
Turk J Math
(2022) 46: 638 – 661
© TÜBİTAK
doi:10.3906/mat-2108-34

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Multiple positive solutions for nonlinear fractional q -difference equation with
p-Laplacian operator

Zhongyun QIN, Shurong SUN, Zhenlai HAN∗

Department of Mathematics, School of Mathematical Sciences, University of Jinan, Jinan, China

Received: 07.08.2021 • Accepted/Published Online: 04.11.2021 • Final Version: 21.01.2022

Abstract: In this paper, we investigate a class of four-point boundary value problems of fractional q -difference equation
with p -Laplacian operator which is the first time to be studied and is extended from a bending elastic beam equation. By
Avery–Peterson theorem and the method of lower and upper solutions associated with monotone iterative technique, we
obtain some sufficient conditions for the existence of multiple positive solutions. As applications, examples are presented
to illustrate the main results.
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1. Introduction
The q -difference calculus or quantum calculus has been of great interest recently. It was initially developed by
Jackson [13]. In regard to basic definitions and properties of q -difference calculus, the reader can confirm in
the books [11] and [4]. It is well know that the time scale calculus includes q -difference calculus (or quantum
calculus) as a special case (i.e. dynamic equations on time scales include related q -difference equations as a
special case); see, e.g., the papers [6–8] for more details.

More recently, perhaps due to the explosion in research within the fractional calculus setting, new
developments in the theory of fractional q -difference calculus were made. Compared with integer order q -
calculus, fractional q -calculus is better and more accurate to describe physical phenomena. Therefore, the
theory of fractional q -calculus has been widely used in the fields of mathematical physics, dynamical systems
and quantum models and so on[9, 19, 23]. The fractional q -difference calculus had its origin in the works by
Al-Salam [3] and Agarwal[1]. Many effective and interesting results can be found in [2, 9, 24] and references
therein.

As a matter of fact, p -Laplace equations (equations with p -Laplacian like operators) arise in a variety of
real world problems such as in the study of non-Newtonian fluid theory, porous medium problems, chemotaxis
models, and so forth; see, e.g., the papers [6–8, 10, 15–18, 26] for more details. Fractional differential equations
with p -Laplacian operators have been widely applied in many fields of science and engineering, such as vis-
coelastic mechanics, non-Newtonian mechanics, electrochemistry, fluid mechanics, combustion theory, materials
science, etc. There are some papers dealing with the existence of solutions for fractional differential equations
and fractional q -difference equation with p -Laplacian operator, see [12, 14, 20, 21, 25]. For example, very
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recently, S. Li, Z. Zhang and W. Jiang studied the existence of at least triple positive solutions for four-point
boundary value problems of nonlinear fractional differential equations with p -Laplacian operators by using the
Avery–Peterson theorem [14].

In [12], Z. Han et al. investigated the following eigenvalue problem of fractional differential equation with
generalized p -Laplacian.D

β
0+(φ(D

α
0+u(t))) = λf(u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, φ(Dα
0+u(0)) = (φ(Dα

0+u(0)))
′ = 0,

where 2 < α ≤ 3, 1 < β ≤ 2 . By using the properties of Green function and Guo-Krasnosel’skii fixed-point
theorem in cones, several new existence results of positive solutions in terms of different eigenvalue intervals are
obtained.

In [21], X. Li et al. studied the following eigenvalue problems of a class of nonlinear fractional q -difference
equations with generalized p -Laplacian{

Dγ
q (φ(D

α
q u(t))) + λf(u(t)) = 0, 0 < t < 1,

u(0) = Dqu(0) = 0, Dqu(1) = β > 0, Dα
q u(0) = 0,

and the second kind is homogeneous boundary conditions{
Dγ

q (φ(D
α
q v(t))) + λf(v(t)) = 0, 0 < t < 1,

v(0) = Dqv(0) = 0, Dqv(1) = 0, Dα
q v(0) = 0.

By using fixed point theorem in cones, some results for the existence of positive solutions are obtained.
In [25], Q. Yuan and W. Yang considered the fractional q -difference four-point boundary value problem

with p -Laplacian operator{
Dβ

q (φp(D
α
q u(t))) = f(t, u(t)), t ∈ (0, 1),

u(0) = 0, u(1) = au(ξ), Dα
q u(0) = 0, Dα

q u(1) = bDα
q (η),

where 1 < α ≤ 2 , and 0 < a, b, ξ, η < 1 . By means of the upper and lower solutions method associated with
the Schauder fixed point theorem, some existence results of at least one solution are obtained.

Motivated by the previously mentioned works, we will investigate the following four-point boundary value
problems of fractional q -difference equation with p -Laplacian operator

Dβ
q (ψp(

cDα
q u(x))) = g(x, u(x), cDγ

q u(x)), 0 < x < 1, (1.1)

subject to the boundary conditions

cDα
q u(0) = Dqu(0) = 0,

u(1) = cu(λ), cDα
q u(1) = dcDα

q u(ζ),
(1.2)

where 0 < q < 1 , 1 < α, β ≤ 2 , 0 < γ ≤ α , 0 < λ, ζ < 1 , and c, d > 0 . Dβ
q is the Riemann–Liouville fractional

derivative, cDα
q and cDγ

q are the Caputo fractional derivative. ψm = ψ−1
p , ψp is the p -Laplacian operator,

ψp(t) = |t|p−2t , p > 1 , 1
p + 1

m = 1 and g ∈ C([0, 1]× R× R,R+) .
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The innovation of this paper are as follows:
(i) Compared with [25], we generalize the nonlinear term of the q -difference equation to the case with

higher derivative which makes the boundary value problem we study more widely applicable. Especially, when
p = 2 , α = β = γ = 2 and c = d = 0 , the boundary value problem (1.1)–(1.2) models the deformations of an
elastic beam whose two ends are simply supported in equilibrium state, and the cDγ

q u(x) in function g is the
bending moment term which represents bending effect.

(ii) Although the solvability of multipoint boundary value problems for fractional q -difference equation
has been investigated by some authors, to the best of our knowledge, there are no papers that consider the
multiple positive solutions for four-point boundary value problem of fractional q -difference equation with p -
Laplacian operator. Inspired by works mentioned above, we aim to fill the gap. Adding the p -Laplacian
operator makes this paper posses wider range of potential applications, for instance, compared with the image
inpainting method based on total variation model, the image inpainting method based on p -Laplacian operator
can effectively improve the image inpainting quality and significantly reduce the operation time. By using
the technique of Avery and Peterson and the method of lower and upper solutions, we deduce some sufficient
conditions for the existence of multiple positive solutions.

The plan of this paper is as follows. In Section 2, we present necessary definitions, properties and lemmas.
In Section 3, we apply the Avery–Peterson theorem to establish the existence criteria of at least triple positive
solutions for (1.1)–(1.2) and give rigorous proof. In Section 4, we obtain some new sufficient conditions for the
existence of solutions by the method of lower and upper solutions. At the end of this paper, we present two
examples to illustrate the effectiveness of the main results.

2. Preliminaries
In this section, we present basic definitions, notations, and lemmas that will be used in this paper. Let 0 < q < 1 .
Define

[α]q :=
1− qα

1− q
, α ∈ R, [n]q! = [n]q[n− 1]q · · · [1]q, n ∈ N. (2.1)

Let a, b ∈ R . Define the q -analogue of the power function (a− b)
(n)
q

(a− b)(n)q :=


1, n = 0,

n−1∏
k=0

(ak − bqk), n ∈ N+.

