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Abstract: As per 2016 updates by World Health Organization (WHO) on cancer disease, gliomas are categorized and
further treated based on genomic mutations. The imaging modalities support a complimentary but immediate noninvasive
diagnosis of cancer based on genetic mutations. Our aim is to train a deep convolutional neural network for isocitrate
dehydrogenase (IDH) genotyping of glioma by auto-extracting the most discriminative features from magnetic resonance
imaging (MRI) volumes. MR imaging data of total 217 patients were obtained from The Cancer Imaging Archives
(TCIA) of high and low-grade gliomas. A 3-pathway convolutional neural network was trained for IDH classification.
The multipath neural network, consisting of one shallow and two deep neural network paths, is used to auto-extract the
significant imaging features for successful IDH discrimination into IDH mutant and wild type. An accuracy of 93.67%
and cross-entropy loss of 0.052 is achieved for IDH classification. The results of 3-pathway convolutional neural network
(CNN) are better than the results achieved from individual paths of 3-pathway model. The results have demonstrated
the multipath convolutional neural networks as state-of-the-art method with simple design to predict IDH genotypes in
glioma with auto-extraction of radiogenomic features.

Key words: Glioma, magnetic resonance imaging, radiogenomic analysis, multipath convolutional neural network,
isocitrate dehydrogenase

1. Introduction
Predictive markers based on genetic signatures have recently gained a lot of attention in glioma cancer analysis
because of revised classification of gliomas by World Health Organization (WHO) in the year 2016. Among these
biomarkers, isocitrate dehydrogenase (IDH) mutation is a valuable prognostic and diagnostic biomarker which
helps to predict for severity of diffuse glioma. It has become apparent that the experimental heterogeneity
is related with IDH genotypes and with different survival rates for IDH mutant and wild type patients. In
clinical exercise, invasive biopsy needs to be performed to confirm the genetic profiles of cancerous tumor
using immunohistopathology methods, which are time consuming and costlier. However, such validation based
on tissue sampling can be challenging, as it is evident from report by The Cancer Genome Atlas (TCGA)
that around 35% in vivo surgeries obtained adequate tissue samples to confirm the IDH class [1]. Recently,
noninvasive prediction using magnetic resonance imaging (MRI) is proved as more helpful for initial diagnosis
and immediate treatment planning for cancer patients [2, 3]. The various machine learning algorithms [4–6] or
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deep learning techniques [7, 8] have been applied to radiogenomic studies of glioma to predict genotypes and
survival outcomes. Among these, deep learning methods have demonstrated outperforming results as compared
to classical machine learning approaches.

Machine learning based methods use hand crafted features by designing a classical pipeline, with which
features are manually extracted and then given to a classifier. For these methods, classifier is trained with an
assumption that input attributes have an adequate discriminative strength, since the behavioural working of
classifier is independent from nature of those attributes. Such methods are challenging with many traditional
machine learning techniques because of heavy computation to extract large number of features. This may
improve the performance of model, but with large space and time complexities by making those models deliberate
to compute and expensive.

An alternate method is based on deep learning techniques used for extracting the task-adapted features.
It learns highly complex features from original raw data hierarchically and it has been revealed to surpass
at learning such feature hierarchies. Deep learning techniques have been extensively accepted for learning
task adaptive features in tumor segmentation or classification applications and these have demonstrated the
outstanding performances. Although these performances have been remarkable, additional work is required
to make these methods to get fully adopted in the clinical practice. Various deep learning models have been
evaluated using different neural networks like convolutional neural network (CNN), recurrent neural network
(RNN), stacked auto-encoder, long short-term memory (LSTM) etc. The models using CNNs are proven
as best methods to handle the MR imaging-based classification tasks [9]. With this motivation, our study
present an effective multipath CNN model with simple design for IDH discrimination and it is evaluated here
using performance metrics including accuracy and cross-entropy loss. The multiple cascaded hidden layers
of convolutional neural network activate the intermediate neurons by applying the weights in overlapping
regions within a visual field of specific size. Each layer of network converts the raw input data into more
complex, abstract representations in hierarchic manner. The set of features with different representations can
be individually caught with different sequential paths of multipath network and such multipath network can learn
more comprehensive, elusive features than a sequential network with single path. Therefore, it is hypothesized
that our trained 3-pathway CNN model can predict IDH mutation in glioma patients by combining features
with different representations extracted from three different paths. The model utilizes the global (top-level
with abstract details) features extracted from shallow path of network and local (low-level with tiny details)
features extracted from deep path of the network. Such an effective and simple model will definitely facilitate
an imminent clinical interpretability of glioma cancer, which is a major challenge in this field. The major
contributions of our study are listed below.

