Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci
(2022) 30: 263 — 278

© TUBITAK

TUBITAK Research Article doi:10.3906 /elk-2104-182

http://journals.tubitak.gov.tr/elektrik/

An effective prediction method for network state information in SD-WAN

Erdal AKINY*, Ferdi SARAC?, Omer ASLAN?
!Department of Computer Engineering, Bitlis Eren University, 13000 Bitlis, Turkey
2Department of Computer Engineering, Siilleyman Demirel University, 32260 Isparta, Turkey,
3Department of Computer Engineering, Siirt University, 56100 Siirt, Turkey

Received: 26.04.2021 . Accepted/Published Online: 02.07.2021 . Final Version: 19.01.2022

Abstract: In a software-defined wide area network (SD-WAN), a logically centralized controller is responsible for
computing and installing paths in order to transfer packets among geographically distributed locations and remote
users. Accordingly, this would necessitate obtaining the global view and dynamic network state information (NSI) of the
network. Therefore, the centralized controller periodically collects link-state information from each port of each switch at
fixed time periods. While collecting NSI in short periods causes protocol overhead on the controller, collecting in longer
periods leads to obtaining inaccurate NSI. In both cases, packet losses are inevitable, which is not preferred for quality
of service (QoS). Packet loss needs to be reduced by minimizing the protocol overload on the controller and collecting
accurate NSI to provide better QoS. This work proposes an effective prediction method for collecting NSI (PM-NSI)
that significantly reduces packet loss and controller protocol load allowing the controller to collect accurate NSI in longer
periods. The proposed method is compared against the existing NSI collection method, which collects NSI periodically,
in use on the RYU controller and the Mininet emulator by using a dynamic routing algorithm. The test results indicated
that PM-NSI reduces controller load around 1000% by collecting NSI in longer periods and so outperforms the existing

periodic NSI collection method in terms of packet loss, jitter, controller load, and thus QoS.

Key words: Routing in SD-WAN, network state information, software-defined wide area network, load balancing

1. Introduction

The original IP network architecture became insufficient to meet the growing real-world needs. Patching
new features to the existing network architecture to handle the requirements results in a complex distributed
system [1-3].

Software-defined networking (SDN) emerged as a new technology that promises to give the ability to
manage and program the Internet [1, 4]. Basically, SDN separates the control plane from multiple data-plane
elements into a logically centralized controller that acquires the link state information of the network, fulfills all
decisions (e.g., computing feasible paths for the requested flows), and installs these decisions to the underlying
forwarding elements [1, 5-7]. SDN principles are used to manage wide area network (WAN) which is called
software-defined wide area network (SD-WAN).

While SD-WAN aims to enable managing the network, it brings about new scalability issues such as sig-
naling overhead, communication delay and reliability, fault tolerance issues, and protocol overhead [8]. Signaling

overhead occurs because of communication needs between separated control and data plane. Communication

*Correspondence: e.akin@beu.edu.tr

263

[GO) This work is licensed under a Creative Commons Attribution 4.0 International License.

AKIN et al./Turk J Elec Eng & Comp Sci

delay and reliability happen due to the distance between the controllers and the switches. Since there is one
point of management, fault tolerance issue is inevitable if the controller fails. Last but not least, the protocol
overhead appears because of collecting NSI and dealing with the statistics that switches send [9]. Although
these scalability issues are important and affect each other, the protocol overhead is crucial especially for the
routing decisions.

Routing in SD-WAN is performed in three main steps: the controller (i) periodically communicates with
the switches to collect dynamically changing statistics and NSI, (#i) uses a routing algorithms to find a feasible
path for the demand of the requested flow, (4ii) installs the computed routing information to the underlying
forwarding elements such as switches [4, 6]. Let us explain the process better in Figure 1. The controller
continuously requests NSI from the underlying network (switches S1, S2, and S3) with a predetermined period.
Then, it acquires link state information such as available bandwidth and residual bandwidth for each link. If
a flow request with demand from Host 1 to Host 2 arrives, it finds a path for the demand by using a routing
algorithm. Assuming that the computed path is (S1, S3), the controller installs the forwarding rules on the
switches S1 and S3.

The controller collects statistics such as flow, meter, queue, aggregate, table, and port (link) statistics by
querying the switches via statistics messages to acquire dynamic NSI [10]. The controller needs to collect NSI
more often within shorter periods to obtain accurate NSI. However, this causes messaging overhead (i.e. protocol
overhead) on the controller. Nonetheless, collecting NSI with longer periods results in inaccurate NSI, as link
statistics are changing quickly. In both cases, the delay and packet loss are inevitable [4]. There are a paucity
of studies to address this scalability issue. The authors in [11, 12] aim at sending some traffic information to

the authorized switches instead of the controller. These switches act like the controller which is unsuitable for
the concept of SD-WAN. Many of the existing studies attempt to estimate traffic load on the network, but they

do not take into account both the controller overload and the packet forwarding between multiple sources and
destinations together [13-15].

