = AΓ(BΓC).

As a consequence we can write expressions of the form, say AγBµC , AγBµCρDωE or AΓBΓC ,
AΓBΓCΓDΓE etc., without using parentheses.

For a nonempty subset A of M , we denote by (A] the subset of M defined by

(A] := {t ∈ M | t ≤ a for some a ∈ A}.

Clearly, (M ] = M and
(
(A]

]
= (A] for any nonempty subset A of M . We also have the following

(A] = A ⇐⇒ if a ∈ A and M ∋ b ≤ a, then b ∈ A.

2. Main results

Theorem 2.1 Let (M, Γ̃,≤) be an ordered Γ-groupoid, the elements of Γ̃ denoted by symbols like γ̃ , µ̃ , ρ̃ , ω̃

etc. For each a, b ∈ M and each γ̃ ∈ Γ̃ we consider the (hyper)operation on M defined by

γ : M ×M → P∗(M) | (a, b) → aγb := {t ∈ M | t ≤ aγ̃b}.

Then the set M with the same order ≤ and the set of hyperoperations Γ = {γ | γ̃ ∈ Γ̃} is an ordered Γ-

hypergroupoid; denoted by (M,Γ,≤) . In particular, if (M, Γ̃,≤) is an ordered Γ-semigroup, then (M,Γ,≤) is
an ordered Γ-hypersemigroup as well.

Proof If (M, Γ̃,≤) is an ordered Γ -groupoid, then (M,Γ,≤) is an ordered Γ -hypergroupoid. In fact: If
a, b ∈ M and γ ∈ Γ , then ∅ ̸= aγb ⊆ M . If a, b, c, d ∈ M , γ, µ ∈ Γ , a = c , γ = µ , b = d and x ∈ aγb , then
x ≤ aγ̃b = cµ̃d , then x ∈ cµd and so aγb ⊆ cµd . Similarly, cµd ⊆ aγb and so aγb = cµd . If a ≤ b , c ∈ M

and γ ∈ Γ , then aγc ⪯ bγc and cγa ⪯ cγb . Indeed: Let x ∈ aγc . Then x ≤ aγ̃c . Since ≤ is an order on
(M, Γ̃,≤) and a ≤ b , we have aγ̃c ≤ bγ̃c . Then x ≤ bγ̃c , from which x ∈ bγc and so aγc ⪯ bγc . If x ∈ cγa ,
then x ≤ cγ̃a ≤ cγ̃b , then x ∈ cγb and so cγa ⪯ cγb .

Let now (M, Γ̃,≤) be an ordered Γ -semigroup. To prove that (M,Γ,≤) is an ordered Γ -hypersemigroup,
is enough to prove that {a}γ(bµc) = (aγb)µ{c} for every a, b, c ∈ M and every γ, µ ∈ Γ (see [6, Definition
3.14]). In this respect, let a, b, c ∈ M , γ, µ ∈ Γ and t ∈ {a}γ(bµc) . By [6, Definition 3.2], we have t ∈ aγu

for some u ∈ bµc . Then t ≤ aγ̃u and u ≤ bµ̃c from which t ≤ aγ̃(bµ̃c) = (aγ̃b)µ̃c . Then we have
t ∈ (aγ̃b)µc = {aγ̃b}µ{c} (by [6, Lemma 3.5]). Since aγ̃b ≤ aγ̃b , we have aγ̃b ∈ aγb , then {aγ̃b} ⊆ aγb .
Since {aγ̃b} ⊆ aγb and {c} ⊆ {c} , by [6, Lemma 3.6], we have {aγ̃b}µ{c} ⊆ (aγb)µ{c} . Thus we get
t ∈ (aγb)µ{c} . Let now t ∈ (aγb)µ{c} . Then t ∈ uµc for some u ∈ aγb . Then t ≤ uµ̃c and u ≤ aγ̃b from
which t ≤ (aγ̃b)µ̃c = aγ̃(bµ̃c) . Then we have t ∈ aγ(bµ̃c) = {a}γ{bµ̃c} . Since bµ̃c ≤ bµ̃c , we have bµ̃c ∈ bµc ,
then {bµ̃c} ⊆ bµc and so t ∈ {a}γ(bµc) . Thus we obtain {a}γ(bµc) = (aγb)µ{c} and the proof is complete. 2
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Example 2.2 The set M = {a, b, c, d} with the operations γ̃ and µ̃ defined by Tables 1, 2 and Figure 1 is
an ordered Γ-semigroup. Applying Theorem 2.1, from this ordered Γ-semigroup, the ordered Γ-hypersemigroup
defined by Tables 3 and 4 and the same order (given by Figure 1) can be obtained.

Table 1. The operation γ̃ of the Γ -semigroup of Example 2.2.

γ̃ a b c d
a a b c a
b c c c b
c c c c c
d a b c d

Table 2. The operation µ̃ of the Γ -semigroup of Example 2.2.

µ̃ a b c d
a a b c a
b c c c c
c c c c c
d a b c a

a

b

c

d

Figure 1. Figure 1 of Example 2.2.

Table 3. The operation γ of the Γ -hypersemigroup of Example 2.2.

γ a b c d
a {a} {a,b} {a,b,c} {a}
b {a,b,c} {a,b,c} {a,b,c} {a,b}
c {a,b,c} {a,b,c} {a,b,c} {a,b,c}
d {a} {a,b} {a,b,c} {d}

If we keep the Tables 1 and 2 and change the order to anyone of Figures 2, 3 or 4, we still get an ordered
Γ-semigroup. From Tables 1, 2 and Figure 2, the ordered Γ-hypersemigroup given by Tables 5, 6 and the same
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Table 4. The operation µ of the Γ -hypersemigroup of Example 2.2.