If α ∈ R , the general form is given by

(a− b)(α)q := aα
∞∏
i=0

[ a− bqi

a− bqα+i

]
, a ̸= 0.

Note that when b = 0 , (a)
(α)
q = aα . For 0 < q < 1 , the q -gamma function is defined by

Γq(x) =


(1− q)

(x−1)
q

(1− q)x−1
, x ∈ R \ {0,−1,−2, · · · },

[x− 1]q!, x ∈ N,
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and satisfies Γq(x+ 1) = [x]qΓq(x) . The q -derivative of the function f is defined as

Dqf(t) :=
f(t)− f(qt)

(1− q)t
, t ̸= 0, (Dqf)(0) = lim

t→0
(Dqf)(t),

provided that f is differentiable at 0 . And the n order q -derivative Dn
q f(t) is defined by

Dn
q f(t) =

{
f(t), n = 0,

DqD
n−1
q f(t), n ∈ N+.

The following formulas will be used later, namely

(a(t− s))(α)q = aα(t− s)(α)q , (2.2)

tDq(t− s)(α)q = [a]q(t− s)(α−1)
q , (2.3)

sDq(t− s)(α)q = −[a]q(t− qs)(α−1)
q , (2.4)

where tDq or sDq denotes the derivative with respect to the variable t or s respectively.

Definition 2.1 [24] Let 0 < q < 1 , f be an arbitrary function. The q -integral of the function f is defined as∫ x

0

f(t)dqt = (1− q)x

∞∑
k=0

qkf(qkx), (2.5)

provided that the series of right side in (2.5) converges. In this case, f is called q -integrable on [0, x] . Denote

Iqf(x) =

∫ x

0

f(t)dqt.

And the q -integral of n order is defied by

I0q f(x) = f(x) and Inq f(x) = Iq(I
n−1
q f)(x).

Definition 2.2 [24] Let 0 < q < 1 , f be an arbitrary function, a and b be two real numbers. Then we define∫ b

a

f(t)dqt =

∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt.

Definition 2.3 [24] Let α > 0, 0 < q < 1 . The fractional q -integral is defined by

Iαq f(t) =
1

Γq(α)

∫ t

0

(t− qs)(α−1)
q f(s)dqs.

Definition 2.4 [22] The Riemann–Liouville fractional derivative of order α > 0 of a function f : [0,+∞) → R
is given by

(Dα
q f)(x) = (DN

q I
N−α
q f)(x),

and (D0
qf)(x) = f(x) , where N is the smallest integer greater than or equal to α .
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Definition 2.5 [22] The fractional q -derivative of the Caputo type of order α > 0 is defined by

(cDα
q f)(x) = (IN−α

q DN
q f)(x),

and (cD0
qf)(x) = f(x) , where N − 1 < α < N , N ∈ N .

Lemma 2.6 [24] For α, β > 0 , and 0 < q < 1 , q -integral and q -difference operators have the following
properties:
(a) Iαq [I

β
q f(x)] = Iβq [I

α
q f(x)] = Iα+β

q f(x) ,
(b) DqIqf(x) = f(x) , and IqDqf(x) = f(x)− f(0).

(c) Dα
q I

α
q f(x) = f(x).

Lemma 2.7 [22] Let 0 < q < 1 , α ∈ (N − 1, N ], N ∈ N . Then

Dα
q I

α
q f(t) = f(t), (2.6)

and
Iαq D

α
q f(t) = f(t) + C1t

α−1 + C2t
α−2 + · · ·+ CN t

α−N , (2.7)

for some Ci ∈ R , i = 1, 2, . . . , N .

Lemma 2.8 [22] Let α ∈ (N − 1, N ], N ∈ N , and 0 < q < 1 . Then the following is valid

cDα
q I

α
q f(t) = f(t), (2.8)

and
Iαq

cDα
q f(t) = f(t) + C1t

N−1 + C2t
N−2 + · · ·+ CN , (2.9)

for some Ci ∈ R , i = 1, 2, . . . , N .

Lemma 2.9 Assume 1 < α ≤ 2 . Then Dα
q x

α−1 = 0 , for x ∈ R .

Proof By virtue of Definitions 2.1, 2.3 and 2.4, we have

Dα
q x

α−1 = D2
qI

2−α
q xα−1

= D2
q

[
1

Γq(2− α)

∫ x

0

(x− qt)(1−α)
q tα−1dqt

]

=
1

Γq(2− α)
D2

q

[
(1− q)x

∞∑
k=0

qk
(
1− qk+1

)(1−α)

q

(
qk
)α−1

]
= 0.

This completes the proof.

Lemma 2.10 [4] Let g ∈ Cr[0, a] , a > 0 , where g ∈ Cr[0, a] is equivalent that there exists a constant γ < 1

such that xγg ∈ C[0, a] . Then
(1) Iαq g ∈ Cr[0, a] .
(2) If we additionally assume that γ ≤ α , then Iαq g ∈ C[0, a] .
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Definition 2.11 [4] Let 0 < q < 1 and n ∈ N+ . We define the space Cn
q [0, a] to be the space of all continues

functions with continuous q -derivatives up to order n− 1 on the interval [0, a] .

Lemma 2.12 [4] Let α > 0 , n = ⌈α⌉ . If there exists γ ≤ α − n + 1 , such that f ∈ Cr[0, a] , a > 0 , then
Iαq f ∈ Cn

q [0, a] .

3. The solvability based on Avery–Peterson theorem

In this section, we shall establish an existence criterion of at least triple positive solutions to the problem
(1.1)–(1.2) by the Avery–Peterson theorem. In order to prove our main results, we need the following lemmas.

Lemma 3.1 Let 0 < q < 1 , 1 < α ≤ 2 , dp−1ζβ−1 < 1 and h ∈ C([0, 1], [0,+∞)) . Then a function
u(x) ∈ C2

q [0, 1] is a solution of the following boundary value problem


Dβ

q (ψp(
cDα

q u(x))) = h(x), 0 < x < 1,

cDα
q u(0) = Dqu(0) = 0,

u(1) = cu(λ), cDα
q u(1) = dcDα

q u(ζ),

(3.1)

when and only when u(x) satisfies the integral equation

u(x) = a1 −
1

Γq(α)

∫ x

0

(x− qs)(α−1)
q k(s)dqs, (3.2)

where

a1 =

∫ 1

0
(1− qs)

(α−1)
q k(s)ds− c

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)
, (3.3)

k(x) = ψm

[
−
(

1

Γq(β)

∫ x

0

(x− qt)(β−1)
q h(t)dqt+ b1x

β−1

)]
, (3.4)

and

b1 =
dp−1

∫ ζ

0
(ζ − qt)

(β−1)
q h(t)dqt−

∫ 1

0
(1− qt)

(β−1)
q h(t)dqt

(1− dp−1ζβ−1)Γq(β)
.

Proof Assume u(x) is a solution of (3.1). Applying the operator Iβq on both sides of (3.1), by Lemma 2.7 and
Definition 2.3, for x ∈ [0, 1] , we have

ψp(
cDα

q u(x)) = b1x
β−1 + b2x

β−2 +
1

Γq(β)

∫ x

0

(x− qt)(β−1)
q h(t)dqt.

