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Abstract: A hybrid numerical model is presented for solving long range electromagnetic wave propagation problems
involving objects on or above the ground surface by hybridizing the two-way split-step parabolic equation (2W-SSPE)
method with the method of moments (MoM). The advantages of the proposed model are twofold: (i) It reduces the
staircasing error in irregular terrain modeling, which usually occurs when the standard SSPE method is used alone.
This is achieved by employing the MoM to more accurately obtain the scattered fields from slanted/curved surfaces.
(ii) It enables the SSPE method to handle the problems involving objects above the Earth’s surface, which cannot be
easily modeled by the standard SSPE method due to difficulty in imposing boundary conditions. The accuracy of the
hybrid method is numerically verified by comparing the numerical results with those of the 2W-SSPE and the GO+UTD
(geometric optic + uniform theory of diffraction) methods in some representative propagation problems.

Key words: Parabolic equation, electromagnetic wave propagation, hybrid method, method of moments, split-step
parabolic equation method, terrain effects

1. Introduction
Tropospheric electromagnetic wave propagation is an important part of wireless communication and radar
technologies. The behavior of electromagnetic waves in propagation problems is affected by many factors, such
as frequency, inhomogeneous atmosphere, Earth’s surface, terrain irregularities, etc. The analytical or numerical
solution of such problems is often difficult, especially in real-life propagation scenarios, because of the complex
interaction of several wave components (i.e. reflection, refraction and diffraction) that must be included in
the solution. Since the distances involved in long-range propagation problems are very large compared to the
wavelength, the numerical solution of these problems with conventional full-wave methods (such as finite element
method – FEM or method of moments – MoM) is a challenging task because of the large electrical size of the
computational domain. Therefore, developing efficient computational approaches has gained great importance
owing to the advancements in computer technology.

The parabolic equation (PE) method [1], which is based on the paraxial approximation of the Helmholtz
equation, is one of the most reliable numerical method for modeling long-range propagation problems. The PE
is numerically solved by formulating the problem as an initial value problem. That is, the initial field is defined
at a specific range (usually at the location of the antenna), which is then moved through the range by applying
stepwise Fourier transformations to the fields. Due to the nature of the implementation scheme, this method
is known as Fourier-based split-step parabolic equation (SSPE) method [2]. The standard SSPE method is a
∗Correspondence: ozlem@ee.hacettepe.edu.tr
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one-way method; this means that the fields move only in the forward direction. The standard SSPE method
has been widely used to model the light propagation in optical fibers [3], the acoustic wave propagation under
the sea [4], and the electromagnetic wave propagation in the troposphere [5–11]. One of the major reasons why
this method is preferred is that larger range steps can be used (as opposed to full-wave solvers that typically use
one tenth of a wavelength as step size), and hence, long-range propagation problems can easily be solved with
reduced computational load. Another advantage of the SSPE method is its ability in handling inhomogeneous
atmospheric conditions in the troposphere. In the early periods of this method, the narrow-angle approximation
was used in the PE formulation, by assuming that small propagation angles (up to 10◦ − 15◦ from the paraxial
direction) are often encountered in long range problems. However, larger propagation angles need to be included
in the solution to handle irregular terrain including valleys and hills with steep slopes. For this purpose, wide
angle propagators were used in order to extend the propagation angles up to 40◦ − 45◦ [12, 13].