µ a b c d
a {a} {a,b} {a,b,c} {a}
b {a,b,c} {a,b,c} {a,b,c} {a,b,c}
c {a,b,c} {a,b,c} {a,b,c} {a,b,c}
d {a} {a,b} {a,b,c} {a}

d

a

b

c

Figure 2. Figure 2 of Example 2.2.

a

b

d

c

Figure 3. Figure 3 of Example 2.2.

c

a

b

d

Figure 4. Figure 4 of Example 2.2.

order can be obtained. From Tables 1, 2 and Figure 3, the ordered Γ-hypersemigroup given by Tables 7, 8 and
the same order can be obtained. From Tables 1, 2 and Figure 4, the ordered Γ-hypersemigroup given by Tables
9, 10 and the same order can be obtained.
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Table 5. The operation γ of the Γ -hypersemigroup of Example 2.2 related to Figure 2.

γ a b c d
a {d,a} {d,a,b} {d,a,b,c} {d,a}
b {d,a,b,c} {d,a,b,c} {d,a,b,c} {d,a,b}
c {d,a,b,c} {d,a,b,c} {d,a,b,c} {d,a,b,c}
d {d,a} {d,a,b} {d,a,b,c} {d}

Table 6. The operation µ of the Γ -hypersemigroup of Example 2.2 related to Figure 2.

µ a b c d
a {d,a} {d,a,b} {d,a,b,c} {d,a}
b {d,a,b,c} {d,a,b,c} {d,a,b,c} {d,a,b,c}
c {d,a,b,c} {d,a,b,c} {d,a,b,c} {d,a,b,c}
d {d,a} {d,a,b} {d,a,b,c} {d,a}

Table 7. The operation γ of the Γ -semigroup of Example 2.2 related to Figure 3.

γ a b c d
a {a} {b} {a,b,c,d} {a}
b {a,b,c,d} {a,b,c,d} {a,b,c,d} {b}
c {a,b,c,d} {a,b,c,d} {a,b,c,d} {a,b,c,d}
d {a} {b} {a,b,c,d} {d}

Table 8. The operation µ of the Γ -hypersemigroup of Example 2.2 related to Figure 3.

µ a b c d
a {a} {b} {a,b,c,d} {a}
b {a,b,c,d} {a,b,c,d} {a,b,c,d} {a,b,c,d}
c {a,b,c,d} {a,b,c,d} {a,b,c,d} {a,b,c,d}
d {a} {b} {a,b,c,d} {a}

Table 9. The operation γ of the Γ -hypersemigroup of Example 2.2 related to Figure 4.

γ a b c d
a {a} {b} {a,b,c} {a}
b {a,b,c} {a,b,c} {a,b,c} {b}
c {a,b,c} {a,b,c} {a,b,c} {a,b,c}
d {a} {b} {a,b,c} {d}

In the following, when we refer to (M, Γ̃,≤) this is the ordered Γ -semigroup (or Γ -groupoid) considered
in Theorem 2.1. When we refer to (M,Γ,≤) , this is the ordered Γ -hypersemigroup (or Γ -hypergroupoid)

constructed by the ordered Γ -semigroup (M, Γ̃,≤) in the way indicated in Theorem 2.1.
As an application of Theorem 2.1, we get the theorems of this section.
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Table 10. The operation µ of the Γ -hypersemigroup of Example 2.2 related to Figure 4.

µ a b c d
a {a} {b} {a,b,c} {a}
b {a,b,c} {a,b,c} {a,b,c} {a,b,c}
c {a,b,c} {a,b,c} {a,b,c} {a,b,c}
d {a} {b} {a,b,c} {a}

A nonempty subset A of the ordered groupoid (M, Γ̃,≤) is called a right ideal of M if (1) AΓ̃M ⊆ A ;

that is, if a ∈ A , γ̃ ∈ Γ̃ , u ∈ M , then aγ̃u ∈ A and (2) if a ∈ A and M ∋ b ≤ a , then b ∈ A i.e. (A] = A ; it

is called a left ideal of M if (1) M Γ̃A ⊆ A ; that is, if u ∈ M , γ̃ ∈ Γ̃ , a ∈ A , then aγ̃u ∈ A and (2) if a ∈ A

and M ∋ b ≤ a , then b ∈ A . If A is both a right and a left ideal of M , then it is called an ideal of M . A
nonempty subset Q of (M, Γ̃,≤) is called a quasi-ideal of M if (1) (QΓ̃M ] ∩ (M Γ̃Q] ⊆ Q ; that is if t ≤ qγ̃m

for some q ∈ Q , γ̃ ∈ Γ̃ , m ∈ M and t ≤ nµ̃g for some n ∈ M , µ̃ ∈ Γ̃ , g ∈ Q , then t ∈ Q and (2) if a ∈ Q

and M ∋ b ≤ a , then b ∈ Q .
These concepts can be naturally extended to the ordered Γ -hypergroupoid (M,Γ,≤) as follows.

Definition 2.3 [8, Definition 2.5] A nonempty subset A of the ordered Γ-hypergroupoid (M,Γ,≤) is called a
right ideal of M if (1) AΓM ⊆ A ; that is, if u ∈ aγm for some a ∈ A , γ ∈ Γ , m ∈ M , then u ∈ A and (2)
if a ∈ A and M ∋ b ≤ a , then b ∈ A ; it is called a left ideal of M if (1) MΓA ⊆ A ; that is, if u ∈ mγa for
some m ∈ M , γ ∈ Γ , a ∈ A , then u ∈ A and (2) if a ∈ A and M ∋ b ≤ a , then b ∈ A . If A is both a right
and a left ideal of M , then it is called an ideal of M .

Definition 2.4 [7] A nonempty subset A of the ordered Γ-hypergroupoid (M,Γ,≤) is called a quasi-ideal of
M if (1) (QΓM ]∩ (MΓQ] ⊆ Q ; that is if t ≤ x for some x ∈ qγm ; q ∈ Q , γ ∈ Γ , m ∈ M and t ≤ y for some
y ∈ nµg ; n ∈ M , µ ∈ Γ , g ∈ Q , then t ∈ Q and (2) if a ∈ Q and M ∋ b ≤ a , then b ∈ Q .

Theorem 2.5 The set A is a right (resp. left) ideal of the ordered Γ-groupoid (M, Γ̃,≤) if and only if it is
a right (resp. left) ideal of the ordered Γ-hypergroupoid (M,Γ,≤) . A set Q is a quasi-ideal of the ordered

Γ-groupoid (M, Γ̃,≤) if and only if it is a quasi-ideal of the ordered Γ-hypergroupoid (M,Γ,≤) .

