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Abstract: Multiple instance learning (MIL) is a weakly supervised learning method that works on the labeled bag
of instances data. A prototypical network is a popular embedding approach in MIL. They overcome the common
problems that other MIL approaches may have to deal with including dimensionality, loss of instance-level information,
and complexity. They demonstrate competitive performance in classification. This work proposes a simple model that
provides a permutation invariant prototype generator from a given MIL data set. We aim to find out prototypes in
the feature space to map the collection of instances (i.e. bags) to a distance feature space and simultaneously learn a
linear classifier for MIL. Another advantage of prototypical networks is that they are commonly used in the machine
learning domain to facilitate interpretability. Our experiments on classical MIL benchmark data sets demonstrate that
the proposed framework is an accurate and efficient classifier compared to the existing approaches.

Key words: Multiple instance learning, prototypical networks, interpretability, stochastic gradient descent, dissimilarity,
embedding, pattern recognition

1. Introduction
Classification problems can be divided into two concerning the labeling characteristics of the data, single
instance (SI) and multiple instance (MI) problems. In single instance learning (SIL) problems, each instance
is individually labeled. A common example of SIL problems is detecting spam e-mails. In this setting, each
e-mail is an instance represented by a feature vector and is labeled as spam or not. However, multiple instance
learning (MIL) concentrates on bags of instances, not individually labeled instance data. Detecting whether an
object is on an image or not can be given as an example of MIL problems. There may be several objects in
an image. However, if one is focusing on finding a certain object, e.g., an elephant, other objects in the image
might be misleading. Therefore, dividing the image into several patches and solving the problem in MIL domain
is a good approach. Two different labeling characteristics of classification problems can be seen in Table 1.

Mainly there are two alternative approaches in MIL. The first one is instance and bag level approaches,
and the second one is embedding approaches. The instance-level approaches try to reward a probability per
each instance that exists in a bag, then apply some pooling function to probabilities to obtain the final bag
probability. In the second type of approach, an arbitrary function, often a neural network, is used to come up
with an embedding for each instance, then again some pooling function is applied to aggregate information
from each embedding which is fed to a classifier. Embedding approaches overcome common problems of
instance-level approaches that are summarized in Section 2. Prototypical networks are one of the most popular
∗Correspondence: ozgur.sivrikaya@boun.edu.tr
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Table 1. Labeling in MIL and SIL problems.

Instance Label
X1 1
X2 0
X3 1
X4 1
X5 0

Bag Instance Label

B1
X1 1
X2

B2
X3 0
X4

X5

embedding approaches in MIL problems. These networks construct a new feature space that uses the most
granular information without dealing with high dimensionality. Then, bag-to-prototype dissimilarities are used
to perform classification. Therefore, the selection or learning of prototypes plays a critical role in the algorithm’s
prediction power.

Another common problem of MIL approaches summarized in this research is the incapability of being in-
terpreted. The main reason behind this is the decrease in the algorithm’s prediction accuracy in the interpretable
models in general [1]. Even interpretation in complex deep learning methods has been drawing attention [2],
MIL literature still lacks interpretable approaches [3]. Interpretation can be defined as the translation of the
algorithm behavior into an understandable domain for a human. Therefore, interpretation is critical for a robust
algorithm, further exploration, and analysis [4].

One of the main challenges in MIL solution approaches is providing results without sacrificing inter-
pretability [3]. Even interpretation is critical in terms of evaluating results and further development and analysis
[4], only a few approaches in MIL literature are capable of generating interpretable results [1, 3, 5]. One other
challenge is developing a robust approach that works in several MIL problems. Certain methods summarized
in Section 2 outperforms in specific problem cases. However, due to various problem sets in this domain, these
methods suffer in certain cases when they are applied to all benchmark problems. The main objective of this
study is to provide a basic, robust, and interpretable approach to MIL problems.

In this work, we propose an interpretable embedding approach with some modifications. The idea is
to find some representative prototypes in the feature space so that bags are linearly separable when they are
represented as their distances to the prototypes. Distance features between bags and prototypes are detailed in
subsection 3.1. Details of the study will be given in the following chapters under the following structure. Section
2 gives an overview of the previous studies of the field. Section 3 explains the prototype learning algorithm
(PL) and the solution method of the problem. Updates for the initial learning algorithm also in the scope of
Section 3. Finally, the results of the solution approach on various data sets and our conclusions can be found
in Sections 5 and 6.