Another breakthrough was made by developing the two-way SSPE (2W-SSPE) to model both forward and
backward propagating fields in order to incorporate multipath effects into the solution. In [14], the 2W-SSPE
is implemented in a way that when the field meets the staircase-approximated terrain, it is reflected from the
terrain surface and propagated in both forward and backward directions. At each time the field hits the terrain,
it is split into forward and backward propagating fields, each of which travels along its own direction. This
recursive process continues until the field exits the computational domain or a certain threshold is reached. The
2W-SSPE method was implemented in an open-source software, called PETOOL [15, 16], which was then used
in various studies [17–20]. Although terrain modeling with a staircase approximation provides reliable results
in most situations, the accuracy of the 2W-SSPE method might degrade if there are curved/slanted surfaces
over the terrain profile. Another issue in the standard SSPE modeling is that boundary conditions cannot be
imposed automatically over Earth’s surface. For example, to satisfy the boundary conditions over a perfectly
conducting ground, odd and even symmetric profiles of the vertical field are constructed for Dirichlet (soft) and
Neumann (hard) boundary conditions, respectively, by employing the image theory. Hence, the SSPE methods
cannot easily handle problems that include objects above the ground (i.e. objects which do not touch the
ground), because of the difficulty to include the effect of multiple images used to model the interaction between
nontouching objects and the ground. For this reason, the SSPE modeling was not used so far in propagation
problems that involve objects above terrain, to the best knowledge of the authors.

In this paper, we present a hybrid method by combining the 2W-SSPE method with MoM to overcome
the abovementioned challenges in a standard SSPE modeling. The staircasing error is eliminated, and hence,
curved/slanted surfaces are modeled more accurately. In addition, the SSPE method is made applicable to
problems involving objects above Earth’s surface. The hybridization of the two methods is done as follows:
The MoM is used to obtain the scattered fields from slanted/curved surfaces on or above Earth’s surface,
whereas the 2W-SSPE is used to propagate the fields over long distances. In this manner, a more accurate
propagation model is developed by combining the advantages of both methods. Earlier in [21], we presented
the very initial results of a different hybridization scheme by defining a subregion around the terrain/objects
and by propagating the fields calculated by the MoM at the boundaries of this subregion. However, in this
study, we propose an alternative hybridization scheme that has some advantages over [21] in terms of easier and
more accurate modeling of atmospheric inhomogeneities in the subregion where MoM is used. These issues are
discussed in the following sections.

This paper is organized as follows: Section 2 summarizes the basic principles of the SSPE methods, the
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MoM and the proposed hybrid method. Section 3 presents some numerical examples. The performance of the
proposed method is compared with the results of the 2W-SSPE and the geometric optic (GO) + uniform theory
of diffraction (UTD) method [22]. Finally, Section 4 draws some conclusions. The suppressed time-dependence
of the form exp(−iωt) is assumed throughout the paper.

2. Formulation
2.1. SSPE methods
A two-dimensional electromagnetic propagation problem is illustrated in Figure 1a. The parabolic equation
(PE) is approximated from the scalar Helmholtz equation by separating the rapidly-changing phase term
from the solution and defining a reduced function which is slowly-changing over range. This approximation
considers the propagation angles close to the horizontal (paraxial) direction. The reduced function is defined
as u(x, z) = exp(−ikx)φ(x, z) , where φ(x, z) represents the transverse component of the electric or magnetic
field in horizontal (soft) or vertical (hard) polarization, respectively. The parabolic equation is obtained as [9]

[
∂2

∂x2
+ 2ik

∂

∂x
+

∂2

∂z2
+ k2(n2 − 1)

]
u(x, z) = 0, (1)

where k = 2π/λ is the wavenumber (λ is the wavelength), x and z are the range and height, respectively, and
n is the refractive index.

In the standard PE approach, although the differential operator in (1) is factored into two pseudo-
differential operators, each of which belongs to forward and backward propagating fields, only the operator
corresponding to forward fields is considered. The PE is numerically solved by the Fourier-based split-step
method. With wide-angle approximation, the split-step solution is expressed as [12]

u(x+∆x, z) = exp[ik(n− 1)∆x]F−1

exp

− ip2∆x
k

(√
1− p2

k2
+ 1

)−1
F{u(x, z)}

 , (2)

where F and F−1 indicate the Fourier transform and its inverse, respectively, p = k sinψ is the transform
variable (ψ is the propagation angle from the paraxial direction), and ∆x is the range step size.