According to cDα
q u(0) = 0 , we have b2 = 0 . By cDα

q u(1) = dcDα
q u(ζ) , it is easy to see

b1 =
dp−1

∫ ζ

0
(ζ − qt)

(β−1)
q h(t)dqt−

∫ 1

0
(1− qt)

(β−1)
q h(t)dqt

(1− dp−1ζβ−1)Γq(β)
, (3.5)
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that is,

ψp(
cDα

q u(x)) = b1x
β−1 +

1

Γq(β)

∫ x

0

(x− qt)(β−1)
q h(t)dqt. (3.6)

By the above formula, we give the following definition

cDα
q u(x) = ψm

(
b1x

β−1 +
1

Γq(β)

∫ x

0

(x− qt)(β−1)
q h(t)dqt

)
:= −k(x). (3.7)

Taking operator Iαq on both sides of (3.7), from Lemma 2.8, we have

u(x) = −Iαq k(x) + a1 + a2x = − 1

Γq(α)

∫ x

0

(x− qs)(α−1)
q k(s)dqs+ a1 + a2x. (3.8)

Differentiating both sides of (3.8), one has

Dqu(x) = − 1

Γq(α− 1)

∫ x

0

(x− qs)(α−2)
q k(s)dqs+ a2.

By the boundary condition Dqu(0) = 0 , we can get a2 = 0 . It follows from (3.8) and the boundary condition
u(1) = cu(λ) that

a1 =

∫ 1

0
(1− qs)

(α−1)
q k(s)dqs− c

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)
.

Hence

u(x) =

∫ 1

0
(1− qs)

(α−1)
q k(s)dqs− c

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)
− 1

Γq(α)

∫ x

0

(x− qs)(α−1)
q k(s)dqs. (3.9)

On the other hand, if u(x) is a solution of (3.2)(i.e.(3.9)), then we have

u(x) = −Iαq k(x) + a1

= Iαq ψm[b1x
β−1 + Iβq h(x)] + a1.

(3.10)

From the continuity of function h and Lemma 2.10, we have ψm[b1x
β−1 + Iβq h(x)] ∈ C[0, 1] . Then by Lemma

2.12, Iαq ψm[b1x
β−1 + Iβq h(x)] ∈ C2

q [0, 1] . Hence u(x) ∈ C2
q [0, 1] . Taking operator cDα

q on both sides of (3.10),
by Lemma 2.8, we can obtain

cDα
q u(x) = ψm[b1x

β−1 + Iβq h(x)],

i.e.,
ψp(

cDα
q u(x)) = b1x

β−1 + Iβq h(x).

Then taking operator Dβ
q on both sides of the above equality, by Lemmas 2.7 and 2.9, one has

Dβ
q (ψp(

cDα
q u(x))) = h(x).

In addition, we can easily prove that u(x) satisfies the boundary value conditions in (3.1). This completes the
proof.
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Lemma 3.2 If 1 < α ≤ 2 , dp−1ζβ−1 < 1 , h ∈ C([0, 1], [0,+∞)) and the function ℏ(x) is defined by

ℏ(x) = a1 −
1

Γq(α)

∫ x

0

(x− qs)(α−1)
q k(s)dqs, (3.11)

where a1 and k(s) are given by (3.3) and (3.4), then ℏ(x) ≥ 0 .

Proof Since

k(s) = ψm

(
−b1sβ−1 − 1

Γq(β)

∫ s

0

(s− qt)(β−1)
q h(t)dqt

)

= ψm

(
−dp−1sβ−1

∫ ζ

0
(ζ − qt)

(β−1)
q h(t)dqt+ sβ−1

∫ 1

0
(1− qt)

(β−1)
q h(t)dqt

(1− dp−1ζβ−1)Γq(β)
−
∫ s

0
(s− qt)

(β−1)
q h(t)dqt

Γq(β)

)

= ψm

(∫ 1

0
sβ−1(1− qt)

(β−1)
q h(t)dqt

Γq(β)
+
dp−1ζβ−1

∫ 1

0
sβ−1(1− qt)

(β−1)
q h(t)dqt

(1− dp−1ζβ−1)Γq(β)

−
dp−1sβ−1

∫ ζ

0
(ζ − qt)

(β−1)
q h(t)dqt

(1− dp−1ζβ−1)Γq(β)
−
∫ s

0
(s− qt)

(β−1)
q h(t)dqt

Γq(β)

)

≥ ψm

d
p−1sβ−1

[∫ 1

0
ζβ−1(1− qt)

(β−1)
q h(t)dqt−

∫ ζ

0
(ζ − qt)

(β−1)
q h(t)dqt

]
(1− dp−1ζβ−1)Γq(β)

+

∫ 1

s
sβ−1(1− qt)

(β−1)
q h(t)dqt

Γq(β)


≥ ψm

(∫ 1

s
sβ−1(1− qt)

(β−1)
q h(t)dqt

Γq(β)

)
≥ 0,

(3.12)

it follows from (3.12) that

ℏ(x) =
∫ 1

0
(1− qs)

(α−1)
q k(s)dqs− c

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)
− 1

Γq(α)

∫ x

0

(x− qs)(α−1)
q k(s)dqs.

=

∫ 1

0
(1− qs)

(α−1)
q k(s)dqs−

∫ x

0
(x− qs)

(α−1)
q k(s)dqs

Γq(α)

+
c
(∫ 1

0
(1− qs)

(α−1)
q k(s)dqs−

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

)
(1− c)Γq(α)

≥ 0.

Therefore, ℏ(x) is nonnegative. The proof is completed.

Lemma 3.3 Suppose that h ∈ C([0, 1], [0,+∞)) and ℏ(x) is defined by (3.11). Then there exists a constant ρ
such that

max
x∈[0,1]

|ℏ(x)| ≤ ρ max
x∈[0,1]

|cDγ
q ℏ(x)|.

Proof Case 1: γ < α . From (3.11), Definition 2.3, Property 2.6 and Lemma 2.8, one has

cDγ
q ℏ(x) = −cDγ

q I
α
q k(x) = −Iα−γ

q k(x) = − 1

Γq(α− γ)

∫ x

0

(x− qs)(α−γ−1)
q k(s)dqs.
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Hence

max
x∈[0,1]

|cDγ
q ℏ(x)| ≥ |cDγ

q ℏ(1)| =
1

Γq(α− γ)

∫ 1

0

(1− qs)(α−γ−1)
q k(s)dqs. (3.13)

By the definition of ℏ and (3.13), one has

max
x∈[0,1]

|ℏ(x)| ≤ 1

(1− c)Γq(α)

∫ 1

0

(1− qs)(α−1)
q k(s)dqs

≤ Γq(α− γ)

(1− c)Γq(α)

1

Γq(α− γ)

∫ 1

0

(1− qs)(α−γ−1)
q k(s)dqs

≤ ρ max
x∈[0,1]

|cDγ
q ℏ(x)|,

where ρ =
Γq(α−γ)

(1−c)Γq(α)
.

Case 2: γ = α . By the definition of ℏ , Lemmas 2.8 and 3.2, we have∣∣cDγ
q ℏ(x)

∣∣ = ∣∣−cDγ
q I

α
q k(x)

∣∣ = k(x).

Therefore,

max
x∈[0,1]

|ℏ(x)| ≤ 1

(1− c)Γq(α)

∫ 1

0

(1− qs)(α−1)
q k(s)dqs

≤
maxx∈[0,1] |cDγ

q ℏ(x)|
(1− c)Γq(α)

∫ 1

0

(1− qs)(α−1)
q dqs

=
1

[α]q(1− c)Γq(α)
max
x∈[0,1]

|cDγ
q ℏ(x)|

≤ ρ max
x∈[0,1]

|cDγ
q ℏ(x)|.

The proof is completed.