• IDH mutational status of glioma is a significant predictive biomarker to understand the severity of tumor
and to decide its therapy accordingly. We have developed a noninvasive predictive model for IDH subtyping
of glioma into mutant and wild type.

• We have designed a simple but effective 3-pathway CNN-based deep neural network. It learns local details
as well as large contextual information by analysing multimodal data of routine MRI sequences and it
performs fusion of such details for better IDH discrimination.

2. Related work
Nowadays, the role of radiomics based image processing has gained more importance in the field of medical
data analysis using variety of MR imaging techniques [10]. Machine learning based experiments are gen-
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erally designed with typical workflow including feature extraction, feature reduction with selective features,
supervised or unsupervised feature learning for classification or regression, evaluation of model [11]. Various
supervised/unsupervised/clustering techniques such as naive Bayes classifier, support vector machine, artificial
neural networks, random forests, linear regression, logistic regression, k-means clustering, nearest neighbors,
etc. are used to investigate the underlying biology of brain tumors [12–15]. However, the machine learning
based methods are time consuming due to handcrafting of features and those also need expert interventions.
Besides, the deep learning techniques are capable of auto-learning the task-adapted features without the need
of an external feature engineering.

Few current research works have gained an effective attention over deep learning methods to solve the
problem of IDH genotyping of glioma. The fusion of multimodal MRI data with deep learning methods enhanced
the performance accuracy of few diagnostic model designs. Now, deep learning has become advanced and
powerful predictive analytics tool with autonomous self-learning capability [16]. Deep learning methods discover
useful insight from input data attributes automatically in hierarchical manner from local to global representation.
Such useful, auto-derived features are proved as very important for further prediction with classification or
regression tasks [17]. Deep learning-based techniques mainly include convolutional neural networks, deep belief
networks, recurrent neural networks, long short-term memory, etc. [18].