The standard SSPE method is implemented as an initial-value problem by starting the algorithm from a
specific range (usually at the location of an antenna) and moving forward in a stepwise manner. At each range
step, the vertical field profile along height is determined by using (2). Although the standard SSPE method
is applied in the forward direction only, terrain factors can still be handled even at the expense of ignoring
backscattering fields by using a staircase-approximated terrain. In the standard SSPE, when the field hits the
terrain, the vertical field profile that is computed by (2) is set to zero on the terrain, and then, propagated
in the forward direction. The staircase approach works well in the approximate sense because the boundary
conditions on the sloping features of the terrain profile may not be modeled accurately. Another important issue
in the standard PE modeling is that boundary conditions cannot be handled automatically. Even in a simple
case where the ground surface is perfectly conducting, the computation domain is extended from [0, zmax] to
[−zmax, zmax] (where zmax refers to the maximum height), and the odd and even symmetric field profiles are
included for Dirichlet (soft) and Neumann (hard) boundary conditions, respectively. Alternative approach is
to convert the Fourier transform to one-sided discrete sine or cosine transforms, for Dirichlet and Neumann
boundary conditions, respectively, by avoiding the height extension. The introduction of the odd and even
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Figure 1. Illustration of the 2W-SSPE and the hybrid methods. (a) 2W-SSPE, (b) the decomposition of the domain in
the proposed hybrid method, (c) implementation of the third step of the hybrid method in the second region.
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symmetric field profiles is based on the image theory. Although this approach can be used for irregular terrain
profile, it cannot be applied to problems involving objects above the ground (i.e. objects which do not touch
the ground) in a straightforward manner because of the need to incorporate the effect of multiple images when
modeling the interaction between nontouching objects and the ground. Hence, there is not any study in the
literature which applies the SSPE for problems involving objects above terrain, to the best knowledge of the
authors.

In the 2W-SSPE method, the propagation direction in the standard one-way SSPE is simply switched
back-and-forth to model multipath effects over an irregular terrain [14, 15]. After the initial field is defined at
a reference range, it is propagated in the forward direction until it hits the terrain, and then, it is decomposed
into both forward and backward propagating waves. The forward field is set to zero on vertical positions where
the terrain exists and is propagated in the forward direction in a similar manner. The backward field is initiated
after imposing the boundary conditions on the terrain and making the field zero on vertical positions where the
terrain does not exist. The backward field is marched out in the −x direction, and is computed by (2) where
the signs of k and ∆x are reversed. When the signs are reversed, we obtain the same equation except that
the unknown field is expressed as φb(x, z) = ub(x, z) exp(−ikx) where the subscript-b refers to the backward
propagation. This process is repeated at each time the field hits the terrain. Finally, the total field is computed
by superimposing all backward and forward propagating fields in the computation domain. This recursive
algorithm is terminated when all backward and forward fields exit the domain or a certain threshold defined
based on the difference between the total fields in consecutive steps is reached.

2.2. Method of moments
The MoM is an integral equation-based full-wave numerical method [23]. For horizontal (soft) polarization,
i.e. E⃗ = âyEy(x, z) and Hy = 0 , the electric field integral equation (EFIE) for perfectly conducting objects is
expressed as follows:

kη

4

∫
C′
Jy(r⃗

′)H
(1)
0 (k|r⃗ − r⃗′|)dℓ′ = Ei

y(r⃗), (3)

where H
(1)
0 is Hankel function of first kind and zeroth order, r⃗′ = âxx

′ + âzz
′ and r⃗ = âxx + âzz are the

position vectors of the source and observation points, respectively, Jy is the induced current density on the
surface, η is the intrinsic impedance, C ′ refers to the boundary of the object, and Ei

y(r⃗) is the incident electric
field.