2. Literature review
MIL problems have different categorizations based on the instance or bag characteristics [6]. These categories
are determined with the instance characteristics. In the first category, all instances carry the bag’s information,
e.g., a bag of pictures of similar animal images. Therefore, instances can be labeled with the bag’s label [5, 7].
In the second category, one or more instances determine the bag’s label, i.e. MIL problems with standard
assumption and its variations [8–10]. Standard MIL approaches assume that if a bag has at least one positive
instance, then the bag’s label is positive [11]. In the third category, all instances carry some information about
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the bag’s label. This case occurs when an instance carries only a portion of a bag’s information and each instance
contributes to the bag’s label. The aforementioned approaches propose instance-level or bag-level approaches
to MIL problems. Instance-level approaches have dimensionality problem. Bag-level approaches overcome the
problem of dimensionality but have the disadvantage of losing information that can be gathered from instances.

Another approach, called the embedding approach, overcomes these disadvantages. In these approaches,
an arbitrary function, often a neural network, is used to come up with an embedding for each instance, then
again some pooling function is applied to aggregate information from each embedding which is fed to a classifier.
Dissimilarity is one of the most popular embedding approaches [12–14]. It stands for the representation of an
object by describing it relative to a set of reference objects, called prototypes. This definition enables instance-
level information to be kept in a single vector of dissimilarities for each bag. Thus, the possibility of using low
dimensional instance-level information and complete bag-level information together make dissimilarity a popular
solution method in the MIL domain. In such methods, certain objects can be used as prototypes including bags
[13], instances [15] or ensembles [16, 17]. These methods followed by convolutional neural network based
prototype learning methods [1, 18, 19] after their great success. In addition to prototype learning methods, the
application of neural network based approaches to the MIL problems has been drawing attention from several
different domains in recent years [3, 20]. Well known problems have also been reformulated for this particular
purpose, such as common computer vision tasks like image classification [21], weakly supervised object detection
[22, 23], sequence predictions [24], sentiment analysis [25] and sound event detection [26].

3. Joint learning of prototypes and classification boundary in multiple instance learning

3.1. Definitions
Let Xij be a L -dimensional feature vector of instance j of bag i . Feature r of instance j is referred to as
Xij,r . A bag i is a group of instances which is defined as χ = {Bi : i = 1, . . . ,M} . Each bag is also defined
with its label yi and there are Ki instances in bag i . Each instance has L number of features. L is fixed for
all instances in bag i but changes between bags. The number of instances is not fixed for each bag. In MIL, we
are searching for a classifier to identify the bag’s label. All symbols used and their descriptions can be found in
Table 2.

Table 2. Table of notations.

Notation Description Notation Description
Bi Bag i M Number of bags
yi Label of bag i Ŷi Estimated label of bag i

Ki Number of instances in bag i Xij Instance j of bag i

Xij,r Feature r of instance j L Number of features
Pd Prototype d D Number of prototypes
σ(.) Sigmoid function Dist(., .) Distance
Φid Min, max, or average distance

between bag i and prototype d
Lce(., .) Cross-entropy loss

∥.∥ Norm µ Mean
σ Standard deviation β Linear classifier weights

2903



SIVRIKAYA et al./Turk J Elec Eng & Comp Sci

A simple example of MIL representation can be found in Table 3. In this example, there are two bags
B1 and B2 , and each instance has two features. The number of instances that each bag has may vary in MIL
problems. In this study, instances are represented with X . B1 has two instances X11 and X12 ; B2 has three
instances X21 , X22 and X23 . Previous studies generally use this representation of bags and instances.

Table 3. Representation of a simple MIL example.

R2

Bag Label Feature 1 Feature 2

B1 1 X11,1 X11,2

X12,1 X12,2

B2 0 X21,1 X21,2

X22,1 X22,2

X32,1 X32,2

The model has two main objectives: The first one is learning the feature vectors or prototypes that are
maximally predictive of the bag class after finding an embedding in the distance space. A simple illustration
of the idea is presented in Figure 1. Suppose there are two positive and two negative bags each of which has
two instances in the two-dimensional feature space shown in Figure 1a. We aim to identify prototypes such
that the bags are linearly separable when each bag is represented by its minimum distance to each prototype.
Figure 1b represents the bags in the new feature space. In other words, the proposed model is optimized over
both the linear classifier parameters and the prototypes. An overview of architecture can be seen in Figure
2. Depending on the application, our proposal is flexible in generating average and maximum type of features
which are famous in the MIL domain [12].
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Figure 1. Representation of the bags and prototypes.
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Figure 2. Overview of the architecture. Blue color shows the variables, which the model will be optimized over. L :
Number of features in an instance, constant; D : Number of prototypes, hyperparameter; Ki : Number of instances bag
i , varies between different bags.