Lemma 3.4 [5](Avery–Peterson theorem) Let P be a cone of a real Banach space B , µ, ν be nonnegative
continuous convex functionals on P , ω be a nonnegative continuous concave functional on P , and ϖ be a
nonnegative continuous functional on P . For l, n1, n2, r > 0 , define the following sets:

P (µ, r) = {x ∈ P |µ(x) < r},

P (µ, ω, n1, r) = {x ∈ P |ω(x) ≥ n1, µ(x) < r},

P (µ, ν, ω, n1, n2, r) = {x ∈ P |ω(x) ≥ n1, ν(x) ≤ n2, µ(x) < r},

and
Q(µ,ϖ, l, r) = {x ∈ P |ϖ(x) ≥ l, µ(x) < r}.

Suppose that the functionals µ, ν, ω,ϖ satisfy ϖ(εx) ≤ εϖ(x) , 0 ≤ ε ≤ 1 , such that for some R, r > 0 ,

ω(x) ≤ ϖ(x), ||x|| ≤ Rµ(x),

646



QIN et al./Turk J Math

for all x ∈ P (µ, r) . Assume also that T : P (µ, r) → P (µ, r) is completely continuous and there exist
l, n1, n2 > 0 with l < m such that
(S1 ) {x ∈ P (µ, ν, ω, n1, n2, r)|ω(x) > n1} ̸= ∅ and ω(Tx) > n1 for x ∈ P (µ, ν, ω, n1, n2, r) ;
(S2 ) ω(Tx) > n1 for x ∈ P (µ, ω, n1, r) and ν(Tx) > n2 ;
(S3 ) 0 /∈ Q(µ,ϖ, l, r) and ϖ(Tx) < l for x ∈ Q(µ,ϖ, l, r) with ϖ(x) = l .
Then T has at least three fixed points x1, x2, x3 ∈ P (µ, r) such that

µ(xi) ≤ r, i = 1, 2, 3;

m < w(x1);

l < ϖ(x2), ω(x2) < n1;

and
ϖ(x3) < l.

Next, we shall consider the existence of multiple positive solutions for the problem (1.1)–(1.2). For
convenience, some denotations and hypotheses are presented as follows:

M =

[
(1− c)

(β)
q − (1− λ)

(β)
q

Γq(β + 1)

]m−1

;

N1 = Γq(α− γ + 1)[(1− ζβ−1dp−1)Γq(β + 1)]m−1;

N2 =
[βm+ 2]qΓq(α)

cβm+2(1− λ)(1− c)
(α−1)
q M

;

N3 = (1− c)Γq(α+ 1)
[
(1− ζβ−1dp−1)Γq(β + 1)

]m−1
,

and

(C1) g(x, y, z) ≤ (rN1)
p−1, (x, y, z) ∈ [0, 1]× [0, ρr]× [−r, r];

(C2) g(x, y, z) > (n1N2)
p−1, (x, y, z) ∈ [0, 1]× [n1, n2]× [−r, r];

(C3) g(x, y, z) < (lN3)
p−1, (x, y, z) ∈ [0, 1]× [0, l]× [−r, r].

Let the Banach space B =
{
u|u ∈ C[0, 1],cDγ

q u(x) ∈ C[0, 1]
}

with the norm

||u|| = max

{
max
x∈[0,1]

|u(x)|, max
x∈[0,1]

|cDγ
q u(x)|

}
,

and define the cone P by

P =

{
u ∈ B|u(x) ≥ 0, max

x∈[0,1]
|u(x)| ≤ ρ max

x∈[0,1]
|cDγ

q u(x)|, x ∈ [0, 1]

}
,

where ρ =
Γq(α−γ)

(1−c)Γq(α)
.
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Theorem 3.5 Let g ∈ C([0, 1]× [0,+∞)× R, [0,+∞)) and the operator T : P → B be defined as

Tu(x) = a1 −
1

Γq(α)

∫ x

0

(x− qs)(α−1)
q k(s)dqs,

where

a1 =

∫ 1

0
(1− qs)

(α−1)
q k(s)ds− c

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)
,

k(s) = ψm

[
−
(

1

Γq(β)

∫ s

0

(s− qt)(β−1)
q g(t, u(t),cDγ

q u(t))dqt+ b1s
β−1

)]
,

and

b1 =
dp−1

∫ ζ

0
(ζ − qt)

(β−1)
q g(t, u(t),cDγ

q u(t))dqt−
∫ 1

0
(1− qt)

(β−1)
q g(t, u(t),cDγ

q u(t))dqt

(1− dp−1ζβ−1)Γq(β)
,

where dp−1ζβ−1 < 1 . Then T : P → P and is completely continuous.

Proof Obviously, in view of Lemmas 3.2 and 3.3, we obtain Tu ≥ 0 and max
x∈[0,1]

|Tu(x)| ≤ ρ max
x∈[0,1]

|cDγ
qTu(x)|

for all u ∈ P . Hence T (P ) ⊂ P .
Now assume Ω is a bounded subset in P , which is to say that there exists a positive constant η such

that ||u|| ≤ η for all u ∈ Ω . Let
L = sup

t∈[0,1],u∈Ω

|g(t, u(t), cDγ
q u(t))|.

Then for all u ∈ Ω , by the definition of k(s) , we have

k(s) ≤ ψm

(∫ 1

0
sβ−1(1− qt)

(β−1)
q g(t, u(t), cDγ

q u(t))dqt

(1− ζβ−1dp−1)Γq(β)

)

≤ ψm

(
Lsβ−1

∫ 1

0
(1− qt)

(β−1)
q dqt

(1− ζβ−1dp−1)Γq(β)

)

≤ ψm

(
L

(1− ζβ−1dp−1)Γq(β + 1)

)

=
Lm−1

[(1− ζβ−1dp−1)Γq(β + 1)]m−1
.

Hence

|Tu(x)| = a1 −
1

Γq(α)

∫ x

0

(x− qs)(α−1)
q k(s)dqs

≤
∫ 1

0
(1− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)

≤
Lm−1

∫ 1

0
(1− qs)

(α−1)
q dqs

(1− c)Γq(α)[(1− ζβ−1dp−1)Γq(β + 1)]m−1

≤ Lm−1

(1− c)Γq(α+ 1)[(1− ζβ−1dp−1)Γq(β + 1)]m−1
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and

|cDγ
qTu(x)| =

1

Γq(α− γ)

∫ x

0

(x− qs)(α−γ−1)
q k(s)dqs

≤
Lm−1

∫ 1

0
(1− qs)

(α−γ−1)
q dqs

Γq(α− γ)[(1− ζβ−1dp−1)Γq(β + 1)]m−1

≤ Lm−1

Γq(α− γ + 1)[(1− ζβ−1dp−1)Γq(β + 1)]m−1
.

Hence, T (Ω) is uniformly bounded.
On the other hand, taking any x1, x2 ∈ [0, 1] with x1 < x2 , for all u ∈ Ω , we have

|Tu(x1)− Tu(x2)| =
1

Γq(α)

∣∣∣∣∫ x2

0

(x2 − qs)(α−1)
q k(s)dqs−

∫ x1

0

(x1 − qs)(α−1)
q k(s)dqs

∣∣∣∣
≤ 1

Γq(α)

∣∣∣∣∫ x1

0

[
(x2 − qs)(α−1)

q − (x1 − qs)(α−1)
q

]
k(s)dqs+

∫ x2

x1

(x2 − qs)(α−1)
q k(s)dqs

∣∣∣∣
≤ 1

Γq(α)

∣∣∣∣∫ 1

0

[
(x2 − qs)(α−1)

q − (x1 − qs)(α−1)
q

]
k(s)dqs+

∫ x2

x1

k(s)dqs

∣∣∣∣
≤
Lm−1

∣∣∣∫ 1

0

[
(x2 − qs)

(α−1)
q − (x1 − qs)

(α−1)
q

]
dqs+ (x2 − x1)

∣∣∣
Γq(α)[(1− ζβ−1dp−1)Γq(β + 1)]m−1

,

(3.14)

Since the function (x−qs)(α−1)
q is continuous with respect to x and s on [0, 1]×[0, 1] , it is uniformly continuous

on [0, 1]× [0, 1] . Hence for any s ∈ [0, 1] , as x1 → x2 , we can get

(x2 − qs)(α−1)
q − (x2 − qs)(α−1)

q ⇒ 0.