By discretizing the boundary into N line segments where ∆ℓ ≤ λ/10 denotes the length of each line
segment, and choosing the basis and weight functions as pulse and Dirac delta functions, respectively, a matrix
equation [A][X] = [B] of size N ×N is constructed as follows:

Amn =

{
kη
4 H

(1)
0 (kRmn), for m ̸= n

kη
4 ∆ℓm

{
1 + i 2π

[
ln
(

γk∆ℓm
4

)
− 1
]}

, for m = n
(4)

Bm = Ei
y(r⃗m), m, n = 1, 2, ..., N

where γ = 1.7811 is the Euler’s constant, Rmn =
√

(xm − xn)2 + (zm − zn)2 is the distance between the m-th
and n-th segments, and ∆ℓm is the length of the m-th segment. The matrix equation is solved for the unknown
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currents, i.e. Xn = Jy(r⃗n) , and then, the currents are radiated to obtain the scattered fields.

For vertical (hard) polarization, i.e. H⃗ = âyHy(x, z) and Ey = 0 , the magnetic field integral equation
(MFIE) for perfectly conducting objects is given by

Jt(r⃗
′)− ik

4

∫
C′
Jt(r⃗

′)H
(1)
1 (k|r⃗ − r⃗′|)

[
sin θ

x− x′

R
− cos θ

z − z′

R

]
dℓ′ = −Hi

y(r⃗), (5)

where H(1)
1 is Hankel function of first kind and first order, Jt is the tangential component of the induced current

density, θ is the angle between the tangent vector t⃗(r⃗′) = (âx cos θ + âz sin θ)|r⃗′ and the x -axis, and Hi
y(r⃗) is

the incident magnetic field. Similarly, a N ×N matrix equation is formed as follows:

Amn =

{
ik∆ℓn

4 H
(1)
1 (kRmn)

[
sin θn

xm−xn

Rmn
− cos θn

zm−zn
Rmn

]
, for m ̸= n

− 1
2 , for m = n

(6)

Bm = Hi
y(r⃗m), m, n = 1, 2, ..., N

which is then solved for the unknown currents Xn = Jt(r⃗n) .

2.3. Hybrid method

The proposed hybrid method starts with the division of the computational domain into three regions, as shown
in Figure 1b. The region-1 is between the transmitter antenna and the terrain/object. The region-2 is the region
where the terrain/object is located. The region-3 is between the terrain/object and the end of the domain. In a
typical propagation problem, the electrical size of the first and third regions are usually very large, which is not
amenable to deal with standard full-wave numerical methods including MoM. Therefore, the SSPE method can
effectively be used to propagate the fields over long distances in these regions. Since the second region includes
curved surfaces, the MoM is used to better model such surfaces without staircasing approximation. The main
steps of the hybrid algorithm are described below.

• In the first step, the incident field is obtained within the entire domain when there is no obstacle, by
using the standard SSPE method discussed in subsection 2.1. In this manner, the incident fields, Ei

y(r⃗)

or Hi
y(r⃗) , to be used as the excitation fields in MoM, are determined.

• In the second step, the MoM is employed by using the excitation fields obtained in the first step. In
the MoM, the right-hand side of the matrix equation is constructed by using the fields determined in the
first step. The matrix equation is solved for the induced current densities on the surface, which are then
re-radiated to obtain the scattered fields at each range step (i.e. dashed lines in Figure 1c) in the second
domain. Note that this is the range step used in the SSPE method, and hence it is electrically very large
compared to the step size used in MoM. The blue and red curved arrows in Figure 1c are used to show the
fact that the currents on the terrain surface are radiated to the left and right boundaries, respectively. The
fields on the left and right boundaries are then propagated in the left and right directions, respectively.

• In the third step, the computed induced currents lying on the surface between two consecutive range steps
are radiated by the MoM to obtain the fields at the corresponding range steps. For example, the currents
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Figure 2. Propagation factor (PF) maps for example 1 with a knife-edge on the ground. The hybrid method (top),
2W-SSPE (middle), GO+UTD (bottom).

on the surface lying between the N -th and (N +1)st range steps are used to determine the fields at these
range steps. Next, the SSPE is employed to propagate the fields at the N -th and (N + 1)st range steps
back and forth, respectively, in the absence of the terrain. This procedure is repeated for each range step
and all field components are superimposed to obtain the field distribution in the entire domain.