To address the abovementioned issues, we propose a new prediction method, called the prediction
method for network state information (PM-NSI), that targets the inaccuracy issues. In PM-NSI, we aim at
predicting accurate NSI while collecting NSI at longer periods. To do that, we use variable packet size probing
technique [16-20]. The main idea behind the technique is to measure the remaining bandwidth capacity of each
link of the path by probing the demand of the flow requests. With this idea, we calculate possible bandwidth
consumption for each link based on randomly chosen demands of each possible flow. Then, by using calculated
possible bandwidth consumption and lastly collected NSI, we compute the possible remaining bandwidth of
each link. Furthermore, we modify the dynamic shortest path (DSP) algorithm concerning the predicted link-
state information to compute paths. Since PM-NSI allows the controller to collect more accurate NSI at longer
periods, the protocol overhead on the controller is reduced significantly which results in less delay, jitter, and
packet loss.

The periodic NSI method and the proposed PM-NSI method are implemented on the RYU controller
and the Mininet emulator is used to compare them on an enhanced ANSNET topology (Figure 2). Our results
show that PM-NSI outperforms the periodic collection method in terms of delay, jitter, and packet loss while
significantly reducing the controller load by collecting accurate NSI at longer periods.

The main contributions of our study are outlined as follows:
¢ We propose a novel NSI prediction method which aims at collecting NSI at longer periods.

264

AKIN et al./Turk J Elec Eng & Comp Sci

[

IPNSI Algorithm:
(1) Acquiring NSI:
For each link (u, v):

« Collect NSI
+ Compute RBW

ii) Path Computation for flow f(s’d)(r):

* Eliminate links RBW(y)<t

e Compute path using C(u,v)
(S,d): I/RBW(u’V)

Controller

(iii) Installing
. .. (ii) Path rules on the
(i) Acquiring NSI Computation switches through
computed path

Host 1

[

IPM-NSI Algorithm:
1) Acquiring NSI:
For each link (u, v):

¢ Collect NSI with longer period

e Predict Residual Bandwidth,
PRBW(y v

ii) Path Computation for flow f(s 4)(r)

* Eliminate links; PRBW(,) <t
¢ Compute path using C(u,v)
(50 Huv/RBW)

4y
<>
S1 S3 > (4
(a)
N
Controller
(iii) Installing
. .. (ii) Path rules on the
(1) Acquiring NST Computation switches through
computed path
§ % g 12
g2l g2
S N -y

(b)

@HQ

Figure 1. NSI Collection Methods (a) PNSI and (b) PM-NSI

(24
Host 2

265

AKIN et al./Turk J Elec Eng & Comp Sci

o The effectiveness of the proposed NSI method has been extensively studied in terms of QoS by means of

bench-marking against the periodic NSI collection method which is the method in use.

e It has been observed that the proposed NSI collection method obtains accurate NSI at longer periods

which results in reducing the protocol overhead on the controller.

e Since the protocol overhead is reduced, the controller computes more feasible paths with better QoS in

the proposed NSI collection method comparing the well-known periodic NSI collection method.

This paper is structured as follows. In Section 2, we mention the scalability issues in SD-WAN controller plane
and periodic NSI collection in SD-WAN. We discuss the proposed PM-NSI method in Section 3. In Section 4,
we provide the experimentation set up and evaluate the results. Finally, we state the challenges and the future

studies in Section 5.

2. Background and related studies

The controller computes optimal paths by using one of the existing real-time routing algorithms concerning
obtained current NSI. To acquire the current NSI, the controller queries all links (ports) of the switches via
OpenFlow statistics messages. Using these messages, the controller queries the switch for information about its
running states such as flow, meter, queue, aggregate, table, and port stats. Furthermore, one can create custom
experimenter statistics by modifying the switches and the controller in terms of required custom statistics.

As evaluated in [4], the accuracy of NSI is crucial for the performance of a routing algorithm. However,
collecting the accurate dynamically changing NSI is a very challenging issue. Unfortunately, frequently querying
the distributed switches causes significant overhead and still inaccuracy because of delay and measurement
errors. Moreover, collecting NSI at longer periods will result in nonoptimal path selection as it cannot provide
current NSI, although it reduces overhead. Therefore, the controller needs to carefully pick a predetermined
period (e.g., every 7 seconds) to balance the accuracy and protocol overhead [4, 21].