Unlike the majority of studies, Yogananda et al. used complex 3D dense UNET for simultaneous voxel-
wise segmentation as well as IDH classification, and demonstrated the cross-validated accuracy of 97.11% using
only T2-weighted (T2w) 3D patches. The patches of size 32x32x32 were trained and tested using three-fold
cross validation to perform voxel-wise classification by providing label 1 to IDH mutated voxel and label 2
to IDH wild voxel. Finally the majority voting over the voxel-wise classified labels has decided the final IDH
class for whole tumor volume [3]. The prediction of IDH genotype with 1p/19q loss and methylguanine-
DNA methyltransferase (MGMT) promotor methylation in tumorigenesis was well measured with leveraged
performance of deep convolutional neural networks. It has used principal component analysis approach to
perform the selection of nonredundant and highly sensitive features extracted from last hidden layer [19]. The
transfer learning approach to reuse pretrained deep neural networks was proved as a potential method to
perform MRI image analysis for glioma grading assessment. The feature analysis, learnt from large, colored,
natural ImageNet dataset, has reliably predicted glioma grading when already inferred feature knowledge was
shifted to small, gray, MRI image dataset for analysis [20]. The predictive performance of 34-layered residual
network was cross-validated with three different network designs. It includes single combined network design
using multiplane multimodal MR input, separate network design using plane wise MRI and separate network
design using modality wise MRI data. The result of deep learning model with combined modality network
design yielded an accuracy of 85.7% during testing, which was enhanced up to 89.1% with age as an additional
contributory marker [21]. There are more chances of overfitting of deep neural network with small data due
to high predictive capacity of model. But data augmentation techniques aid to increase the size of samples
to avoid overfitting. The multiscale CNN used in the study by [22] is a 5-pathway model with different
convolutional kernel sizes, which finally combines 5 output feature vectors in final layers of CNN. This model
evaluated overfitted results with small database without data augmentation, but performed accurately with
30-fold augmented data. In the study by [23] high responsive filters are selected from last layer of CNN to
extract the appropriate distinctive features and such deep CNN sufficiently discriminated IDH based glioma
types. The effectiveness of deep learning architectures with 3D models was enhanced to classify IDH genotype
dealing with 3D multimodal medical images and the transfer learning technique further evaluated an improved
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generalizability of such model to predict the conventional histological grading [24]. A very deep design of CNN
model (ResNet) with the residual learning using skip connections solved an issue of performance degradation,
which occurred due to the problem of vanishing gradients [25]. The high recognition accuracy is yielded using
residual CNN, which operated directly on whole 2D images of glioma without any need of segmentation task
to extract the region of interest (ROI) [26]. Such residual network design improved the performance for IDH
prediction as well as it provided detailed insight to discriminate tumor molecular class by exploring internal
working of CNN and looking at the activation map of higher layer of network. Similar work is presented to
highlight the use of activation maps, which experimented to know the features learnt by intermediate layers
of CNN and captured more interpretability of the model, instead of using it as a black box [27]. Recently, an
impact of motion corruption on IDH categorization is evaluated and an improvement is demonstrated by the
motion-corrected deep model by Nalawade et al. [28]. The model designed by Pasquini et al. is a network
specifically for glioblastoma cancer to categorize IDH-based classes. Their 2D CNN architecture was made up
from four convolutional blocks containing total 7 convolution layers sequentially, which are further followed by
two dense layers and softmax layer to generate two-class probability map. It produced highest performance for
T1-weighted (T1w) and fluid attenuated inversion recovery (FLAIR) MRI sequences with almost same accuracy
of 77% for both the MR modalities [29]. Few models have performed genomic classification of glioma by using
the combined set of hand-engineered features and auto-extracted features, which are learnt by intermediate
convolution layers of deep networks. The presence of combined mutations of IDH and TERT promoter is
predicted by designing a support vector machine based model and this has used combined set of features: texture
features extracted from fifth convolution layer of pretrained AlexNet and conventional radiomic features [30].
The multitask learning is carried out for simultaneous prediction of histological grade, IDH mutational status
and 1p/19q codeletion status of glioma tumor using CNN-based pipeline and it yielded classification AUC of
0.94, 0.86 and 0.87 on independent test dataset for grade, IDH, 1p/19q status, respectively [31]. The studies
related to cancer biology found that IDH mutant type of glioma exhibits less aggressive carcinogenesis process,
related to glioma formation and further growth, as compared to more aggressive behaviour by IDH wild type
[32, 33]. It is also found by few studies about better survival rate for IDH mutant class as compared with IDH
wild type and these have used deep CNN models for survival prediction [34, 35]. In this study, we employ
simple, but an improved model that can detect elusive differences between IDH classes to support an accurate
discrimination of IDH genotype. Our deep neural network-based work proposes multipath convolutional neural
network with the capability to auto-discriminate IDH types of glioma. We, therefore, evaluate a 3-pathway
CNN model for the molecular classification of high-grade glioma (HGG) and low-grade glioma (LGG).

Although there are few recent studies either using deep learning model [3] or radiomic model [36] which
have demonstrated higher accuracy or specificity. These existing models are either complex with a greater
number of neural network layers (majorly fully connected) or these have used rare, costly MRI modality
like diffusion or perfusion weighted MRI. But the proposed deep learning-based model has come with simple
multipath network design with hardly maximum 13 convolution layers and with 4-sequence MRI data, which is
obtained using widely available, routinely performed MRI modalities.