It is useful to mention that the hybrid method can also be applied by modifying the third step as described
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in [21]. That is, the currents on the entire terrain surface are radiated over the outermost boundaries of the
second region, and the fields along these boundaries are marched back and forth in the first and third regions,
respectively. When these two alternative hybridization schemes are compared, although the implementation of
the approach given in [21] is simpler, it assumes that the atmosphere in the second region is homogeneous since
the implementation of the MoM in inhomogeneous medium is not trivial due to the difficulty in defining the
Green’s function in such medium. However, in the proposed approach in this study, arbitrary refractivity profile
can be defined in the second region since the SSPE is used to propagate the fields scattered from the terrain.
Hence, inhomogeneous atmosphere and ducting effects can be modeled more accurately. The last example in
Section 3 considers a propagation problem with ducting conditions.

3. Numerical examples

This section presents the results of some numerical experiments performed by the proposed method, the 2W-
SSPE [14] and the GO+UTD [22] methods. In the examples, the frequency is 600 MHz, the antenna pattern is
Gaussian with 3 dB beamwidth of 0.5◦ unless otherwise stated, the range step size is ∆x = 5m, and the height
step size is ∆z = 0.2m. In MoM region, approximately one tenth of a wavelength is used as step size.

In the first example, a simple knife-edge is considered on the surface of a perfectly conducting ground
surface. The transmitter antenna (TX) is placed at a height of 250 m and has the beam pointing angle of 10◦ .
The propagation factor (PF) (i.e. the field strength relative to its free-space value), for horizontal polarization
are shown in Figure 2. We expect that both 2W-SSPE and the hybrid methods work well because the obstacle
does not have any curved/slanted geometry and is located on the ground surface. The reflections from the ground
and the vertical lateral surface of the knife-edge are clearly observed and accurately modeled by both methods.
The results are also similar to those of the GO+UTD method, with some differences along the reflection and
shadow boundaries where the UTD method exhibits discontinuities due to the nature of the method.

In the second example, a triangular terrain is considered where the transmitter antenna is located at 200
m with the beam pointing angle of 12◦ and the 3 dB beamwidth of 1◦ . The PF maps for vertical polarization
are shown in Figure 3. In the third example, a curved surface, which is modeled by a quarter sine function, is
considered. The antenna is located at 200 m with the beam pointing angle of 6◦ . The PF maps for horizontal
polarization are shown in Figure 4. It is clearly observed that the reflections from the tilted face of the triangular
terrain in Figure 3 and the curved surface of the terrain in Figure 4 are modeled more accurately by the hybrid
method compared to the 2W-SSPE method because the staircasing errors are removed. Especially, the result
obtained by the 2W-SSPE in Figure 3b clearly shows that the reflection of the main beam from the terrain
surface does not obey Snell’s law of reflection due to the errors introduced by the staircasing approximation of
the terrain geometry. The results of the hybrid method and the GO+UTD match well as expected.

From this point on, we demonstrate some representative examples where objects are located above the
ground surface. As discussed before, the SSPE methods cannot easily model objects above the surface due to
multiple images that need to be taken into account. In the fourth example, a rectangular object above the
ground surface is demonstrated. The PF maps for horizontal polarization are shown in Figure 5. The antenna
is located at 250 m with the beam pointing angle of 10◦ . It is obvious that the SSPE method is in difficulty
in modeling reflections from the lower horizontal boundary of the object because the interactions between this
surface and the ground are not properly modeled. However, the hybrid method can handle the strong field
reflections in this region. Note that the GO+UTD results are not included because the GO+UTD toolbox is
not designed for objects above the ground surface. However, since this and the following examples are designed
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Figure 3. Propagation factor (PF) maps for example 2 with triangular terrain. The hybrid method (top), 2W-SSPE
(middle), GO+UTD (bottom).

to produce strong reflections from flat surfaces, it is easy to verify the accuracy of the hybrid method by physical
intuition.