Proof Let A be a right ideal of (M, Γ̃,≤) and let x ∈ AΓM . By [6, Remark 3.4], we have x ∈ aγm for

some a ∈ A , γ ∈ Γ , m ∈ M , then we have x ≤ aγ̃m ∈ AΓ̃M . Since A is a right ideal of (M, Γ̃,≤) ,we have

AΓ̃M ⊆ A and x ∈ A . Thus we get AΓM ⊆ A and so A is a right ideal of (M,Γ,≤) . Conversely, let A be a

right ideal of (M,Γ,≤) and let x ∈ AΓ̃M . Then x = aγ̃m for some a ∈ A , γ̃ ∈ Γ̃ , m ∈ M . Since x ≤ aγ̃m ,

we have x ∈ aγm ⊆ AΓM ⊆ A and so x ∈ A . Thus we have AΓ̃M ⊆ A and so A is a right ideal of (M, Γ̃,≤) .

Let Q be a quasi-ideal of (M, Γ̃,≤) , t ≤ x for some x ∈ qγm ; q ∈ Q , γ ∈ Γ , m ∈ M and t ≤ y for
some y ∈ nµg ; n ∈ M , µ ∈ µ̃ , g ∈ Q . Since x ∈ qγm , we have x ≤ qγ̃m . Since y ∈ nµg , we have y ≤ nµ̃g .
We have t ≤ qγ̃m for some q ∈ Q , γ̃ ∈ Γ̃ , m ∈ M and t ≤ nµ̃g for some n ∈ M , µ̃ ∈ Γ̃ , g ∈ Q . Since
Q is a quasi-ideal of (M, Γ̃,≤) , we have t ∈ Q and so Q is a quasi-ideal of (M,Γ,≤) . Conversely, let Q be
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a quasi-ideal of (M,Γ,≤) and let t ≤ qγ̃m for some q ∈ Q , γ̃ ∈ Γ̃ , m ∈ M and t ≤ nµ̃g for some n ∈ M ,

µ̃ ∈ Γ̃ , g ∈ Q . Then t ≤ t , t ∈ qγm ; q ∈ Q , γ ∈ Γ , m ∈ M and t ∈ nµg ; n ∈ M , µ ∈ Γ , g ∈ Q . Since Q is a
quasi-ideal of (M,Γ,≤) , we have t ∈ Q and so Q is a right ideal of (M, Γ̃,≤) . 2

A nonempty subset B of (M, Γ̃,≤) is called a bi-ideal of M if (1) BΓ̃BΓ̃B ⊆ B ; that is, if x = aγ̃bµ̃c

for some a, b, c ∈ B , γ̃, µ̃ ∈ Γ̃ , then x ∈ B and (2) if a ∈ B and M ∋ b ≤ a , then b ∈ B . A nonempty subset

D of (M, Γ̃,≤) is called an interior ideal of M (see also [2]) if (1) M Γ̃DΓ̃M ⊆ D ; that is if x = aγ̃dµ̃b for

some a, b ∈ M , d ∈ D , γ̃, µ̃ ∈ Γ̃ , then x ∈ D and (2) if a ∈ D and M ∋ b ≤ a , then b ∈ D .
The corresponding concepts for the ordered Γ -hypersemigroup (M,Γ,≤) are as follows.

Definition 2.6 [7] A nonempty subset B of the ordered Γ-hypersemigroup (M,Γ,≤) is called a bi-ideal of M

if (1) BΓBΓB ⊆ B ; that is, if x ∈ (aγb)µ{c} for some a, b, c ∈ B , γ, µ ∈ Γ , then x ∈ B and (2) if a ∈ B and
M ∋ b ≤ a , then b ∈ B .

Definition 2.7 A nonempty subset D of the ordered Γ-hypersemigroup (M,Γ,≤) is called an interior ideal of
M if (1) MΓDΓM ⊆ D ; that is if x ∈ uγm and u ∈ nµd for some m,n ∈ M , γ, µ ∈ Γ , d ∈ D , then x ∈ D

and (2) if a ∈ D and M ∋ b ≤ a , then b ∈ D .

Theorem 2.8 A set B is a bi-ideal of the ordered Γ-semigroup (M, Γ̃,≤) if and only if it is a bi-ideal of the

ordered Γ-hypersemigroup (M,Γ,≤) . A set D is an interior ideal of (M, Γ̃,≤) if and only if it is an interior
ideal of (M,Γ,≤) .

Proof Let B be a bi-ideal of (M, Γ̃,≤) and let x ∈ BΓBΓB . Then x ∈ (aγb)µ{c} for some a, b, c ∈ B ,
γ, µ ∈ Γ . Then there exists u ∈ aγb such that x ∈ uµc (by [6, Definition 3.2]). Then u ≤ aγ̃b and x ≤ uµ̃c ,

and thus x ≤ aγ̃bµ̃c ∈ BΓ̃BΓ̃B . Since B is a bi-ideal of (M, Γ̃,≤) , we have BΓ̃BΓ̃B ⊆ B and x ∈ B . Thus we
have BΓBΓB ⊆ B and so B is a bi-ideal of (M,Γ,≤) . Let now B be a bi-ideal of (M,Γ,≤) and let x = aγ̃bµ̃c

for some a, b, c ∈ B , γ̃, µ̃ ∈ Γ̃ . Since x ≤ aγ̃bµ̃c , we have x ∈ (aγ̃b)µc = {aγ̃b}µ{c} (by [6, Lemma 3.5]). Since
aγ̃b ∈ aγb , we have {aγ̃b} ⊆ aγb . Then x ∈ (aγb)µ{c} (by [6, Lemma 3.6]). Then, since B be a bi-ideal of

(M,Γ,≤) , we have x ∈ B and so B is a bi-ideal of (M, Γ̃,≤) .