In practice, the controller communicates with all OpenFlow switches on the network by sending the

port statistics. The switches reply with current total traffic, tmfu) for each port. The controller keeps the
last recorded traffic on the port, tx’(’u e In other words, while txfu) presents the total traffic on the link

(u,v) at the current time ¢, txf’u_v) shows the total traffic on the link until the previously measured time ¢,.

The difference between ¢, and t. is as much as the predetermined period, .7 seconds. The controller, first,

calculates the average current traffic (ABW)(,) on the link (u,v) which is formulated as follows:

c _ D
t:v(u’v) tx(u)v)

ABW(UU) = te — tp

(1)

ABW (4, is the ratio of the difference between tmf) and t:r’()) over the difference between ¢, and

u,v u,v

t.. Then, the controller determines residual bandwidth RBW(,,) for each link (u,v) by using the formula:
RBW(UVU) = BW(UW) - ABW(UW) (2)

BW (4, is the initial capacity of the link (u,v). Finally, the controller saves t. and tx?u,v) as t, = t.

and mz(ou v = txfu) for calculations in the next period.

266

AKIN et al./Turk J Elec Eng & Comp Sci

These steps may cause scalability issues because of protocol overhead on the controller. There are some
studies proposed to solve the issues. In [11, 12], the researchers give authority to some switches to prevent
sending some requests to the controller to reduce protocol overhead. However, the proposed method is against
the design of SD-WAN architecture.

In [22], the authors compare the centralized and the distributed controllers by taking into account all
message traffic between the switches and the controllers. Despite the better performance of the multicontroller
designs, they cause unnecessary delays corresponding to the routing algorithms because of the need for dynamic
NSI. Therefore, to handle this issue, the authors propose a multicontroller design, called Link-prioritized
NSI [21]. Although they provide more accurate NSI together with better or similar performance in controller
load and total transferred bandwidth, they only take into account that the traffic goes through one direction.

In [14, 15], the number of packets, average traffic load, and path length is estimated. However, the authors
focus on packet forwarding rather than controller overload and do not provide a quantitative evaluation. In [13],
the authors propose a model with seven functions for predicting control channel. They achieve 94% prediction
accuracy, but they do not take into account packet forwarding between multiple sources and destinations.

Accordingly, we propose a new prediction method for NSI (PM-NSI) that assumes the traffic can go
through between all sources and destinations in the network. Despite proposing and testing PM-NSI for the
single controller design, it can also be modified for multicontroller designs in the future. In Section 3.2, the
proposed PM-NSI method is discussed in detail.

3. NSI collection methods

OpenFlow protocol has a set of messages sent from the controller to the underlying data plane elements and
a set of corresponding messages responded from the data plane elements to the controller [27]. For the NSI
collection, the controller requests the total traffic for all ports of all switches on the network and the switches
respond back with the requested information. Then, the controller acquires link state information such as
current traffic and residual bandwidth on the links and computes a feasible path for a flow request. Therefore,
NSI collection methods consist of the two main steps of the routing protocol in SD-WAN (the red and green
rectangle which consists of both steps in the controller in Figures la and 1b). In this section, we first present
algorithm and the issues of the classical method PNSI which is practically in use. Then, we propose PM-NSI
which targets to solve the issues of PNSI.

3.1. Periodic network state information (PNSI) collection

As we explained in detail in Section 2, the controller uses OpenFlow protocol to communicate with switches
for collecting NSI. In this section, for better insight, we explain the steps of the PNSI method in Algorithm 1.
Between lines 6 and 14, the controller collects NSI and computes ABW(, .,y and RBW(, , for each link (u,v),

if the predetermined time period .7 is reached or passed. It first requests txfu v) from each switches in line 8.

Then, as soon as the control receives ta:‘(:u v)
,

it computes ABW(, ,y and RBW(, . in lines 9 and 10 by using
equations 1 and 3, respectively. Then, in lines 11 and 12, the controller saves current txfu)v) and t. as the
previous variables in order to use for the next collection time. The controller uses lastly computed RBW(y .,
(line 15) for path computation. Finally, the controller computes a feasible path for the requested flow f(s 4)(r)

in line 17. As indicated in [4], DSP is providing one of the best performances among the others. Therefore,

we choose the DSP algorithm for PNSI which eliminates the links which are less than requested demand r and

267

AKIN et al./Turk J Elec Eng & Comp Sci

Algorithm 1: Periodic Method for NSI (PNSI)

1 Initialization: Graph G(N, E),

2 BW(u,v) for V(u,v) € E,

3 7 is declared,

4 fs,a0)(r), a flow between source s and destination d with a requested demand r,