As illustrated in Figure 2, this method focuses on the dissimilarities between the bags and the prototypes.
The main aim is to search for D prototypes which are generally smaller than the number of bags, M . Let Pd

is a vector with length L . Feature r of prototype d is defined as Pd,r . A bag Bi is represented based on its
dissimilarity to each prototype. This way, a bag can be summarized with D features (i.e. distance of bag to
each prototype). However, since a bag is composed of multiple instances, all distances between a prototype and
each instance should be calculated. Euclidean distance of prototype d to instance Xij , Dist(Xij , d) , can be
defined as in Equation 1:

Dist(Xij , d) =

L∑
r=1

(Xij,r − Pd,r)
2 (1)

3.2. Distance feature extraction
Just as in instance-level approaches in MIL problems, the proposed model also needs to pool information that is
extracted from instances in a given bag with a potentially variable number of instances. To be more specific, for
a given bag after the distance from each instance to each prototype is calculated, the model needs to aggregate
the information before being fed into a linear classifier. These pooling operations should be differentiable to
be optimized with a gradient based approach. Most basic and widely used pooling operators having these
characteristics are min, mean and max operators [12]. These are also intuitively informative in our case, since
we have distance metrics as features, such that these should provide information about defining characteristics
of an instance, assuming the existence of prototypes which are described above.

3.3. Model formulation
A formulation for the discussed method is given in this section. The formulation for min features is demonstrated
for simplicity, which could easily be generalized to any combination of max, min, and mean. The sigmoid
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function, which is defined in Equation 2, is used for binary classification.

σ(x) =
1

1 + e−x
(2)

The aim is to learn a logistic regression classifier to predict the binary positive or negative labels of bags,
Ŷ . In logistic regression, Ŷ is calculated as in Equation 3. β0 is the intercept, βd represents the weight in
linear classifier that corresponds to dth prototype. Φid is the dth element of the output vector for bag i . Φid

corresponds to the minimum distance of bag i to prototype d after layer normalization. Logistic regression
minimizes a cross-entropy loss function defined in Equation 4.

Ŷi = β0 +

D∑
d=1

βdΦid (3)

Lce(Y, Ŷ ) = −Y ln(σ(Ŷ ))− (1− Y )ln(1− σ(Ŷ )) (4)

Y is the label, and Ŷ is the prediction in Equation 4. We can decompose the objective function for
each bag i and solve the nonlinear optimization problem using gradient descent. Decomposed cross-entropy
loss will be denoted as Lce(Yi, Ŷi) . λw is the regularization parameter for linear classifier weights, λp is
the regularization parameter for prototype-to-prototype distances, and λd is the regularization parameter for
the extracted distances in the formulation. Regularization of the prototypes prevents the algorithm to result
in extreme values. Furthermore, better algorithm performance is obtained with this regularization. A more
detailed analysis of regularization for prototypes will be shown in Section 5.

min
P,β

N∑
i=1

Lce(yi, ŷi) + λw ∥β∥1 − λp

D∑
d=1

D∑
d′=1

Dist(Pd, Pd′) + λd

N∑
i=1

D∑
d=1

Φid (5)

Φid = min
Xik∈Xi

Dist(Xik, Pd) (6)

ŷi = σ(β0 +

D∑
d=1

βdΦid) (7)

The objective function given in Equation 5 is optimized over the prototypes, P , and the linear classifier
weights, β . Different learning rates are used for prototypes and the classifier parameters, namely αw for weights
and αp for prototypes.