The fifth example considers a horizontal boundary located at a height above the ground surface. The PF
maps for horizontal polarization are shown in Figure 6. The antenna is located at 100 m with the beam pointing
angle of 15◦ and the 3 dB beamwidth of 1◦ . Similar to the fourth example, the hybrid method can handle
accurately the multipath effects between the object and the ground surface compared to the 2W-SSPE method
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Figure 4. Propagation factor (PF) maps for example 3 with curved terrain modeled by a quarter sine function. The
hybrid method (top), 2W-SSPE (middle), GO+UTD (bottom).

that cannot handle multiple images. In the last example, we assume that surface duct exists whose modified
refractivity profile is shown in Figure 7. There exists a thin tilted object above the ground surface. The antenna
is located at 50 m with the beam pointing angle of 0◦ and the 3 dB beamwidth of 3◦ . The polarization is
horizontal. In the uppermost plot in Figure 7, the PF map corresponding to the standard SSPE over the entire
domain is shown. Since there is not any object in this figure, the SSPE is run only in the forward direction. In
fact, this result is used as an excitation field for MoM in the region where the object exists (i.e. in the region
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Figure 5. Propagation factor (PF) maps for example 4 with a rectangular object above ground. The hybrid method
(top), 2W-SSPE (bottom).

between two dotted lines). The PF maps for the hybrid method and the 2W-SSPE method are also shown in
this figure. Once again, we observe that the multipath effects between the tilted face of the object and the
ground are modeled more accurately by the proposed hybrid method.

Finally, the computational load of the hybrid SSPE+MoM method is compared with the standard SSPE
and MoM methods in Table 1. The simulations were performed on two Intel Xeon E5-2620 v3 CPUs with
64 GB of RAM. To measure the allocated memory, we have used the MATLAB profiler with undocumented
options by typing the command profile –memory on. Furthermore, the hybrid and standard methods are
qualitatively compared in Table 2 according to certain criteria. Although the standard SSPE is superior in
terms of computational load (i.e. time and memory), its accuracy degrades when irregular terrain is modeled
by staircase approximation and when there are objects above ground surface. Although the standard MoM
provides very accurate results, it suffers from large computational load for long range propagation problems
due to the need to use the step size criterion which is at most one-tenth of the wavelength. This is indeed a
severe restriction when the range is on the order of several kilometers. For instance, the example in Figure 4
cannot be solved due to insufficient memory of the computer. Therefore, it is worthwhile to mention that the
hybrid SSPE+MoM method has been originally proposed to combine the accuracy advantage of the standard
MoM with the computational efficiency of the standard SSPE.
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Figure 6. Propagation factor (PF) maps for example 5 with a horizontal boundary above ground. The hybrid method
(top), 2W-SSPE (bottom).

Table 1. Computational load of the hybrid SSPE+MoM method compared to standard SSPE and MoM methods (In
SSPE: ∆x = 5m and ∆z = 0.2m, in MoM: ∆ℓ ≈ λ/10).

Criterion Method Example 2 in Figure 3 Example 3 in Figure 4

Computation time
Hybrid SSPE+MoM 32 min 62 min
Standard MoM 88 min -
Standard SSPE 40 sec 90 sec

Allocated memory
Hybrid SSPE+MoM 12 GB 42 GB
Standard MoM 16 GB out of memory
Standard SSPE 7.5 GB 22 GB

4. Conclusion

In this paper, a hybrid propagation model has been presented for modeling wave propagation in the troposphere.
The hybrid method combines the advantages of the SSPE and MoM methods to increase the accuracy by
eliminating the staircasing error in terrain modeling especially if the terrain includes curved/slanted boundaries.
Furthermore, it allows us to solve problems involving objects above the ground surface, which cannot be modeled
by the SSPE methods due to multiple images. The method has been applied to some representative propagation
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Figure 7. Propagation factor (PF) maps for example 6 with a tilted object above ground and in surface duct. The
standard SSPE without object (top-left), modified refractivity of the surface duct (top-right), the hybrid method (middle),
2W-SSPE (bottom).