3. Material and method
3.1. Data preparation

MR imaging data and its corresponding genomic details were fetched from the publicly available database:
The Cancer Imaging Archive and The Cancer Genome Atlas [37, 38]. Only the presurgical volumes of four
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MRI modalities including T1-weighted, T1-weighted with contrast enhanced (T1ce), T2-weighted and fluid
attenuated inversion recovery were used in the study. The dataset consisted of 217 patients of high-grade
glioma and low-grade glioma including 97 IDH mutant and 120 IDH wild type. The four modal MRI dataset of
217 patients contain total 768 volumes of size 200×200×40. Each original MRI volume, which is downloaded
from TCIA website, is of size 240×240×155. The 3D patch, consisting of 40 consecutive slices, is extracted
from original 3D volume containing maximum tumor region. This patch extraction is automated using python
implementations. Each tumor comprises three different regions namely enhancing tumor, nonenhancing tumor or
necrosis region and region of edema. The attributes of each region varies as per IDH mutational status. Further,
the preprocessing was applied by performing N4 bias field correction [39] to eliminate the in-homogeneity, and
by performing normalization of image intensities to zero mean and unit variance [40].

3.2. Method
A model with three path CNN approach is defined here for IDH classification task. The proposed methodology
used the CNN architecture as shown in Figure 1.

3D volumes, each of size 240×240× 40, taken from four MRI modalities are provided as an input to the
model. Every scan was preprocessed to be zero mean and unit variance. The multiple paths help to acquire
the local as well as global level features and thus help the neural network to learn more effectively. This type
of architecture is good for such applications having sparse labels. The three pathways are decided considering
small, medium, large receptive field sizes in order to estimate global and local dependencies of neighbouring
pixels. Path-1 has more focused on extraction of global-level contextual information and path-2, path-3 have
coarse-grained the local dependency of neighbourhood regions. Finally, the impact of different receptive field
sizes was fused by concatenating the output of last layer of every path in the next step. The number of
parameters for our model is 179, 963, and 416. The parameters used in layers of individual path and complete
pathway are shown in Table 1.

The suitable network layout and internal design is decided by using random formations and parameter
tuning method. The hyperparameter selection is performed intuitively with random search. Selection through
random search is faster than grid search method and human intuition is still helpful in this case. The
hyperparameter tuning is done using HyperModel instances of Keras Tuner library. The parameters such
as dropout rate, number of activation kernels in the convolutional layer, activation function type, number of
neurons for dense layer are optimized by specifying the maximum, minimum, default or range values. Such
prior knowledge about every parameter is incorporated in the search space of Tuner. For example, to set for
number of activation kernels, the range was provided from 64 to 512. The learning rate was also tweaked on a
log scale by specifying the range values from 1e-5 to 1e-2. The number of paths and number of convolutional
layers in each path were decided with random configurations and the model was fit on subset of training samples
to speed up the search process.

Detailed network design is as follows: The images of size 200×200×40 from four different MRI modalities
is provided randomly to the input layer in the batches of eight images. In path-1, the activation kernels of size
13×13 and 9×9 are applied to perform convolution on input images in two consecutive convolutional layers
with no padding and rectified linear unit(ReLu) activation function at each layer. The second layer is followed
by 2×2 max-pooling and dropout layer with removal of 30% of vanishing gradients. The dropout layer is placed
to avoid the problem of overfitting. The number of activation filters used are 64 in both convolutional layers
of path-1. The output size of image after 2nd layer is 43×43×128. This path-1 helps to extract the high-level
features by making use of filters with bigger size. Then, in path-2, from first to fourth convolutional layer, the
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Figure 1. Architecture of three pathway convolutional neural network. (a) It shows the architecture of convolutional
layers used in three different paths, namely, path-1, path-2, and path-3. Each convolution block presents the details
of elements used at any particular layer. The details are such as size of activation filters, number of filters, activation
function name, pooling layer, dropout layer. (b) It shows the architecture of complete 3-pathway CNN. It represents the
concatenation layer, followed by convolution layer and dense layers to provide binary classification output.