It follows that as x1 → x2 , the right-hand side of the above inequality (3.14) tends to zero. And

|cDγ
qTu(x1)− cDγ

qTu(x2)| =
1

Γq(α− γ)

∣∣∣∣∫ x2

0

(x2 − qs)(α−γ−1)
q k(s)dqs−

∫ x1

0

(x1 − qs)(α−γ−1)
q k(s)dqs

∣∣∣∣
≤ 1

Γq(α− γ)

∣∣∣∣∫ x1

0

[
(x2 − qs)(α−γ−1)

q − (x1 − qs)(α−γ−1)
q

]
k(s)dqs

+

∫ x2

x1

(x2 − qs)(α−γ−1)
q k(s)dqs

∣∣∣∣
≤ Lm−1[xα−γ

2 − xα−γ
1 ]

Γq(α− γ)[(1− ζβ−1dp−1)Γq(β + 1)]m−1
.

(3.15)

Similarly, we can get that the right-hand side of the above inequality (3.15) tends to zero with x1 → x2 .
Therefore, T (Ω) is equicontinuous on [0, 1] . We conclude that T : P → P is relatively compact on basis

of Arzela–Ascoli theorem, which completes the proof.

Theorem 3.6 Assume g ∈ C([0, 1] × [0,+∞) × R, [0,+∞)) , dp−1ζβ−1 < 1 , 0 < c < λ < 1 and there exist
constants 0 < l < n1 < n2 < r such that n1

1−λ < n2 . Under the assumptions of (C1) ∼ (C3) , the problem
(1.1)–(1.2) has at least three positive solutions.
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Proof By Theorem 3.5 and Lemma 3.1, we know that T : P → P is completely continuous and problem
(1.1)–(1.2) has a solution u = u(x) if and only if u satisfies the operator equation u = Tu .

Now Let

ω(u) = min
x∈[0,λ]

|u(x)|, µ(u) = max
x∈[0,1]

|cDγ
q u(x)|, ν(u) = ϖ(u) = max

x∈[0,1]
|u(x)|.

Evidently, ω(u) ≤ ϖ(u) . By Lemma 3.3, we have ||u|| ≤ Rµ(u) , R = max{ρ, 1}.

For u ∈ P (µ, r) , by (C1) , one has

k(s) ≤ ψm

(∫ 1

0
sβ−1(1− qt)

(β−1)
q g(t, u(t),cDγ

q u(t))dqt

(1− ζβ−1dp−1)Γq(β)

)

≤ ψm

(
(rN1)

p−1
∫ 1

0
(1− qt)

(β−1)
q dqt

(1− ζβ−1dp−1)Γq(β)

)

≤ rN1

[(1− ζβ−1dp−1)Γq(β + 1)]m−1
,

then

µ(Tu) = max
x∈[0,1]

|cDγ
qTu(x)|

= max
x∈[0,1]

∣∣∣∣− 1

Γq(α− γ)

∫ x

0

(x− qs)(α−γ−1)
q k(s)dqs

∣∣∣∣
≤
∫ 1

0
(1− qs)

(α−γ−1)
q k(s)dqs

Γq(α− γ)

≤
rN1

∫ 1

0
(1− qs)

(α−γ−1)
q dqs

Γq(α− γ)[(1− ζβ−1dp−1)Γq(β + 1)]m−1

=
rN1

Γq(α− γ + 1)[(1− ζβ−1dp−1)Γq(β + 1)]m−1
= r.

Hence T : P (µ, r) → P (µ, r) .

Next, we prove that condition (S1) ∼ (S3) in Lemma 3.4 are true for operator T . Firstly, for constants
function u(x) = n1

1−λ ∈ P (µ, ν, ω, n1, n2, r) . Since it is easy to see µ(u) = 0 ≤ r , ν(u) = n1

1−λ < n2 , and
ω(u) = n1

1−λ > n1 , {u ∈ P (µ, ν, ω, n1, n2, r) : ω(u) > n1} ̸= ∅ .
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If u ∈ P (µ, ν, ω, n1, n2, r) , with the help of (3.12) and (C2) , for any s ∈ [0, c] , we have

k(s) ≥ ψm

(∫ 1

s
sβ−1(1− qt)

(β−1)
q g(t, u(t), cDγ

q u(t))dqt

Γq(β)

)

≥ ψm

(∫ λ

s
sβ−1(1− qt)

(β−1)
q g(t, u(t), cDγ

q u(t))dqt

Γq(β)

)

> ψm

(
(n1N2)

p−1sβ−1
∫ λ

s
(1− qt)

(β−1)
q dqt

Γq(β)

)

=
sβm−β−m+1[(1− s)

(β)
q − (1− λ)

(β)
q ]m−1

[Γq(β + 1)]
m−1 n1N2

≥ sβm−β−m+1[(1− c)
(β)
q − (1− λ)

(β)
q ]m−1

[Γq(β + 1)]
m−1 n1N2

≥Mn1N2s
βm+1,

then
ω(Tu) = min

x∈[0,λ]
|Tu(x)| = |Tu(λ)|

=

∫ 1

0
(1− qs)

(α−1)
q k(s)dqs− c

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)
− 1

Γq(α)

∫ λ

0

(λ− qs)(α−1)
q k(s)dqs.

=

∫ 1

0
(1− qs)

(α−1)
q k(s)dqs−

∫ λ

0
(λ− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)

=

∫ λ

0

[
(1− qs)

(α−1)
q − (λ− qs)

(α−1)
q

]
k(s)dqs+

∫ 1

λ
(1− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)

≥
∫ λ

0
(1− qs)

(α−1)
q (1− λ)k(s)dqs+

∫ 1

λ
(1− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)

>

∫ λ

0
(1− qs)

(α−1)
q (1− λ)k(s)dqs

(1− c)Γq(α)

>

∫ c

0
(1− qs)

(α−1)
q (1− λ)k(s)dqs

(1− c)Γq(α)

≥ (1− λ)Mn1N2

(1− c)Γq(α)

∫ c

0

sβm+1(1− c)(α−1)
q dqs

≥ (1− λ)(1− c)
(α−1)
q Mn1N2c

βm+2

[βm+ 2]qΓq(α)
= n1.

(3.16)

Hence the condition (S1) is satisfied.
Secondly, if u ∈ P (µ, ω, n1, r) and ν(Tu) > n2 , since

ν(Tx) = max
x∈[0,1]

|Tu(x)| ≤
∫ 1

0
(1− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)
,

651



QIN et al./Turk J Math

from (3.16), one has

ω(Tu) = min
x∈[0,λ]

|Tu(x)| = |Tu(λ)|

≥
∫ λ

0
(1− qs)

(α−1)
q (1− λ)k(s)dqs+

∫ 1

λ
(1− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)

≥
(1− λ)

∫ 1

0
(1− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)

≥ (1− λ)ν(Tu)

> (1− λ)n2 > n1.