3.4. Feature normalization
The distance features are prone to scale issues. This can cause problems with both gradient updates and the
learning of linear classifier parameters. To overcome this, we adopt a similar approach from [27, 28]. In other
words, for each bag, we normalize the aggregated distance vector. Note that the information related to the
shape of the distance features will be preserved under the normalization operation that is only recentering and
rescaling. Namely, each row in the transformed distance space is scaled to zero mean and unit variance as
illustrated in Equations 8a and 8b. Layer normalization is important because of two reasons. The first reason is

2906



SIVRIKAYA et al./Turk J Elec Eng & Comp Sci

that it stabilizes the issues that could occur during optimization due to the scale of distance features. Secondly,
layer normalization reduces the sensibility of the linear classifier to the scale of distances while keeping the
relative distance information. As a side benefit, we observe that as argued in [27], it speeds up the convergence.

µi =
1

D

D∑
d=1

Φid, σi =

√
1

D
(Φi − µi)2 (8a)

Φi =
Φi − µi

σi
(8b)

In our setting, for a given training task, we choose a fixed number of prototypes, D , of a fixed size, L ,
to be learned. We initialize these prototypes randomly. We combine each instance of length L in a given bag,
which yields Ki (number of instances in bag i) vectors representing bag i . Ki is not constant between different
bags, since each bag potentially has a different number of instances.

We calculate the distance from each instance to the prototypes to extract distance features at each train-
ing step. Given these features, the model learns a classifier to predict the bag class. Details of the algorithm
are given in Algorithm 1.

4. Interpretation
Interpretability of the solution is an important aspect of prototype learning. To demonstrate this interpretability,
here we apply our approach to the MNIST MIL problem, which was introduced in [3]. MNIST database is an
image database. The database has 60,000 training and 10,000 test images of handwritten digits.

In this case, each instance is an image, and each bag consists of images. The task is finding whether
a target number exists in images in a bag. To keep things simple, we chose the number of prototypes to be
2. Examples of prototypes from two different runs can be seen in Figures 3a and 3b. In this application, we
only used min as the aggregator for better interpretation. For instance, looking at Figure 3a, we see that the
second prototype looks a lot like a 9, and the classifier found a negative coefficient for minimum distance to
this prototype. This indicates if the minimum distance to this prototype is larger, the output probability will
suffer. Moreover, since the first prototype has a positive coefficient, if the minimum distance of the bag to this
prototype is larger, the output probability will be higher. The same analysis can be done for Figure 3b.

5. Experimental results
We compare the performance of the aforementioned model to other well-known approaches in the literature.
MIL literature has 68 common data sets that vary from molecular activity prediction to image annotation.
Details of these data sets can be found in Table 4. Approaches are generally tested on these data sets. Our
experiments on classical MIL benchmark data sets demonstrate that the proposed framework is an accurate
and efficient classifier compared to the existing approaches.

Table 4. MIL data sets.
Name Instances Min Max Features Bags + Bags -Bags
Musk 1 ⊕ 476 2 40 166 92 47 45