number of activation filters used are 64, 64, 128, 128. These filters used in four layers are of size 9×9, 7×7, 5×5
and 3×3 respectively. After every two convolutional layers, maximum pooling of size 2×2 is applied, which is
followed by dropout layer to avoid the overfitted learning of network. The fourth convolution layer of path-2
has generated output of size 43×43×128. Further, with path-3, an activation maps are generated by applying
the convolutional filters of size 3×3 in six consecutive convolutional layers by using 128, 128, 256, 256, 512, 512
number of filters successively. The max-pooling of size 2×2 is applied at second and fourth convolution layers,
which is followed by dropout layer with dropout rate of 25% and 30%, respectively. The sixth convolution
layer is simply followed by dropout layer with rate of 40% and it produced an output of size 43×43×512. The
path-2 and path-3, with its complex and deep design, helps to capture the low-level features by understanding
the local regions differently in better ways. Furthermore, the feature vectors of size 128, 128, 512 generated
at the end of path-1, path-2, path-3 are combined together to create a large feature vector comprising total
768 local as well as global features. The merged feature map from all three convolution paths is connected to

2733



GORE and JAGTAP/Turk J Elec Eng & Comp Sci

Table 1. Summary of parameters used in layers of individual path and complete 3-pathway model.

Parameters Path-1 Path-2 Path-3 Complete 3-pathway
model

Number of
convolution
layers

2 4 6 13

Names of
layers

1st and 2nd
layers

1st, 2nd, 3rd, and
4th layers

1st, 2nd, 3rd ,4th,
5th, and 6th layers

13th layer after
merging three paths

Number of
activation
kernels used

64 in 1st and
2nd layer

64 in 1st and 2nd
layer, 128 in 3rd
and 4th layer

128 in 1st and 2nd
layer, 256 in 3rd and
4th layer, 512 in 5th
and 6th layer

Total 2816 kernels:
2304 in three
individual paths + 512
in 13th convolution
layer

Size of
activation
kernels

13×13 and 9×9 9×9, 7×7, 5×5 and
3×3

3×3 21×21 in 13th layer

Activation
function
used

ReLu in each
layer

ReLu in each layer ReLu in each layer ReLu in all 13
convolution layers

Pooling type
used and its
size

Maximum
pooling with 2
x 2 size in 2nd
layer

Maximum pooling
with 2 x 2 size in
2nd and 4th layers

Maximum pooling
with 2 x 2 size in 2nd
and 4th layers

Total 5 pooling
layers of three
individual paths

Dropout
rates used

30% in 2nd layer 25% in 2nd layer
and 30% in 4th
layer

25% in 2nd layer, 30%
in 4th layer and 40%
in 6th layer

25%, 30%, 40% in
three individual paths
and 50% in 1st dense
layer

Number of
dense layers

– – – 2

Number of
neurons in
dense layers

– – – 50 neurons in first layer
and 2 neurons in
second layer

one more convolution layer designed with 512 activation kernels of size 21 × 21, which is followed by dropout
layer with 50% dropout rate. Finally, the output of this convolution layer is inputted to first fully connected
(dense) layer with 50 neurons. Such flattened output is fed as an input to final dense layer with two neurons
to generate the probabilities for two classes as IDH mutant and IDH wild type. ReLu activation function is
used in all 13 convolution layers and one dense layer. And the softmax activation function is used with final
dense layer to generate two-class classification output. The model hyperparameters are selected after careful
tuning of network empirically. The weights for all layers are initialized using zero mean normal distribution
initializer with standard deviation of value 0.01 and the biases are initialized with zero value. The adaptive
moment estimation (Adam) optimizer is used with learning rate of value 0.00001.

An average classification accuracy was used to measure classification results and used the categorical
cross-entropy to calculate the network error loss. The dataset is partitioned into three subsets using train-
test split during experimentation: 60% data for training, 20% for validation and 20% for test. Python and
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Keras library with TensorFlow backend was used for the experimentation. The experimentation was conducted
using 64-bit Windows10 operating system on Intel core i5 9th generation machine with single NVIDIA 4GB
GEFORCE GTX 1650 GPU.