Hence the condition (S2) is satisfied.
Finally, if u ∈ Q(µ,ϖ, l, r) and ϖ(u) = l , since for all s ∈ [0, 1] , by the definition of k(s) and assumption

(C3) , we have

k(s) ≤ ψm

(∫ 1

0
sβ−1(1− qt)

(β−1)
q g(t, u(t),cDγ

q u(t))dqt

(1− ζβ−1dp−1)Γq(β)

)

< ψm

[
sβ−1(lN3)

p−1
∫ 1

0
(1− qs)

(β−1)
q dqs

(1− ζp−1dβ−1)Γq(β)

]

≤ lN3

[(1− ζp−1dβ−1)Γq(β + 1)]m−1
.

Then by the definition of operator T ,

ϖ(Tu) = max
x∈[0,1]

|Tu(x)| ≤
∫ 1

0
(1− qs)

(α−1)
q k(s)dqs

(1− c)Γq(α)

<
lN3

(1− c)Γq(α+ 1)[(1− ζp−1dβ−1)Γq(β + 1)]m−1
= l.

Furthermore, 0 /∈ Q(µ,ϖ, l, r) obviously. So the condition (S3) also holds. According to the Avery–Peterson
theorem, the problem (1.1)–(1.2) has at least three positive solution. The proof is completed.

4. The method of lower and upper solutions

In this section, we shall give a new existence result of multiple positive solutions for (1.1)–(1.2), applying the
method of lower and upper solutions based on the monotone iterative technique. In order to prove our main
results, we need the following vital lemmas and definition.

Lemma 4.1 For any given function h ∈ C[0, 1] and a, b ∈ R , u(x) ∈ C2
q [0, 1] is a solution of the boundary

value problem 
Dβ

q (ψp(
cDα

q u(x))) = h(x), 0 < x < 1,

cDα
q u(0) = Dqu(0) = 0,

u(1) = a, cDα
q u(1) = b,

(4.1)
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if and only if u(x) satisfies the following integral equation

u(x) = a−
∫ 1

0

G(x, qt)ψm

(
ψp(b)t

β−1 −
∫ 1

0

H(t, qs)h(s)dqs

)
dqt,

where

G(x, qt) =
1

Γq(α)

(1− qt)(α−1)
q − (x− qt)(α−1)

q , 0 ≤ qt ≤ x ≤ 1,

(1− qt)(α−1)
q , 0 ≤ x ≤ qt ≤ 1,

(4.2)

and

H(x, qt) =
1

Γq(β)

x
β−1(1− qt)(β−1)

q − (x− qt)(β−1)
q , 0 ≤ qt ≤ x ≤ 1,

xβ−1(1− qt)(β−1)
q , 0 ≤ x ≤ qt ≤ 1.

(4.3)

Proof Let v(x) := φp(
cDα

q u(x)) . We can decompose (4.1) into the following coupled boundary value problem

{
Dβ

q v(x) = h(x), x ∈ (0, 1),

v(0) = 0, v(1) = ψp(b),
(4.4)

and {cDα
q u(x) = ψm(v(x)), x ∈ (0, 1),

Dqu(0) = 0, u(1) = a.
(4.5)

Taking operator Iβq on both sides of (4.4), by Lemma 2.7, we have

v(x) = C1x
β−1 + C0x

β−2 + Iβq h(x),

where Ci ∈ R, i = 1, 2. By boundary value condition v(0) = 0 , one has C0 = 0 . It follows from v(1) = ψp(b)

that C1 = ψp(b)− Iβq h(1). Then (4.4) has a unique solution

v(x) =
1

Γqβ)

(∫ x

0

(x− qt)(β−1)
q h(t)dqt−

∫ 1

0

xβ−1(1− qt)(β−1)
q h(t)dqt

)
+ ψp(b)x

β−1

= φp(b)x
β−1 −

∫ 1

0

H(x, qt)h(t)dqt.

(4.6)

Similar to (4.6), the boundary value problem (4.5) has a unique solution, which is given by

u(x) = a+
1

Γqα)

(∫ x

0

(x− qt)(α−1)
q ψm(v(t))dqt−

∫ 1

0

(1− qt)(α−1)
q ψm(v(t))dqt

)

= a−
∫ 1

0

G(x, qt)ψm(v(t))dqt

= a−
∫ 1

0

G(x, qt)ψm

(
φp(b)t

β−1 −
∫ 1

0

H(t, qs)h(s)dqs

)
dqt.

(4.7)
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On the other hand, assume u(x) satisfies (4.1) (i.e.(4.7)). From (4.7),

u(x) = a+ Iαq ψm(v(x))−
∫ 1

0

(1− qt)(α−1)
q ψm(v(t))dqt. (4.8)

Obviously, v(t) is continuous on [0, 1] by the continuity of functions h(t) and H(t, qs) . Hence by Lemma 2.12,
we get Iαq ψm(v(x)) ∈ C2[0, 1] , i.e. u(x) ∈ C2[0, 1] . Applying the operator cDα

q on both sides of (4.8), by
Lemma 2.8 we can derive

cDα
q u(x) =

cDα
q I

α
q ψm(v(x)) = ψm

(
ψp(b)x

β−1 −
∫ 1

0

H(x, qt)h(t)dqt

)
.

i.e.

ψp

(
cDα

q u(x)
)
= ψp(b)x

β−1 −
∫ 1

0

H(x, qt)h(t)dqt

=

[
ψp(b)−

∫ 1

0

(1− qs)(β−1)
q h(s)dqs

]
xβ−1 + Iβq h(x).

(4.9)

Taking operator Dβ
q on both sides of (4.9), by Lemmas 2.7 and 2.9, one has

Dβ
q

(
ψp

(
cDα

q u(x)
))

= Dβ
q I

β
q h(x) = h(x).

In addition, it is easy to prove that u(x) satisfies the boundary value conditions in (4.1) which completes
the proof.

Remark 4.2 Let g ∈ C([0, 1] × R × R, [0,+∞)) . From Lemma 4.1, we conclude that if u(x) ∈ C2[0, 1] is a
solution of (1.1)–(1.2) if and only if u(x) satisfies the following integral equation

u(x) = cu(λ)−
∫ 1

0

G(x, qt)ψm

(
ψp(d

cDα
q u(ζ)t

β−1 −
∫ 1

0

H(t, qs)g(s, u(s), cDγ
q u(s))dqs)

)
dqt. (4.10)

Lemma 4.3 [4] Assume the functions G(x, qt) and H(x, qt) are defined by (4.2) and (4.3), respectively. Then
G(x, qt) and H(x, qt) satisfy the following conditions:
(1) G(x, qt) and H(x, qt) are continuous;
(2) G(x, qt) ≥ 0 and H(x, qt) ≥ 0 for all 0 ≤ x, t ≤ 1.

Definition 4.4 We say that a function u(x) is a solution of (1.1)–(1.2) if and only if u(x) ∈ C[0, 1] satisfies
the problem (1.1)–(1.2) almost everywhere on [0, 1] .

Definition 4.5 Assume u(x) ∈ AC2[0, 1] . We say that u(x) is a lower solution of (1.1)–(1.2), if u(x) satisfies
the following inequality 

Dβ
q (ψp(

cDα
q u(x))) ≤ g(x, u(x), cDγ

q u(x)), a.e. 0 < x < 1,

cDα
q u(0) = Dqu(0) = 0,

u(1) ≤ cu(λ), cDα
q u(1) ≥ dcDα

q u(ζ).