Musk 2 ⊕ 6598 1 1044 166 102 39 63

2907



SIVRIKAYA et al./Turk J Elec Eng & Comp Sci

Table 4. (Continued).
Name Instances Min Max Features Bags + Bags -Bags
Mutagenesis 1 ⊕ 10486 28 88 7 188 125 63
Mutagenesis 2 ⊕ 2132 26 86 7 42 13 29
Protein ⊕ 26611 35 189 8 193 25 168
Elephant ⊖ 1391 2 13 230 200 100 100
Fox ⊖ 1302 1 13 230 200 100 100
Tiger ⊖ 1220 2 13 230 200 100 100
Corel, African ⊖ 7947 2 13 9 2000 100 1900
Corel, Antique ⊖ 7947 2 13 9 2000 100 1900
Corel, Battleships ⊖ 7947 2 13 9 2000 100 1900
Corel, Beach ⊖ 7947 2 13 9 2000 100 1900
Corel, Buses ⊖ 7947 2 13 9 2000 100 1900
Corel, Cars ⊖ 7947 2 13 9 2000 100 1900
Corel, Desserts ⊖ 7947 2 13 9 2000 100 1900
Corel, Dinosaurs ⊖ 7947 2 13 9 2000 100 1900
Corel, Dogs ⊖ 7947 2 13 9 2000 100 1900
Corel, Elephants ⊖ 7947 2 13 9 2000 100 1900
Corel, Fashion ⊖ 7947 2 13 9 2000 100 1900
Corel, Flowers ⊖ 7947 2 13 9 2000 100 1900
Corel, Food ⊖ 7947 2 13 9 2000 100 1900
Corel, Historical ⊖ 7947 2 13 9 2000 100 1900
Corel, Horses ⊖ 7947 2 13 9 2000 100 1900
Corel, Lizards ⊖ 7947 2 13 9 2000 100 1900
Corel, Mountains ⊖ 7947 2 13 9 2000 100 1900
Corel, Skiing ⊖ 7947 2 13 9 2000 100 1900
Corel, Sunset ⊖ 7947 2 13 9 2000 100 1900
Corel, Waterfalls ⊖ 7947 2 13 9 2000 100 1900
UCSB Breast Cancer ⊖ 2002 21 40 708 58 26 32
Newsgroups 1, alt.atheism ⊗ 5443 22 76 200 100 50 50
N.g. 2, comp.graphics ⊗ 3094 12 58 200 100 50 50
N.g. 3, comp.os.ms-windows.misc ⊗ 5175 25 82 200 100 50 50
N.g. 4, comp.sys.ibm.pc.hardware ⊗ 4827 19 74 200 100 50 50
N.g. 5, comp.sys.mac.hardware ⊗ 4473 17 71 200 100 50 50
N.g. 6, comp.windows.x ⊗ 3110 12 54 200 100 50 50
N.g. 7, misc.forsale ⊗ 5306 29 84 200 100 50 50
N.g. 8, rec.autos ⊗ 3458 15 39 200 100 50 50
N.g. 9, rec.motorcycles ⊗ 4730 22 73 200 100 50 50
N.g. 10, rec.sport.baseball ⊗ 3358 15 58 200 100 50 50
N.g. 11, rec.sport.hockey ⊗ 1982 8 38 200 100 50 50
N.g. 12, sci.crypt ⊗ 4284 20 71 200 100 50 50
N.g. 13, sci.electronics ⊗ 3192 12 58 200 100 50 50
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Table 4. (Continued).
Name Instances Min Max Features Bags + Bags -Bags
N.g. 14, sci.med ⊗ 3045 11 54 200 100 50 50
N.g. 15, sci.space ⊗ 3655 16 59 200 100 50 50
N.g. 16, soc.religion.christian ⊗ 4677 21 71 200 100 50 50
N.g. 17, talk.politics.guns ⊗ 3558 13 59 200 100 50 50
N.g. 18, talk.politics.mideast ⊗ 3376 15 55 200 100 50 50
N.g. 19, talk.politics.misc ⊗ 4788 21 75 200 100 50 50
N.g. 20, talk.religion.misc ⊗ 4606 25 79 200 100 50 50
Web recommendation 1 ⊗ 2212 4 131 5863 75 17 58
Web recommendation 2 ⊗ 2212 5 200 6519 75 18 57
Web recommendation 3 ⊗ 2212 5 200 6306 75 14 61
Web recommendation 4 ⊗ 2291 4 200 6059 75 55 20
Web recommendation 5 ⊗ 2546 5 200 6407 75 61 14
Web recommendation 6 ⊗ 2462 4 200 6417 75 59 16
Web recommendation 7 ⊗ 2400 4 200 6450 75 39 36
Web recommendation 8 ⊗ 2183 4 200 5999 75 35 40
Web recommendation 9 ⊗ 2321 5 200 6279 75 37 38
Birds, Brown creeper ⊘ 10232 2 43 38 548 197 351
Birds, Chestnut-backed chickadee ⊘ 10232 2 43 38 548 117 431
Birds, Dark-eyed junco ⊘ 10232 2 43 38 548 20 528
Birds, Hammonds flycatcher ⊘ 10232 2 43 38 548 103 445
Birds, Hermit thrush ⊘ 10232 2 43 38 548 15 533
Birds, Hermit warbler ⊘ 10232 2 43 38 548 63 485
Birds, Olive-sided flycatcher ⊘ 10232 2 43 38 548 90 458
Birds, Pacific slope flycatcher ⊘ 10232 2 43 38 548 165 383
Birds, Red-breasted nuthatch ⊘ 10232 2 43 38 548 82 466
Birds, Swainsons thrush ⊘ 10232 2 43 38 548 79 469
Birds, Varied thrush ⊘ 10232 2 43 38 548 89 459
Birds, Western tanager ⊘ 10232 2 43 38 548 46 502
Birds, Winter Wren ⊘ 10232 2 43 38 548 109 439
⊕ molecular activity prediction, ⊖ image annotation, ⊗ text classification, ⊘ audio recording classification