Let D be an interior ideal of (M, Γ̃,≤) and let x ∈ uγm and u ∈ nµd for some m,n ∈ M , γ, µ ∈ Γ ,

d ∈ D . Then x ≤ uγ̃m and u ≤ nµ̃d , and thus x ≤ nµ̃dγ̃m ∈ M Γ̃DΓ̃M . Since D is an interior ideal
of (M, Γ̃,≤) , we have M Γ̃DΓ̃M ⊆ D and x ∈ D . Thus D is an interior ideal of (M,Γ,≤) . Conversely,

let D be an interior ideal of (M,Γ,≤) and let x = aγ̃dµ̃b for some a, b ∈ M , γ̃, µ̃ ∈ Γ̃ , d ∈ D . Then
x ∈ (aγ̃d)µb = {aγ̃d}µ{b} (by [6, Lemma 3.5]). Since aγ̃d ∈ aγd , we have {aγ̃d} ⊆ aγd and so x ∈ (aγd)µ{b}
(by [6, Lemma 3.6]). Then x ∈ uµb for some u ∈ aγd (by [6, Definition 3.2]). Since x ∈ uµb , u ∈ aγd ,
a, b ∈ M , γ, µ ∈ Γ , d ∈ D and D is an interior ideal of (M,Γ,≤) , we have x ∈ D . Thus D is an interior ideal

of (M, Γ̃,≤) . 2

The ordered Γ -semigroup (M, Γ̃,≤) is called regular if for every a ∈ M there exist x ∈ M and γ̃, µ̃ ∈ Γ̃

such that a ≤ aγ̃xµ̃a . It is called intra-regular if for every a ∈ M there exist x, y ∈ M and γ̃, µ̃, ρ̃ ∈ Γ̃ such
that a ≤ xγ̃aµ̃aρ̃y .
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Definition 2.9 [8, Definition 2.3] The ordered Γ-hypersemigroup (M,Γ,≤) is called regular if for every a ∈ M

there exist x ∈ M and γ, µ ∈ Γ such that {a} ⪯ (aγx)µ{a} ; in other words, for every a ∈ M , there exist
x, t ∈ M and γ, µ ∈ Γ such that t ∈ (aγx)µ{a} and a ≤ t .

Definition 2.10 [8, Definition 2.10] The ordered Γ-hypersemigroup (M,Γ,≤) is called intra-regular if for
every a ∈ M there exist x, y ∈ M and γ, µ, ρ ∈ Γ such that {a} ⪯ (xγa)µ(aρy) ; in other words, there exist
x, y, t ∈ M and γ, µ, ρ ∈ Γ such that t ∈ (xγa)µ(aρy) and a ≤ t .

Theorem 2.11 The ordered Γ-semigroup (M, Γ̃,≤) is regular if and only if the ordered Γ-hypersemigroup

(M,Γ,≤) is regular. The ordered Γ-semigroup (M, Γ̃,≤) is intra-regular if and only if the ordered Γ-
hypersemigroup (M,Γ,≤) is intra-regular.

Proof Let (M, Γ̃,≤) be regular and a ∈ M . Then there exist x ∈ M and γ̃, µ̃ ∈ Γ̃ such that a ≤ aγ̃xµ̃a .
Then we have a ∈ (aγ̃x)µa = {aγ̃x}µ{a} (by [6, Lemma 3.5]). Since aγ̃x ∈ aγx , we have {aγ̃x} ⊆ aγx .
Then we have a ∈ {aγ̃x}µ{a} ⊆ (aγx)µ{a} (by [6, Lemma 3.6]). Since a ∈ (aγx)µ{a} and a ≤ a , we have
{a} ⪯ (aγx)µ{a} and so (M,Γ,≤) is regular. Let now (M,Γ,≤) be regular and a ∈ M . Then there exist
x, t ∈ M and γ, µ ∈ Γ such that t ∈ (aγx)µ{a} and a ≤ t . Since t ∈ (aγx)µ{a} , we have t ∈ uµa for
some u ∈ aγx (by [6, Definition 3.2]). Then we have t ≤ uµ̃a and u ≤ aγ̃x from which t ≤ (aγ̃x)µ̃a and so

a ≤ aγ̃xµ̃a ; thus (M, Γ̃,≤) is regular.

Let (M, Γ̃,≤) be intra-regular and a ∈ M . Then there exist x, y ∈ M and γ̃, µ̃, ρ̃ ∈ Γ̃ such that
a ≤ (xγ̃a)µ̃(aρ̃y) . Then we have a ∈ (xγ̃a)µ(aρ̃y) = {xγ̃a}µ{aρ̃y} (by [6, Lemma 3.5]). Since xγ̃a ∈ xγa and
aρ̃y ∈ aρy , we have {xγ̃a} ⊆ xγa and {aρ̃y} ⊆ aρy . By [6, Lemma 3.6], we have {xγ̃a}µ{aρ̃y} ⊆ (xγa)µ(aρy) ,
and so a ∈ (xγa)µ(aρy) . Since a ∈ (xγa)µ(aρy) and a ≤ a , (M,Γ,≤) is intra-regular. Let now (M,Γ,≤) be
intra-regular and a ∈ M . Then there exist x, y, t ∈ M and γ, µ, ρ ∈ Γ such that t ∈ (xγa)µ(aρy) and a ≤ t.

Since t ∈ (xγa)µ(aρy) , we have t ∈ uµv for some u ∈ xγa , v ∈ aρy (by [6, Definition 3.2]). Then we have

t ≤ uµ̃v , u ≤ xγ̃a , v ≤ aρ̃y , and then t ≤ xγ̃aµ̃aρ̃y . Then a ≤ xγ̃aµ̃aρ̃y and so (M, Γ̃,≤) is intra-regular. 2

The ordered Γ -semigroup (M, Γ̃,≤) is called right regular if for every a ∈ M there exist x ∈ M and

γ̃, µ̃ ∈ Γ̃ such that a ≤ aγ̃aµ̃x ; it is called left regular if for every a ∈ M there exist x ∈ M and γ̃, µ̃ ∈ Γ̃ such
that a ≤ xγ̃aµ̃a .