scenarios, and compared with the 2W-SSPE and GO+UTD methods. It has been observed that the scattered
fields and multipath effects have been modeled accurately by the proposed hybrid method, in comparison to the
2W-SSPE method that employs staircasing approximation, when there are objects of irregular shape on/above
the ground surface in standard atmosphere or even under ducting conditions. We have clearly shown that
the staircasing approximation used in the standard SSPE may sometimes cause wave reflection to not obey
Snell’s law of reflection, and that the proposed hybrid method can improve the accuracy by better modeling
curved surfaces. In addition, we have demonstrated that, when there are objects that do not touch the ground,
the proposed method provides more accurate results than the standard SSPE, as it effortlessly overcomes
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Table 2. Comparison of the hybrid SSPE+MoM method with standard methods by considering long range electromag-
netic wave propagation problems involving objects on or above the ground surface.

Criterion Hybrid SSPE+MoM Standard MoM Standard SSPE
Accuracy when irregular terrain exists High High Medium
Modeling objects above ground surface Yes Yes No
Modeling inhomogeneous atmosphere Yes No Yes
Number of variables Medium High Low
Memory requirement Medium High Low
Computation time Medium Slow Fast

the challenge of processing multiple images that should be included in the standard SSPE. In terms of the
computational load (i.e. computation time and memory), the proposed method is between the standard SSPE
and the standard MoM. It is more computationally efficient than the standard MoM because when the MoM
is applied alone for the entire computational domain, very large number of unknowns must be introduced to
satisfy the step size criterion of one-tenth of the wavelength for long range problems where the range extends to
several kilometers. On the other hand, the standard SSPE is much faster than the proposed hybrid method and
the standard MoM because electrically-large step size can be used throughout the range. Hence, the proposed
method has been originally designed to overcome the trade-off between accuracy and computational load in
standard SSPE and MoM methods. It is useful to note that the hybrid method can be accelerated further by
using some special techniques to speed up the MoM implementation, such as fast multipole method or parallel
processing methods. Here, we demonstrate the proof of concept that the hybrid method can be used to obtain
more accurate and reliable results when irregular objects exist on/above the ground surface.

References

[1] Leontovich MA, Fock VA. Solution of propagation of electromagnetic waves along the Earth’s surface by the method
of parabolic equations. Journal of Physics USSR 1946; 10: 13-23.

[2] Hardin RH, Tappert FD. Applications of the Split-Step Fourier method to the numerical solution of nonlinear and
variable coefficient wave equations. SIAM Review 1973; 15: 423-423.

[3] Feit MD, Fleck JA. Light propagation in graded-index optical fibers. Applied Optics 1978; 17 (24): 3990-3998. doi:
10.1364/AO.17.003990

[4] Lee D, Pierce AD, Shang EC. Parabolic equation development in the twentieth century. Journal of Computational
Acoustics 2000; 8: 527-637. doi: 10.1142/S0218396X00000388

[5] Craig KH. Propagation modelling in the troposphere: parabolic equation method. Electronics Letters 1988; 24:
1136-1139. doi: 10.1049/el:19880773

[6] Kuttler JR, Dockery GD. Theoretical description of the parabolic approximation/Fourier split-step method of repre-
senting electromagnetic propagation in the troposphere. Radio Science 1991; 26: 381-393. doi: 10.1029/91RS00109

[7] Barrios E. A terrain parabolic equation model for propagation in the troposphere. IEEE Transactions on Antennas
and Propagation 1994; 42: 90-98. doi: 10.1109/8.272306

[8] Janaswamy R. A curvilinear coordinate-based split-step parabolic equation method for propagation predictions over
terrain. IEEE Transactions on Antennas and Propagation 1998; 46: 1089-1097. doi: 10.1109/8.704813

[9] Levy MF. Parabolic Equation Methods for Electromagnetic Wave Propagation. London: IEE Electromagnetic Wave
Series 45, 2000.