4. Results
The proposed 3-pathway architecture achieved f1-score of 92.19%, precision value of 97.01%, recall value of
87.83%, validation accuracy of 94.25% and test accuracy of 93.67%. Whereas an individual paths employed the
validation accuracy, which is dropped down to 78.73% and achieved test accuracy up to 81.03%. The highest
accuracy up to 99.78% are obtained with training phase during experimentation. The results of 3-pathway CNN
model along with the results obtained for each individual path of 3-pathway model are shown in Tables 2 and
3. Accuracy values obtained during training, validation and testing phase are tabulated in Table 2.

Table 2. Accuracy attained during training, validation and testing phase.

Model Training accuracy(%) Validation accuracy(%) Testing accuracy(%)
Path-1 of 3-pathway model 93.26 78.73 81.03
Path-2 of 3-pathway model 94.42 87.35 89.08
Path-3 of 3-pathway model 94.42 87.35 87.93
3-pathway CNN model 99.78 94.25 93.67

Table 3 has shown the cross-entropy loss obtained during training, validation and testing phase for 3-
pathway model as well as for every individual path of 3-pathway model. The 3-pathway model has achieved
loss of 0.052 while testing the performance of model with separate patient cohort of 174 subjects.

Table 3. Cross-entropy loss attained during training, validation and testing phase.

Model Training loss Validation loss Testing loss
Path-1 of 3-pathway model 0.070 0.180 0.164
Path-2 of 3-pathway model 0.055 0.119 0.114
Path-3 of 3-pathway model 0.056 0.120 0.119
3-pathway CNN model 0.002 0.051 0.052

The confusion matrix of 3-pathway model is shown in Figure 2.
Since the global or upper level features (abstract representation) extracted with shallow network (path-1)

and local or low level features (fine-detailed representation) extracted with deeper network (path-2 and path-3)
are combined together in 3-pathway model. Therefore, it can be observed from the table that the 3-pathway
architecture has achieved better results as compared to individual path’s performance for accuracy as well as for
loss values. The graphs for all performance measures calculated for our 3-pathway model are shown in Figure 3.

The intermediate feature maps generated by an individual path of 3-pathway CNN for one sample test
subject of IDH wild type are visualized using Keras library and are shown in Figure 4.

It can be seen that as network goes more deeper from path-1 to path-3, the more detailed and abstract
information is represented by path-3 as compared to other two paths. It is also observed that few activation
filters have not learnt anything during training. Therefore, visualization of such activation maps is blank in
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Figure 2. Confusion matrix of 3-pathway model. It shows the number of actual labels on Y-axis and the number of
predicted labels on X-axis for IDH mutant and IDH wild type.

Figure 2. It is also seen that majority of IDH wild type tumors encompasses edema region in addition to
enhancing core area, whereas majority of IDH mutant tumors involves the enhancing core region.

The performance of 3-pathway CNN is compared with existing state-of-the-art methods as shown in
Table 4, where all models are evaluated for IDH binary classification.

The comparison is done with respect to various criteria like model performance, dataset and its size, MRI
modalities, methodology. It can be observed that the 3-pathway CNN model achieved improved performance
as compared with existing methods. It can also be observed that the proposed model carries simple design as
compared to existing models in terms of number of convolutional layers. This leads to less run-time complexities.
Also the use of multiparametric data, which is obtained from routine MRI sequences, extends the generalizability
of model by making it more robust. Moreover, the inclusion of high-grade as well as low-grade glioma expands the
capacity of model to encompass heterogeneous tumor samples in clinical translation of cancer. In addition, the 3-
pathway model is experimented on variety public datasets for analysis of three different biomedical applications.
Its details are specified in supplementary material. The results obtained on different datasets are provided in
Tables S1 and S2. The accuracy and loss graphs are presented in Figures S1 and S2.
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Figure 3. Graphs of accuracy and cross-entropy loss obtained during training and validation. (a) It shows the graph
for accuracy obtained during training and validation phase of 3-pathway CNN model. (b) It shows the graph for cross-
entropy loss obtained during training and validation phase of 3-pathway CNN model. The number of epochs is shown
on x-axis and the related performance measure value is shown on y-axis.