Definition 2.12 [8, Definition 2.13] The ordered Γ-hypersemigroup (M,Γ,≤) is called right regular if for
every a ∈ M there exist x ∈ M and γ, µ ∈ Γ such that {a} ⪯ (aγa)µ{x} ; in other words, there exist x, t ∈ M

and γ, µ ∈ Γ such that t ∈ (aγa)µ{x} and a ≤ t. It is called left regular if for every a ∈ M there exist
x ∈ M and γ, µ ∈ Γ such that {a} ⪯ {x}γ(aµa) ; in other words, there exist x, t ∈ M and γ, µ ∈ Γ such that
t ∈ {x}γ(aµa) and a ≤ t .

Theorem 2.13 The ordered Γ-semigroup (M, Γ̃,≤) is right (resp. left) regular if and only if the ordered
Γ-hypersemigroup (M,Γ,≤) is right (resp. left) regular.

Proof Let (M, Γ̃,≤) be right regular and a ∈ M . Then there exist x ∈ M and γ̃, µ̃ ∈ Γ̃ such that
a ≤ (aγ̃a)µ̃x . Then a ∈ (aγ̃a)µx = {aγ̃a}µ{x} (by [6, Lemma 3.5]). Since aγ̃a ∈ aγa , we have {aγ̃a} ⊆ aγa
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and so {aγ̃a}µ{x} ⊆ (aγa)µ{x} (by [6, Lemma 3.6]). We have a ∈ (aγa)µ{x} and a ≤ a and so (M,Γ,≤) is
right regular. Let now (M,Γ,≤) be right regular and a ∈ M . Then there exist x, t ∈ M and γ, µ ∈ Γ such
that t ∈ (aγa)µ{x} and a ≤ t . Since t ∈ (aγa)µ{x} , we have t ∈ uµx for some u ∈ aγa (by [6, Definition

3.2]). Then we have t ≤ uµ̃x and u ≤ aγ̃a , then t ≤ aγ̃aµ̃x and so a ≤ aγ̃aµ̃x ; thus (M, Γ̃,≤) is right regular.
2

The ordered Γ -semigroup (M, Γ̃,≤) is called right (resp. left) quasi-regular [4] if for every a ∈ M there

exist x, y ∈ M and γ̃, µ̃, ρ̃ ∈ Γ̃ such that a ≤ aγ̃xµ̃aρ̃y (resp. a ≤ xγ̃aµ̃yρ̃a).

Definition 2.14 The ordered Γ-hypersemigroup (M,Γ,≤) is called right quasi-regular if for every a ∈ M

there exist x, y ∈ M and γ, µ, ρ ∈ Γ such that {a} ⪯ (aγx)µ(aρy) ; in other words there exist x, y, t ∈ M and
γ, µ, ρ ∈ Γ such that t ∈ (aγx)µ(aρy) and a ≤ t . It is called left quasi-regular if for every a ∈ M there exist
x, y ∈ M and γ, µ, ρ ∈ Γ such that {a} ⪯ (xγa)µ(yρa) ; in other words, there exist x, y, t ∈ M and γ, µ, ρ ∈ Γ

such that t ∈ (xγa)µ(yρa) and a ≤ t .

Theorem 2.15 The ordered Γ-semigroup (M, Γ̃,≤) is right (resp. left) quasi-regular if and only if the ordered
Γ-hypersemigroup (M,Γ,≤) is right (resp. left) quasi-regular.

Proof Let (M, Γ̃,≤) be right quasi-regular and a ∈ M . Then there exist x, y ∈ M and γ̃, µ̃, ρ̃ ∈ Γ̃ such
that a ≤ (aγ̃x)µ̃(aρ̃y) . Then a ∈ (aγ̃x)µ(aρ̃y) = {aγ̃x}µ{aρ̃y} (by [6, Lemma 3.5]). Since aγ̃x ∈ aγx and
aρ̃y ∈ aρy , we have {aγ̃x} ⊆ aγx and {aρ̃y} ⊆ aρy , hence {aγ̃x}µ{aρ̃y} ⊆ (aγx)µ(aρy) (by [6, Lemma 3.6]).
Since a ∈ (aγx)µ(aρy) and a ≤ a , (M,Γ,≤) is right quasi-regular. Let now (M,Γ,≤) be right quasi-regular
and a ∈ M . Then there exist x, y, t ∈ M and γ, µ, ρ ∈ Γ such that t ∈ (aγx)µ(aρy) and a ≤ t . Then t ∈ uµv

for some u ∈ aγx , v ∈ aρy (by [6, Definition 3.2]). Thus we have t ≤ uµ̃v , u ≤ aγ̃x and v ≤ aρ̃y ; therefore

t ≤ aγ̃xµ̃aρ̃y . Then a ≤ aγ̃xµ̃aρ̃y and so (M, Γ̃,≤) is right quasi-regular. 2

The ordered Γ -semigroup (M, Γ̃,≤) is called semisimple [4] if for every a ∈ M there exist x, y, z ∈ M

and γ̃, µ̃, ρ̃, ω̃ ∈ Γ̃ such that a ≤ xγ̃aµ̃yρ̃aω̃z .

Definition 2.16 The ordered Γ-hypersemigroup (M,Γ,≤) is called semisimple if for every a ∈ M there exist
x, y, z ∈ M and γ, µ, ρ, ω ∈ Γ such that {a} ⪯ (xγa)µ(yρa)ω{z} ; in other words there exist x, y, z, t ∈ M and
γ, µ, ρ, ω ∈ Γ such that t ∈ (xγa)µ(yρa)ω{z} and a ≤ t .

Theorem 2.17 The ordered Γ-semigroup (M, Γ̃,≤) is semisimple if and only if the ordered Γ-hypersemigroup
(M,Γ,≤) is so.

Proof =⇒ . Let (M, Γ̃,≤) be semisimple and a ∈ M . Then there exist x, y, z ∈ M and γ̃, µ̃, ρ̃, ω̃ ∈ Γ̃ such
that a ≤ (xγ̃a)µ̃(yρ̃aω̃z) . Then

a ∈ (xγ̃a)µ(yρ̃aω̃z) = {xγ̃a}µ{yρ̃aω̃z} (by [6, Lemma 3.5]).