3238



ALTUN and ÖZGÜN/Turk J Elec Eng & Comp Sci

[10] Apaydin G, Sevgi L. The split step Fourier and finite element based parabolic equation propagation prediction
tools: canonical tests, systematic comparisons, and calibration. IEEE Antennas and Propagation Magazine 2010;
52: 66-79. doi: 10.1109/MAP.2010.5586576

[11] Zhang P, Bai L, Wu Z, Guo L. Applying the parabolic equation to tropospheric groundwave propagation: A review
of recent achievements and significant milestones. IEEE Antennas and Propagation Magazine 2016; 58: 31-44. doi:
10.1109/MAP.2016.2541620

[12] Thomson DJ, Chapman NR. A wide-angle split-step algorithm for the parabolic equation. Journal of the Acoustical
Society of America 1983; 74: 1848-1854. doi: 10.1121/1.390272

[13] Kuttler JR. Differences between the narrow-angle and wide-angle propagators in the split-step Fourier solution
of the parabolic wave equation. IEEE Transactions on Antennas and Propagation 1999; 47: 1131-1140. doi:
10.1109/8.785743

[14] Ozgun O. Recursive two-way parabolic equation approach for modeling terrain effects in tropospheric propagation.
IEEE Transactions on Antennas and Propagation 2009; 47: 2706-2714. doi: 10.1109/TAP.2009.2027166

[15] Ozgun O, Apaydin G, Kuzuoglu M, Sevgi L. PETOOL: MATLAB-based one-way and two-way split-step parabolic
equation tool for radiowave propagation over variable terrain. Computer Physics Communications 2011; 182: 2638-
2654. doi: 10.1016/j.cpc.2011.07.017

[16] Ozgun O, Sahin V, Erguden ME, Apaydin G, Yilmaz AE et al. PETOOL v2.0: Parabolic Equation Toolbox with
evaporation duct models and real environment data. Computer Physics Communications 2020; 256: 107454. doi:
10.1016/j.cpc.2020.107454

[17] Dinc E, Akan OB. Beyond-line-of-sight communications with ducting layer. IEEE Communications Magazine 2014;
52: 37–43. doi: 10.1109/MCOM.2014.6917399

[18] Lytaev MS. Nonlocal boundary conditions for split-step Pade approximations of the Helmholtz equation
with modified refractive index. IEEE Antennas and Wireless Propagation Letters 2018; 17: 1561-1565. doi:
10.1109/LAWP.2018.2855086

[19] Tepecik C, Navruz I. A novel hybrid model for inversion problem of atmospheric refractivity estimation. International
Journal of Electronics and Communications 2018; 84: 258-264. doi: 10.1016/j.aeue.2017.12.009

[20] Gilles MA, Earls C, Bindel D. A subspace pursuit method to infer refractivity in the marine atmospheric boundary
layer. IEEE Transactions on Geoscience and Remote Sensing 2019; 57: 5606–5617. doi: 10.1109/TGRS.2019.2900582

[21] Altun GY, Ozgun O. Electromagnetic propagation modeling over irregular terrain using a new hybrid method. In:
The 18th Mediterranean Microwave Symposium (MMS); İstanbul, Turkey; 2018. doi: 10.1109/MMS.2018.8612013

[22] Ozgun O. New software tool (GO+UTD) for visualization of wave propagation. IEEE Antennas and Propagation
Magazine 2016; 58: 91-103. doi: 10.1109/MAP.2016.2541600

[23] Peterson AF, Ray SL, Mittra R. Computational Methods for Electromagnetics. New York: Wiley-IEEE Press, 1998.

3239


	Introduction
	Formulation
	SSPE methods
	Method of moments
	Hybrid method

	Numerical examples
	Conclusion