Table 4. Comparison with existing methods.

Author, year Accuracy
(in %)

Precision, recall,
f1-score (in %)

Loss function,
loss value

Dataset used,
MRI modalities
used

Number
of
patients

Methodology

Nalawade et al. [2],
2019

83.8 84.1, 83.5, 83.5 – , – The Cancer
Imaging Archive
(TCIA), MRI
modalities: T2w

260 5-fold cross validation, 2D
model with 161 densely
connected convolution
layers

Chang et al. [21],
2017

85.7 –, 79.1, – Binary cross
entropy, –

TCIA and local
hospital, MRI
modalities:
T1w, T1ce,
T2w, FLAIR

496 Train-validate-test split
with 8:1:1 ratio, 34
convolution layers with
residual connections

Ahmad et al. [26],
2019

86.7 93.54, 70.73,
80.55

Categorical
cross entropy,
–

Local hospital,
MRI modalities:
T2w

71 4-fold cross validation, 50
convolution layers with
identity blocks for residual
connections followed by
one dense layer

Pasquini et al. [29],
2021

83 –, 76, – Categorical
cross entropy,
0.64

Local hospital,
MRI modalities:
T1w, T2w,
FLAIR, rCBV,
ADC

100 Glioblastoma-specific
model design, 5-fold cross
validation, 7 convolution
layers followed by two
dense layer, highest
accuracy with rCBV MRI
modality

3-pathway CNN
(proposed method)

93.6 97.01, 87.83,
92.19

Categorical
cross entropy,
0.052

TCIA, MRI
modalities:
T1w, T1ce,
T2w, FLAIR

217 Train-validate-test split
with 3:1:1 ratio, three
pathway design with
total 13 convolution layers
followed by two dense layers
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(a) 
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(c) 

Figure 4. Activation maps of intermediate layers of 3-pathway CNN model. It shows intermediate activation maps
generated by an individual path of 3-pathway CNN model i.e. path-1, path-2, and path-3. The activation maps of 20
images are visualized per row. (a) and (b) They show the visualization of feature map generated by last convolution
layer of path-1 and path-2 with 128 activation kernels each. (c) It presents the visualization of feature map generated
by last convolution layer of path-3 with 512 activation kernels.

5. Conclusion
An advanced research of convolutional neural network is conducted for MRI based IDH classification of glioma.
The proposed 3-pathway network extracted more discriminate features than single path models. The model has
successfully learnt the features taken from shallow as well as deep neural network paths and demonstrated the
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performance improvement with an accuracy of 93.67% and error loss of 0.052 over the performance obtained
with individual paths. Therefore, it can be concluded that multipath convolutional neural network shows more
advantages than simple or single path networks. The model has a simple design and is capable of extracting
wide series of features from simple to complex category, by understanding and representing the input in better
way. In future, this model can be further enhanced to predict the survival rate of glioma patients based on such
IDH based radiogenomic analysis.
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Supplementary data: results on different datasets
The proposed 3-pathway method is experimented on three different datasets using the same configuration for
each hyperparameter and other parameter (such as batch size, number of epochs, optimizer, loss, network design
parameters). The public datasets1 for machine learning are used to experiment the working of 3-pathway CNN
model in order to analyse its effectiveness and impact. The details of datasets are provided below.

1. Brain tumor MRI images: This dataset contains total 3264 gray scale images of random shapes, which
were resized to 200 × 200 dimensions and it is used to categorize into four classes i.e. glioma, meningioma,
pituitary tumor and no-tumor class.2

2. Covid-19 Lungs CT scan data: It consists of total 746 gray scale images of random shapes, which were
resized to 200 × 200 dimensions and it is used to categorize into two classes, namely Covid-19 and non-
Covid-19 class.3

3. Breast histology images: This dataset consists of 5547 breast histology images of size 50 × 50 × 3, and it
is used to classify as cancerous / IDC images (IDC: invasive ductal carcinoma) vs. non-IDC images.4

The results are tabulated in Table S1, which are obtained on the abovementioned datasets using our
proposed 3-pathway CNN model.