We repeat stratified 10-fold cross-validation five times. Randomly generated cross-validation indices
and results of the benchmark models are taken from [30]. Considered benchmarks are APR (axis-parallel
rectangles) [11], CCE (constructive clustering based ensemble) [31], citation-KNN (citation k-nearest neighbor)
[10], Dmaxmin , Dmeanmin , Dminmin (MIL with bag dissimilarities) [12] and MILES (multiple instance learning
via embedded instance selection) [15], miFV (MIL based on the Fisher Vector representation) [32]. For all
experiments, initial prototypes are generated randomly, and logistic regression is used as the default classifier.
The model was implemented in PyTorch [33]. Adam optimizer from [29] was used. Parameters were tuned using
Bayesian optimization [34]. Regularization parameters were searched between 0.00005 and 0.005 . Boundaries
of learning parameters were 0.00001 and 0.01 . Number of prototypes were selected among {2, 4, 6, 8, 10} . We
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Algorithm 1: Prototype learning algorithm.
Definitions:
λw : Regularization parameter for linear classifier weights, λp : Regularization parameter for
prototype distances, λd : Regularization parameter for instance to prototype distances αw :
Learning rate for classifier, αp : Learning rate for prototypes, MaxIter: Number of iterations

Parameter tuning with inner cv;
foreach Fold do

Initialize prototypes;
BestAUC ← 0 , counter ← 0;
while iter ≤ MaxIter do

foreach i, d do

Dist(i,d) ← 1/Ki

∑
i∈Bi

Ki∑
j=1

Dist(Xij , d);

end foreach
Calculate targets, AUC;
if AUC ≥ BestAUC then

BestAUC ← AUC, counter ← 0;
end if
Loss ←

∑N
i=1 Lce(yi, ŷi) + λw ∥β∥1 + λp

∑D
d=1

∑D
d′=1 Dist(Pd, Pd′) + λd

∑N
i=1

∑D
d=1 Φid;

Run Optimizer [29]: Minimize Loss, Update prototypes with αp , Update classifier weights
with αw ;

if Iter % Learning Rate Update = 0 then
αp ← αp/2, αw ← αw/2

end if
if counter = 3 then

break;
counter++;

end if
end while

end foreach

applied stepwise learning rate decay, namely in every 40 epochs, we decreased the learning rate to half. L2
regularization was applied to prototypes, and L1 regularization was applied to the classifier parameters. Layer
normalization is applied as in [27] to the distance features. Experiments were run on Windows Server 2016
operating system. The system has 10.0 GB installed memory (RAM) and a 2.30 GHz Intel Xeon(R) Processor.1

5.1. Classification accuracy
The solution approach in this study outperforms or at least does as well as all other well-known methods
in terms of classification accuracy. Besides, this approach has much fewer parameters compared to a neural
network. Area under the curve (AUC) is our primary performance measure to compare the approach with other
well-known approaches. AUC is the area under the receiver operating characteristics (ROC) curve. The true
positive rate is plotted against the false positive rate at a threshold parameter to create a ROC curve. AUC is
used to show how successful the model makes classification, especially if there is a high imbalance between the
numbers of positive and negative bags. Comparison of PL and other well-known approaches can be found in
Table 5.

1Algorithm implementation and experiments can be found in the following link: https://github.com/mertyg/learning-prototypes
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Figure 3. MNIST examples.
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We applied the procedure in [35] to compare the results of different approaches. Friedman test is a
nonparametric test and concentrates on the average ranks. In our test, null hypothesis indicates that the
average ranks of all different approaches are the same. The test concludes the average ranks performances
between the approaches are significantly different at 5% alpha level (p-value ∼= 0). Therefore, we continue
with the Nemenyi test [36] to identify if a method outperforms the other in terms of average rank. If the
average rank of the two approaches is greater than Nemenyi critical difference (CD) value, we can conclude that
the performances of the two approaches are significantly different than each other. The best two performing
approaches are Dmeanmin and PL in terms of average rank. The reported CD is 1.43 at 5% significance level. A
scatter plot of AUC values of these two approaches can be found in Figure 4 for these two approaches. Dmeanmin

outperforms PL in 46 data sets. However, averages of AUC values are closer to each other in both approaches
except for a few data set such as Newsgroups10, Newsgroups11, and Newsgroups14. PL outperforms Dmeanmin

in 25 data sets. Dmeanmin ’s average AUC values are high in Newsgroups data sets. However, it has a poor
performance in Newsgroups 9. There is a significant difference between the two approaches in a few data sets
including Web2, Web6, and Web8.