Since xγ̃a ∈ xγa , we have {xγ̃a} ⊆ xγa . We also have yρ̃aω̃z = (yρ̃a)ω̃z ∈ (yρ̃a)ωz and so

{yρ̃aω̃z} ⊆ (yρ̃a)ωz = {yρ̃a}ω{z} (by [6, Lemma 3.5]).
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Since yρ̃a ∈ yρa , we have {yρ̃a} ⊆ yρa . Then {yρ̃a}ω{z} ⊆ (yρa)ω{z} (by [6, Lemma 3.6]). Thus we have
{yρ̃aω̃z} ⊆ (yρa)ω{z} . Hence we obtain

a ∈ {xγ̃a}µ{yρ̃aω̃z} ⊆ (xγa)µ
(
(yρa)ω{z}

)
(by [6, Lemmas 3.5 and 3.6])

= (xγa)µ(yρa)ω{z} (by [7, Lemma 2]).

Then {a} ⪯ (xγa)µ(yρa)ω{z} and so (M,Γ,≤) is semisimple.

⇐= . Let (M,Γ,≤) be semisimple and a ∈ M . Then there exist x, y, z, t ∈ M and γ, µ, ρ, ω ∈ Γ such that

t ∈ (xγa)µ(yρa)ω{z} and a ≤ t . By [7, Lemma 2]), t ∈
(
(xγa)µ(yρa)

)
ω{z} . Since (xγa)µ(yρa) ⊆ MµM ⊆ M,

by [6, Definition 3.2], we have t ∈ hωz for some h ∈ (xγa)µ(yρa) , and h ∈ uµv for some u ∈ xγa , v ∈ yρa .
Then

t ≤ hω̃z, h ≤ uµ̃v, u ≤ xγ̃a, v ≤ yρ̃a.

We have t ≤ (uµ̃v)ω̃z and uµ̃v ≤ xγ̃aµ̃yρ̃a . Then t ≤ (xγ̃aµ̃yρ̃a)ω̃z and a ≤ xγ̃aµ̃yρ̃aω̃z . Thus (M, Γ̃,≤) is
semisimple. 2

The ordered Γ -groupoid (M, Γ̃,≤) is called right (resp. left) simple if M is the only right (resp. left)

ideal of M . This is equivalent to saying that for every a, b ∈ M there exist x ∈ M and γ̃ ∈ Γ̃ such that
b ≤ aγ̃x (resp. b ≤ xγ̃a) . An ordered Γ -semigroup (M, Γ̃,≤) is called simple if M is the only ideal of M ;

equivalently, for every a, b ∈ M there exist x, y ∈ M and γ̃, µ̃ ∈ Γ̃ such that b ≤ xγ̃aµ̃y .

Definition 2.18 (see also [8, Definition 2.27]) An ordered Γ-hypergroupoid (M,Γ,≤) is called right (resp.
left) simple if for every a, b ∈ M there exist x ∈ M and γ ∈ Γ such that {b} ⪯ aγx (resp. {b} ⪯ xγa) ; in
other words, for every a, b ∈ M there exist x, t ∈ M and γ ∈ Γ such that t ∈ aγx (resp. t ∈ xγa) and b ≤ t ;
(this is equivalent to saying that M is the only right (resp. left) ideal of M .

Remark 2.19 Let us prove that the following are equivalent: (1) M is the only right ideal of M (2) For every
a, b ∈ M there exist x ∈ M and γ ∈ Γ such that {b} ⪯ aγx . We prove first that, for any nonempty subsets
A,B of M , we have (A]Γ(B] ⊆ (AΓB] . We note that AΓB =

⋃
a∈A,γ∈Γ,b∈B

aγb ⊆ M . Let now x ∈ (A]Γ(B] .

Then x ∈ uγv for some u ∈ (A] , γ ∈ Γ , v ∈ (B] . Since u ∈ (A] , we have u ≤ a for some a ∈ A . Since
v ∈ (B] , we have v ≤ b for some b ∈ B . Since u ≤ a and v ≤ b , we have uγv ⪯ aγb . Since x ∈ uγv ,
there exists y ∈ aγb such that x ≤ y . We have x ≤ y ∈ aγb ⊆ AΓB and so x ∈ (AΓB] . (1) ⇒ (2) . Let
a, b ∈ M . The set (aΓM ] is a right ideal of M . Indeed: (aΓM ]ΓM = (aΓM ]Γ(M ] ⊆ (aΓMΓM ] ⊆ (aΓM ] and(
(aΓM ]

]
= (aΓM ] (as it holds for any nonempty subset X of M ). By hypothesis we have (aΓM ] = M . Since

b ∈ M , we have b ≤ t for some t ∈ aΓM . Since t ∈ aΓM , we have t ∈ aγx for some γ ∈ Γ , x ∈ M . We
have t ∈ aγx and b ≤ t and so {b} ⪯ aγx . (2) ⇒ (1) . Let A be a right ideal of M . Then A = M . Indeed:
Let b ∈ M . Take an element a ∈ A (A ̸= ∅) . Since a, b ∈ M , by (2), there exist x, t ∈ M and γ ∈ Γ such
that t ∈ aγx and b ≤ t . We have t ∈ aγx ⊆ AΓM ⊆ A and so t ∈ A . Since b ≤ t ∈ A , we have b ∈ A . Thus
we have M ⊆ A and so A = M .

Definition 2.20 An ordered Γ-hypersemigroup is called simple if for every a, b ∈ M there exist x, y ∈ M and
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γ, µ ∈ Γ such that {b} ⪯ (xγa)µ{y} ; in other words, for every a, b ∈ M there exist x, y, t ∈ M and γ, µ ∈ Γ

such that t ∈ (xγa)µ{y} and b ≤ t (this is equivalent to saying that M is the only ideal of M ).