(4.11)

654



QIN et al./Turk J Math

Assume u(x) ∈ AC2[0, 1] . We say that u(x) is an upper solution of (1.1)–(1.2), if u(x) satisfies the following
inequality 

Dβ
q (ψp(

cDα
q u(x))) ≥ g(x, u(x), cDγ

q u(x)), a.e. 0 < x < 1,

cDα
q u(0) = Dqu(0) = 0,

u(1) ≥ cu(λ), cDα
q u(1) ≤ dcDα

q u(ζ).

(4.12)

Define X = {u : u ∈ C[0, 1], cDα
q u(x) ∈ C[0, 1], Dqu(0) = 0}, with the norm ||u|| = max

x∈[0,1]
|u(x)| +

max
x∈[0,1]

|cDα
q u(x)|. Then (X, || · ||) is a Banach space. Define a normal cone P by

P = {u : u ∈ X,u(x) ≥ 0, cDγ
q u(x) ≤ 0, x ∈ [0, 1]}.

We define u ⪯ v if and only if v − u ∈ P , for u, v ∈ X .
For our purpose, let us present the following assumption:

(H) g ∈ C([0, 1] × [0,+∞) × (−∞, 0], [0,+∞)), and g(x, y1, z1) ≤ g(x, y2, z2) , for 0 ≤ y1 < y2 , z2 < z1 ≤ 0 ,
for any x ∈ [0, 1] .

Theorem 4.6 Suppose the assumption (H) holds and (1.1)–(1.2) has a nonnegative lower solution u0 ∈ P

and a nonnegative upper solution v0 ∈ P such that u0 ⪯ v0 . Then (1.1)–(1.2) has the maximal lower solution
u∗ and the minimal upper solution v∗ on [u0, v0] ⊂ P , both u∗ and v∗ are positive solutions of (1.1)–(1.2).
Furthermore

0 ≤ u0(x) ≤ u∗(x) ≤ v∗(x) ≤ v0(x).

Proof In the following, our proof process will be divided into three steps.
Step1. We will obtain the lower solution sequence {uk} and the upper solution sequence {vk} .
For u0 ∈ P , we consider the following boundary value problem

Dβ
q (ψp(

cDα
q u1(x))) = g(x, u0(x),

cDγ
q u0(x)), 0 < x < 1,

cDα
q u1(0) = Dqu1(0) = 0,

u1(1) = cu0(λ),
cDα

q u1(1) = dcDα
q u0(ζ).

(4.13)

By Lemma 4.1, (4.13) has an unique solution u1(x) . Since u0 is a lower solution of (4.1), we have
Dβ

q (ψp(
cDα

q u0(x))) ≤ g(x, u0(x),
cDγ

q u0(x)), 0 < x < 1,

cDα
q u0(0) = Dqu0(0) = 0,

u0(1) ≤ cu(λ), cDα
q u0(1) ≥ dcDα

q u0(ζ).

(4.14)

It follows from (4.13) minus (4.14) that
Dβ

q (ψp(
cDα

q u1(x))− ψp(
cDα

q u0(x))) ≥ 0, 0 < x < 1,

cDα
q u1(0)− cDα

q u0(0) = Dqu1(0)−Dqu0(0) = 0,

u1(1)− u0(1) ≥ 0, cDα
q u1(1)− cDα

q u0(1) ≤ 0.

(4.15)
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Now, let ω(x) := ψp(
cDα

q u1(x)) − ψp(
cDα

q u0(x)) . It is clear that ω(0) = 0 by the boundary value
condition cDα

q u0(0)− cDα
q u0(0) = 0 . And from cDα

q u1(1)− cDα
q u0(1) ≤ 0 , we can get ω(1) ≤ 0 .

Next, let ϖ(x) := Dβ
q

(
ψp(

cDα
q u1(x)

)
− ψp(

cDα
q u0(x))) and ψp(b) = ω(1) . Then we can obtain the

following boundary value problem {
Dβ

q ω(x) = ϖ(x) ≥ 0, 0 < x < 1,

ω(0) = 0, ω(1) = ψp(b) ≤ 0.

By (4.4) and Lemma 4.3, one has

ω(x) = ψp(
cDα

q u1(x))− ψp(
cDα

q u0(x)) = ψp(b)−
∫ 1

0

H(x, qt)h(t)dqt ≤ 0.

Hence by the monotonicity of p -Laplacian operator φp , we have

cDα
q (u1(x)− u0(x)) =

cDα
q u0(x)− cDα

q u1(x) ≤ 0, x ∈ [0, 1]. (4.16)

Let δ(x) := cDα
q (u1(x)− u0(x)). Then we obtain the following boundary value problem

{cDα
q (u1(x)− u0(x)) = δ(x) ≤ 0, 0 < x < 1,

Dqu1(0)−Dqu0(0) = 0, u1(1)− u0(1) := a ≥ 0.

Similar to (4.5) and Lemma 4.3, we can get

u1(x)− u0(x) = a−
∫ 1

0

G(x, qt)δ(t)dqt ≥ 0.

Besides, from (4.16), we obtain

cDγ
q (u1(x)− u0(x)) = Iα−γ

q
cDα

q (u1(x)− u0(x)) ≤ 0, x ∈ [0, 1].

To sum up, we can get that u0 ⪯ u1 .
From (4.13) and (H) , we have

Dβ
q (ψp(

cDα
q u1(x))) = g(x, u0(x),

cDγ
q u0(x)) ≤ g(x, u1(x),

cDγ
q u1(x)), 0 < x < 1,

cDα
q u1(0) = Dqu1(0) = 0,

u1(1) = cu0(λ) ≤ cu1(λ),
cDα

q u1(1) = dcDα
q u0(ζ) ≥ dcDα

q u1(ζ).

It is obvious that u1(x) is a lower solution of (1.1)–(1.2) by the Definition 4.5.
Starting from the initial function u0(x) , by the following iterative scheme

Dβ
q (ψp(

cDα
q uk(x))) = g(x, uk−1(x),

cDγ
q uk−1(x)), 0 < x < 1,

cDα
q uk(0) = Dquk(0) = 0,

u1(1) = cuk−1(λ),
cDα

q uk(1) = dcDα
q uk−1(ζ),

(4.17)
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we obtain a sequence {uk} , k ∈ N , where u = uk(x) are lower solutions of (1.1), and satisfy uk−1 ⪯ uk , that
is to say that {uk} is monotonically increasing.

Similar to the above inference procedure, starting from the given upper solution v0 ∈ P , by the following
iterative scheme 

Dβ
q (ψp(

cDα
q vk(x))) = g(x, vk−1(x),

cDγ
q vk−1(x)), 0 < x < 1,

cDα
q vk(0) = Dqvk(0) = 0,

v1(1) = cvk−1(λ),
cDα

q vk(1) = dcDα
q vk−1(ζ),

(4.18)

where k ∈ N , we can obtain the sequence {vk} which are lower solutions of (1.1)–(1.2) and satisfy vk−1 ⪰ vk ,
namely, {vk} is monotonically decreasing.

Step2. We will prove that uk ⪯ vk by mathematical induction. Suppose uk−1 ⪯ vk−1 , k ∈ N . Then
uk−1(x) ≤ vk−1(x) and cDγ

q uk−1(x) ≥ cDγ
q vk−1(x) . Hence from (H) , one has

g
(
x, uk−1(x),

cDγ
q uk−1(x)

)
≤ g

(
x, vk−1(x),

cDγ
q vk−1(x)

)
.