Protein

Fox                      

Newsgroups9              

Web1                     

Web2                     

Web6                     

Web8                     

HermitThrush

Newsgroups10             
Newsgroups14             

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
PL

D
_
m

ea
n
m

in

Figure 4. Comparison of AUC of Dmeanmin and PL.

5.2. Regularization
Experiments are repeated for Musk2 and CorelAntique data sets without prototype regularization to compare
the algorithm performance. Experiment method and all settings are kept. The only difference is the removal
of the prototype regularization from the objective function and the parameters. As a result of experiments,
the average AUC value decreased from 0.892 to 0.828 for Musk2 and 0.894 to 0.591 for CorelAntique data
sets. Therefore, we can conclude that PL outperforms the results without prototype regularization in terms
of average AUC value. Apart from AUC performance, prototypes of PL without regularization have the value
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in a range of (–5, 5) whereas PL’s prototypes have the value in a range of (–2.5, 2.5). This indicates that the
regularization term prevents extreme values that may lead to overfitting.

5.3. Parameter sensitivity

Algorithm’s performance changes under different parameter configuration. Average AUC scores of different
parameter settings are reported for the Musk2 dataset to show the size of the change, and the robustness of the
algorithm. Ten-fold cross-validation is repeated five times for each parameter setting.

Parameter sensitivity of learning rate of prototypes and weights are analyzed under the set of {0.00001,
0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.05} and {0.0001, 0.0005, 0.001, 0.005, 0.05} , respectively. Related perfor-
mances are reported in Figures 5a and 5b. If learning rate is increased to 0.001 and above, average AUC suffers.
Decreasing learning rates below 0.0001 does not increase performance even it brings high computational cost
and slow convergence.

Experiments with number of prototypes ∈ {2, 4, 6, 8, 10} can be found in Figure 5c. Best performance
is obtained when the number of prototypes is 10. However, less number of prototypes (less than 6) shows poor
performance in terms of classification power. The performance of PL is robust to the increasing number of
prototypes due to the regularization applied to the weights (namely λw ).

5.4. Time complexity

Let D be the number of prototypes, N be the number of data points in the dataset, Ki be the number of
instances in the bag i , K = max

i
Ki , L be the number of features in an instance, E be the number of training

epochs. Given an input i , a complete forward pass takes O(DKiL+DKi+D) = O(DKiL) which involves the
computation of distances, the pooling operation and computing the output of the linear classifier. Investigating
the training phase, we have that the back propagation and forward pass has the same time complexities, and
ultimately we obtain O(ENDKL) , which is linear in all terms. This is one of the highlights of prototype
learning, which results in fast training and test times.

6. Conclusion
This work presents a prototype learning framework for MIL problems that proposes a solution to the two main
challenges in MIL literature. The first challenge is that MIL literature lacks interpretable approaches. PL
offers the interpretability of the solutions. We applied our approach to a well-known MNIST problem to show
the interpretability power of our approach. As a result of this example, we can learn perfectly interpretable
prototypes. The second challenge is obtaining robust results on various MIL problems. Certain approaches,
including state-of-the-art models that PL is compared to, outperforms in specific problem cases. However,
experiments show that these methods may suffer in other problem types. PL provides accurate and robust
results on benchmark MIL data sets when compared to the well-known approaches. We focused on the simplicity
and flexibility of the architecture to apply PL to data from all kinds of domains. As a result, PL applies to
multi-class problems with simple modifications due to its flexibility. One can easily extend the same framework
to the multi-class cases utilizing a softmax function instead of a sigmoid function. Finally, PL has a linear time
complexity which results in fast training and test times.

As future work, considering the flexibility of the architecture, one could incorporate more complex
classifiers, different distance metrics, and different aggregation procedures to obtain more powerful models. We
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Figure 5. Average AUC performance under different parameter configurations.

aim to present the simplicity of the approach. Therefore, logistic regression classifiers and Euclidean distance
are adopted. Moreover, the algorithm is applied to the classical MIL benchmark data sets. The method’s
modification to different problems is an interesting research direction. A regression extension by changing the
loss function is also another research direction.
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