Remark 2.21 Let us prove that, for an ordered Γ-hypersemigroup M , the following conditions are equivalent:
(1) M is the only ideal of M (2) For every a, b ∈ M there exist x, y ∈ M and γ, µ ∈ Γ such that
{b} ⪯ (xγa)µ{y} . (1) ⇒ (2) . Let a, b ∈ M . The set (MΓaΓM ] is an ideal of M . Indeed: (MΓaΓM ]ΓM =

(MΓaΓM ]Γ(M ] ⊆
(
MΓaΓ(MΓM)

]
⊆ (MΓaΓM ] also MΓ(MΓaΓM ] ⊆ (MΓaΓM ] and

(
(MΓaΓM ]

]
=

(MΓaΓM ] . Since M is the only ideal of M , we have (MΓaΓM ] = M . Since b ∈ M , b ≤ t for some
t ∈ MΓaΓM . Since t ∈ (MΓa)ΓM , by [6, Remark 3.4], t ∈ uµy for some u ∈ MΓa , µ ∈ Γ , y ∈ M . Since
u ∈ MΓa , u ∈ xγa for some x ∈ M , γ ∈ Γ . We have t ∈ uµy = {u}µ{y} ⊆ (xγa)µ{y} . Since t ∈ (xγa)µ{y}
and b ≤ t , we have {b} ⪯ (xγa)µ{y} . (2) ⇒ (1) . Let A be an ideal of M . Then A = M . Indeed: Let b ∈ M .
Take an element a ∈ A (A ̸= ∅) . Since a, b ∈ M , by (2), there exist x, y, t ∈ M and γ, µ ∈ Γ such that
t ∈ (xγa)µ{y} and b ≤ t . We have xγa ⊆ MΓA ⊆ A (by [6, Remark 3.4]) and (xγa)µ{y} ⊆ AµM ⊆ AΓM ⊆ A

(see [6, Lemma 3.6 and Definition 3.3]). Thus we have t ∈ A . Since b ≤ t ∈ A , we have b ∈ A . Thus we
M ⊆ A and so A = M .

Theorem 2.22 The ordered Γ-groupoid (M, Γ̃,≤) is right (resp. left) simple if and only if the ordered Γ-

hypergroupoid (M,Γ,≤) is so. The ordered Γ-semigroup (M, Γ̃,≤) is simple if and only if the ordered Γ-
hypersemigroup (M,Γ,≤) is so.

Proof Let (M, Γ̃,≤) be right simple and a, b ∈ M . Then there exist x ∈ M and γ̃ ∈ Γ̃ such that b ≤ aγ̃x .
Then we have b ∈ aγx and so {b} ⪯ aγx and (M,Γ,≤) is right simple. Let now (M,Γ,≤) be right simple and
a, b ∈ M . Then there exist x, t ∈ M and γ ∈ Γ such that t ∈ aγx and b ≤ t . Then we have t ≤ aγ̃x and so
b ≤ aγ̃x ; thus (M, Γ̃,≤) is right simple.

Let (M, Γ̃,≤) be simple and a, b ∈ M . Then there exist x, y ∈ M and γ̃, µ̃ ∈ Γ̃ such that b ≤ (xγ̃a)µ̃y .
Then b ∈ (xγ̃a)µy = {xγ̃a}µ{y} (by [6, Lemma 3.5]). Since xγ̃a ∈ xγa , we have {xγ̃a} ⊆ xγa ; then
{xγ̃a}µ{y} ⊆ (xγa)µ{y} (by [6, Lemma 3.5]). Then {b} ⪯ (xγa)µ{y} and so (M,Γ,≤) is simple.
Let now (M,Γ,≤) be simple and b ∈ M . Then there exist x, y, t ∈ M and γ, µ ∈ Γ such that t ∈ (xγa)µ{y}
and b ≤ t . By [6, Definition 3.2], t ∈ uµy for some u ∈ xγa . Then we have t ≤ uµ̃y and u ≤ xγ̃a and so

t ≤ xγ̃aµ̃y . Then b ≤ xγ̃aµ̃y and so (M, Γ̃,≤) is simple. 2

The concept of strongly regular ordered semigroups [1] can be extended to ordered Γ -semigroups as
follows: An ordered Γ -semigroup (M,Γ,≤) is called strongly regular if it is regular and aγb = bγa for every
a, b ∈ M and every γ ∈ Γ ; that is, it is regular and commutative.

The Γ -hypergroupoid M is called commutative if aγb = bγa for every a, b ∈ M and every γ ∈ Γ . That
is, if a, b ∈ M and γ ∈ Γ , then x ∈ aγb if and only if x ∈ bγa .

Definition 2.23 An ordered Γ-hypersemigroup (M,Γ,≤) is called strongly regular if it is regular and commu-
tative.

Proposition 2.24 The ordered Γ-semigroup (M, Γ̃,≤) is strongly regular if and only if the ordered Γ-hyper-
semigroup (M,Γ,≤) is so.
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Proof It is enough to prove that the ordered Γ -groupoid (M, Γ̃,≤) is commutative if and only if the ordered
Γ -hypergroupoid (M,Γ,≤) is commutative.

⇒ . Let (M, Γ̃,≤) be commutative and a, b ∈ M , γ ∈ Γ . If x ∈ aγb , then x ≤ aγ̃b = bγ̃a , x ≤ bγ̃a , and
x ∈ bγa . If x ∈ bγa , then x ≤ bγ̃a = aγ̃b , x ≤ aγ̃b , and x ∈ aγb . Thus we have x ∈ aγb if and only if x ∈ bγa

and so (M,Γ,≤) is commutative.