By (4.18) and (4.17), it yields that
Dβ

q (ψp(
cDα

q vk(x))− ψp(
cDα

q uk(x))) = g(x, vk−1(x),
cDγ

q vk−1(x))− g(x, uk−1(x),
cDγ

q uk−1(x)) ≥ 0,

cDα
q vk(0)− cDα

q uk(0) = Dqvk(0)−Dquk(0) = 0,

vk(1)− uk(1) ≥ 0, cDα
q vk(1)− cDα

q uk(1) ≤ 0.

Similar to (4.15), we can get uk ⪯ vk . Hence

u0 ⪯ u1 ⪯ · · · ⪯ uk ⪯ · · · ⪯ · · · ⪯ vk ⪯ · · · ⪯ v1 ⪯ v0.

Since P is a normal cone on X , the {uk} and {vk} are uniformly bounded. And it is easy to see that
{uk} and {vk} are equicontinuous by the continuity of functions H, G, φp, φm and g . Thus, the sequence
{uk} and {vk} are relatively compact. Then there exist u∗ and v∗ such that

lim
k→∞

uk = u∗, lim
k→∞

cDα
q uk = cDα

q u
∗, (4.19)

and
lim
k→∞

vk = v∗, lim
k→∞

cDα
q vk = cDα

q v
∗. (4.20)

Further since cDγ
q uk(x) = Iα−γ

q
cDα

q uk(x) and cDγ
q vk(x) = Iα−γ

q
cDα

q vk(x) we have

lim
k→∞

cDγ
q uk = cDγ

q u
∗ and lim

k→∞
cDγ

q vk = cDγ
q v

∗, (4.21)

that is to say that u∗ is the maximum lower solution, v∗ is the minimum upper solution of (1.1)–(1.2) in
[u0, v0] ⊂ P satisfying u∗ ⪯ v∗ .

Step 3. We will prove that u∗ and v∗ are the solutions of (1.1).
It follows from (4.17) and Lemma 4.1 that

uk(x) = cuk−1(λ)−
∫ 1

0

G(x, qt)φq

(
ψp

(
dcDα

q uk−1(ζ)
)
tβ−1 −

∫ 1

0

H(t, qs)g
(
x, uk−1(x),

cDγ
q uk−1(x)

)
dqs

)
dqt,
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Let k → +∞ . By (4.19), (4.21) and the continuity of φp, g, G, H , one has

u∗(x) = cuk−1(λ)−
∫ 1

0

G(x, qt)φq

(
ψp

(
dcDα

q u
∗(ζ)

)
tβ−1 −

∫ 1

0

H(t, qs)g
(
x, u∗(x), cDγ

q u
∗(x)

)
dqs

)
dqt,

which implies that u∗ is a solution of (1.1)–(1.2).
In the same way, we can also prove that v∗ is a solution of (1.1)–(1.2). Besides,

0 ≤ u0(x) ≤ u∗(x) ≤ v∗(x) ≤ v0(x),

The proof is completed.

5. Examples

Example 5.1 For equation (1.1), let q = 1
2 , α = β = 3

2 , γ = 1
2 , λ = 2

3 , ζ = 1
4 , c = 1

2 , d = 1 , p = m = 2

and

g(x, y, z) =



x

20
+

1

100
sin z, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

x

20
+ 3200(y − 1) +

1

100
sin z, 0 ≤ x ≤ 1, 1 ≤ y ≤ 2,

x

20
+ 3200 + 20(y − 2) +

1

100
sin z, 0 ≤ x ≤ 1, 2 ≤ y ≤ 7,

x

20
+ 3300 +

1

100
sin z, 0 ≤ x ≤ 1, y > 7.

(5.1)

By simple computation, we obtain ρ =
Γq(α−γ)

(1−c)Γq(α)
≈ 1.94544 ,

M =

[
(1− c)

(β)
q − (1− λ)

(β)
q

Γq(β + 1)

]m−1

≈ 0.10447,

N1 = Γq(α− γ + 1)[(1− ζβ−1dp−1)Γq(β + 1)]m−1 = 0.7710336,

N2 =
[βm+ 2]qΓq(α)

cβm+2(1− λ)(1− c)
(α−1)
q M

≈ 1294.25065,

N3 = (1− c)Γq(α+ 1)[(1− ζβ−1dp−1)Γq(β + 1)]m−1 = 0.59449.

In addition, if we take l = 1 , n1 = 2 , n2 = 7 and r = 5000 , then g(x, y, z) satisfies the following conditions:

g(x, y, z) ≤ (rN1)
p−1 = 3855.168, (x, y, z) ∈ [0, 1]× [0, ρr]× [−5000, 5000],

g(x, y, z) > (n1N2)
p−1 ≈ 2588.50130, (x, y, z) ∈ [0, 1]× [n1, n2]× [−5000, 5000],

g(x, y, z) < (lN3)
p−1 = 0.59449, (x, y, z) ∈ [0, 1]× [0, l]× [−5000, 5000].

Then all conditions of Theorem 3.6 are satisfied. Thus, the problem (1.1)–(1.2) has at least three fixed point
u1(x) , u2(x) and u3(x) .

658



QIN et al./Turk J Math

Example 5.2 Consider the following four-point boundary value problem of fractional q -difference equation with
p-Laplacian operator 

D
3
2
q

(
ψp

(
cD

3
2
q u(x)

))
= g

(
x, u(x), cD

3
2
q u(x)

)
, 0 < x < 1,

cD
3
2
q u(0) = Dqu(0) = 0,

u(1) =
1

5
u

(
1

3

)
, cD

3
2
q u(1) = 2cD

3
2
q u

(
16

25

)
.

(5.2)

Let q = 1
2 and p = 2 . Then ψp(

cD
3
2
q u(x)) = cD

3
2
q u(x). Assume that g(x, y, z) = 2 − e−y − ez, which satisfies

the assumption (H) . We can easily check that u0 = u0(x) ≡ 0 is a lower solution of (5.2). Let v0(x) = 1+ x3 .
It is easy to see

Dq(1 + x3) =
1− q3

1− q
x =

7

4
x2, D2

q(1 + x3) = Dq(
7

4
x2) =

21

8
x,D3

q(1 + x3) = Dq(
21

8
x) =

21

8
,

then by the definitions of fractional q -integral and Caputo type q -derivative,

cD
3
2
q v0(x) =

cD
3
2
q (1 + x3) = I0.5q D2

q(1 + x3)

=
1

Γq(0.5)

∫ x

0

(x− qt)(−0.5)
q

21

8
tdqt

=
21

8

(1− q)

Γq(0.5)
x1.5

∞∑
k=0

q2k(1− qk+1)(−0.5)
q ,

D
3
2
q

(
ψp

(
cD

3
2
q v0(x)

))
= D

3
2
q

(
cD

3
2
q v0(x)

)
= D2

qIqD
2
qv0(x) =

21

8
.

Obviously, D
3
2
q

(
ψp

(
cD

3
2
q v0(x)

))
≥ g(x, u(x),cDγ

q u(x)). In addition, by simple calculation, we can get

cD
3
2
q v0(0) = Dqv0(0) = 0, v0(1) ≥

1

5
v0

(
1

3

)
, and cD

3
2
q v0(1) ≤ 2cD

3
2
q v0

(
16

25

)
.

Hence v0(x) is an upper solution of (5.2). According to Theorem 4.6, (5.2) has the maximal lower solution u∗

and the minimal upper solution v∗ . And both u∗ and v∗ are solutions of (5.2).
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