Table S1: Results (accuracy and cross-entropy loss) on different datasets using 3-pathway CNN.

Dataset Training
accuracy (%)

Training
loss

validation
accuracy(%)

Validation
loss

Testing
accuracy (%)

Testing
loss

Brain
tumor MRI

1.0 0.007 91.11 0.494 70.81 5.429

Covid-19
lung data

99.32 0.033 63.08 1.26 72.48 1.160

Breast
histology

80.37 0.437 77.92 0.468 78.19 0.470

The graphs of accuracy and cross-entropy loss, obtained during training and validation phases of proposed
model and obtained for abovementioned datasets, are shown in Figures S1 and S2.

Table S2 shows the results measured on above mentioned three datasets for three most recent codes1 .
It can be observed from above two tables that the results of proposed model are comparatively better

than almost all abovementioned CNN based models. The first dataset on brain tumor is for 4-class classification
and second, third dataset on Covid-19, breast histology is meant for binary classification. In comparison, our
3-pathway model worked better for binary classification for Covid-19 analysis and breast histology analysis.
The network design and hyperparameter settings are different in every model of above table. It shows that
the proposed 3-pathway model is more effective than the existing methods, which are presented for analysis
of different applications like multiclass classification of brain MRI, Covid-19 analysis of lung CT scans, binary
classification of histology images for breast cancer detection.

1The public datasets available on Kaggle.com.
2https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri
3https://www.kaggle.com/luisblanche/covidct
4https://www.kaggle.com/simjeg/lymphoma-subtype-classification-fl-vs-cll
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Figure S1: Accuracy graph of training and validation phase of 3-pathway CNN model obtained on three
different datasets. The number of epochs is shown on x-axis and accuracy is shown on y-axis.
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Figure S2: Cross-entropy loss graph of training and validation phase of 3-pathway CNN model obtained on
three different datasets. The number of epochs is shown on x-axis and cross-entropy loss value is shown on

y-axis.
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Table S2: Results on different datasets for three most recent codes.
Dataset Details of three recent codes (CNN based models) Testing

accuracy (%)
Testing loss

Brain tumor
MRI

Recent code 1 using pretrained VGG16 model5 78 In range of 0.1
to 1 (approx.)

Brain tumor
MRI

Recent code 2 using pretrained VGG19 model6 31 –

Brain tumor
MRI

Recent code 3 using pretrained ImageNet model7 95 –

Covid-19
lung CT
scan

Recent code 18 53.38 166.8

Covid-19
lung CT
scan

Recent code 29 66.21 0.563

Covid-19
lung CT
scan

Recent code 310 70.58 2.874

Breast
histology

Recent code 111 77.12 0.491

Breast
histology

Recent code 212 In range of
50.34 to 73.80

In range of
0.934 to 0.552

Breast
histology

Recent code 313 73.87 0.505

5ttps://www.kaggle.com/abhijitsingh001/braintumor-classification-cnn-vs-transferlearning
6ttps://www.kaggle.com/rohandeysarkar/tumor-classification
7ttps://www.kaggle.com/jaykumar1607/brain-tumor-mri-classification-tensorflow-cnn
8ttps://www.kaggle.com/sakshamkumarsharma/workof
9ttps://www.kaggle.com/barnadeepdey/covid-ct-prediction
10ttps://www.kaggle.com/vipulshahi/image-data-for-lungs
11ttps://www.kaggle.com/anubhovmenon/breast-cancer
12ttps://www.kaggle.com/burakkahveci/image-classification-with-ml-algorithms-dl-alg#Transfer-Learning-Section–VGG19-
13ttps://www.kaggle.com/abhisheksss/cancer-images-detection
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