⇐ . Let (M,Γ,≤) be commutative and a, b ∈ M , γ̃ ∈ Γ̃ . Since aγ̃b ∈ aγb = bγa , we have aγ̃b ∈ bγa and
so aγ̃b ≤ bγ̃a . Since bγ̃a ∈ bγa = aγb , we have bγ̃a ∈ aγb and so bγ̃a ≤ aγ̃b . Thus we have aγ̃b = bγ̃a and
(M, Γ̃,≤) is commutative. 2

Example 2.25 Consider the ordered Γ-semigroup (M, Γ̃,≤) given by Tables 1, 2 and Figure 1 of the Example

2.2. The set {a, b, c} is an ideal of (M, Γ̃,≤) . Indeed:

{a, b, c}Γ̃M = {a, b, c}{γ̃, µ̃}{a, b, c, d}

= {aγ̃a, aγ̃b, aγ̃c, aγ̃d, bγ̃a, bγ̃b, bγ̃c, bγ̃d, cγ̃a, cγ̃b, cγ̃c, cγ̃d, aµ̃a,

aµ̃b, aµ̃c, aµ̃d, bµ̃a, bµ̃b, bµ̃c, bµ̃d, cµ̃a, cµ̃b, cµ̃c, cµ̃d}

= {a, b, c},

we also have M Γ̃{a, b, c} ⊆ {a, b, c} and x ∈ {a, b, c} and M ∋ y ≤ x implies y ∈ {a, b, c} .
The set {a, b, c} is an ideal of the ordered Γ-hypersemigroup (M,Γ,≤) defined by Tables 3, 4 and Figure

1. Indeed:

{a, b, c}ΓM =
⋃

x∈{a,b,c},γ∈Γ,y∈{a,b,c,d}

xγy

= aγa ∪ aγb ∪ aγc ∪ aγd ∪ bγa ∪ bγb ∪ bγc ∪ bγd ∪ cγa ∪ cγb ∪ cγc ∪ cγd

= aµa ∪ aµb ∪ aµc ∪ aµd ∪ bµa ∪ bµb ∪ bµc ∪ bµd ∪ cµa ∪ cµb ∪ cµc ∪ cµd

= {a, b, c};

that is, {a, b, c} is a right ideal of (M,Γ,≤) . Similarly MΓ{a, b, c} ⊆ {a, b, c} and so the set {a, b, c} is an ideal

of (M,Γ,≤) (see also Theorem 2.5). In fact, one can check that the set {a, b, c} is the only ideal of (M, Γ̃,≤)

and the only ideal of (M,Γ,≤) as well.

Example 2.26 (see also [5, Example 15]) Consider the ordered Γ-semigroup (M, Γ̃,≤) , where M = {a, b, c, d, e}

and Γ̃ = {γ̃} defined by Table 11 and Figure 5; this is regular, intra-regular, right regular and left regular.

The right ideals of (M, Γ̃,≤) are the sets {a, b, d} and M .

The left ideals of (M, Γ̃,≤) are the sets {a} , {a, c} , {a, b, d} , {a, b, c, d} , and M .

The bi-ideals and the quasi-ideals of (M, Γ̃,≤) coincide with the left ideals of (M, Γ̃,≤) .
According to Theorem 2.1, to this ordered Γ-semigroup corresponds the ordered Γ-hypersemigroup given

by Table 12 and the same Figure 5.
According to Theorems 2.11, and 2.13 this is also a regular, intra-regular, right regular and left regular

ordered Γ-hypersemigroup, having the same right ideals, left ideals, bi-ideals and quasi-ideals as the ordered
Γ-semigroup (M, Γ̃,≤) .
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Table 11. The ordered Γ -semigroup of the Example 2.26.

γ̃ a b c d e
a a d a d d
b a b a d d
c a d c d e
d a d a d d
e a d c d e

c

e

a

d

b

Figure 5. Figure of Example 2.26.

Table 12. The ordered Γ -hypersemigroup of the Example 2.26.

γ a b c d e
a {a} {a,b,d} {a} {a,b,d} {a,b,d}
b {a} {b} {a} {a,b,d} {a,b,d}
c {a} {a,b,d} {a,c} {a,b,d} {a,b,c,d,e}
d {a} {a,b,d} {a} {a,b,d} {a,b,d}
a {a} {a,b,d} {a,c} {a,b,d} {a,b,c,d,e}

Example 2.27 The ordered Γ-semigroup of the Example 2.2 given by Tables 1, 2 and Figure 1 is an example
of regular, intra-regular, right regular, left regular, right quasi-regular, left quasi-regular and semisimple ordered
Γ-semigroup. [This is not right simple, not left simple, not simple, not strongly regular]. According to Theorem
2.11, Theorem 2.13, Theorem 2.15 and Theorem 2.17, the ordered Γ-hypersemigroup given by Tables 3, 4 and
Figure 1 is an example of a regular, intra-regular, right regular, left regular, right quasi-regular, left quasi-regular
and semisimple ordered Γ-hypersemigroup, respectively. According to Theorem 2.5 and Example 2.25, the set
{a, b, c} is an ideal of the ordered Γ-hypersemigroup. Independently, one can check that the above results are
true. It might be mentioned here that for an ordered Γ-semigroup or an ordered Γ-hypersemigroup the ideals
are quasi-ideals and the quasi-ideals are bi-ideals. An ordered Γ-semigroup or an ordered Γ-hypersemigroup
that is right regular or left regular is intra-regular as well.

Example 2.28 The ordered Γ-semigroup of the Example 2.2 given by Tables 1 and 2 and Figure 2, 3 or 4 are
also regular, intra-regular, right regular, left regular, right quasi-regular, left quasi-regular and semisimple and so,
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according to Theorem 2.11, Theorem 2.13, Theorem 2.15 and Theorem 2.17, the ordered Γ-hypersemigroup given
by Tables 5, 6 and Figure 2, the ordered Γ-hypersemigroup given by Tables 7, 8 and Figure 3 and the ordered
Γ-hypersemigroup given by Tables 9, 10 and Figure 4 are also examples of regular, intra-regular, right regular,
left regular, right quasi-regular, left quasi-regular and semisimple ordered Γ-hypersemigroups. Independently,
one can check that the results of the example are true.

Note The Lemma 11 in [5] should be corrected as follows: Let (S, ·,≤) be an ordered groupoid and (S, ◦,≤)

the ordered hypergroupoid constructed by (S, ·,≤) in the way indicated in [5, Lemma 1]. Let a, x ∈ S . Then
ax = xa if and only if a ◦ x = x ◦ a .

With my best thanks to the anonymous referee for his/her time to read the paper very carefully.
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