5 Output: p(sq), a path that meets the demand r of a flow between source s and destination d.
6 if t. —t, >= .7 then

7 for Each link (u,v) € E do

8 The controller requests tx(, ,

t2 00 0) "t 0)
9 ABW(u,v) = I
c—lp

10 RBW(UW) = BW(M’U) — ABW(UW)

11 0y 0y = tT(uw)

12 tp = tc
13 end
14 else
15 ‘ Controller uses lastly computed RBW(y,) -
16 end
17 For flow f(s q)(r) Eliminate the link (u,v) that RBW(, .) < r, compute the shortest path p(4) using

C(u,v)(s,a) = RBVI}(u,U)

18 Return: pq)

computes path p(,4) based on the cost metric:

1

RBW) (3)

C(u, v)(s,d) =

Then, the controller installs rules to the switches on the computed path p(s 4). The main shortcoming in

this method is that the controller needs to collect NSI in short periods (line 8) to acquire accurate NSI, which
causes overload on the controller. In addition, if it collects in longer periods, it would have inaccurate NSI (line
15) which results in using unfeasible links during path computation and congestion on the links. Therefore, we
alm at proposing a new method which provides a way for the controller to collect NSI in longer periods and
reduces overload on the controller by predicting the link usage in advance and handling the inaccuracies. In the

next section, we present the proposed method in detail.

3.2. Prediction method for NSI collection (PM-NSI)
3.2.1. Detalils of the proposed method

In our method, we aim at predicting usage of a link (u,v) between the last collection of NSI and the current
flow request times. Since the dynamic NSI changes over time because of continuous traffic load, the controller
will not have accurate NSI if it uses the previously collected NSI. Thus, instead of using inaccurate NSI, it is
allowed the controller to predict current NSI at the time of flow requested. In this way, our method provides a
way for the controller to collect NSI at longer periods resulting in less protocol overhead. To do that, first, it is
necessary to determine Possible Flow Number (PF Ny, ,) and Possible Bandwidth Consumption (PBWC(,)
for each link (u,v). Then, by using this information, current remaining bandwidth RBW(, .y on the link (u,v)

can be predicted.

268

AKIN et al./Turk J Elec Eng & Comp Sci

Algorithm 2: Proposed Prediction Method for NSI (PM-NSI)
Initialization: Graph G(N, E),
RBW (u,v) for ¥Y(u,v) € E computed at last collection time,
f(s,a)(r), a flow between source s and destination d with a requested demand r,
I(y,v), flow number on the link (u,v),
|SD|, number of possible (s,d) pairs in the network,
M (u,v) = {(s,d) pairs that using the link (u,v)} computed by Minimum-hop Disjoint Paths
Algorithm [21] for Y(u,v) € FE.
7 Output: p(,q), a path that meets the demand r of a flow between source s and destination d with
minimum protocol overhead on the controller.
8 PFN, =t
9 PBWC 4 = ZiFlN umfm‘ﬁgfffmrmm)
10 for Each link (u,v) € E do
u | PRBW("W = RBW(,) — PBWC(,)
12 2 = |M(u,v)]
13 if 27> 1 then

S ok W N

1 | | PRBW(,, = Pr(2)x PRBW;"Y
15 else

16 | | PRBW(,,) = PRBW."Y

17 end

18 end

19 For flow f(, 4)(r) Eliminate the link (u,v) that PRBW(, ,) < 7, compute the shortest path p 4

. I('LL,'U)
using C(u,v)(s.0) = pPRBW,

20 if p(sq) # 0 then
21 for Each link (u,v) € p(s,q) do

22 | Ty = L) +1
23 end
24 end

25 Return: p, g

For set of nodes N = {uj,us,us,....,u,} and for the set of links F = {ejy,eq,e3,...,e,}. Each link
(u,v) € E is associated with an available bandwidth parameter BW (u,v) > 0. For source node s, destination
node d and bandwidth requirement r a flow is f(, 4)(r). For each flow f, the controller needs to find a single
path p, which BW(p) = min{ BW (u,v) | (u,v) € p} >r .

The proposed method is a combination of NSI prediction and routing algorithm that uses predicted
remaining bandwidth of the links. As seen at line 8 in Algorithm 2, we first determine PF N, , which is the
number of the requested flows between the previous NSI collection time (#?) and the current time (¢¢) that the
flow requested. Assuming that the flows are coming in every a seconds, PF N, is the floor of the ratio of the
difference between t¢ and tP to «. Then, in line 9 in Algorithm 2, we calculate possibly transferred bandwidth
demand between ¥ and t¢, which is named as Possible Bandwidth Consumption (PBWC(, qy). To calculate
PBWC, 4), we uniformly choose PFN, demands from wuniform(rmin, "maz) (Tmin and rmq. representing
minimum and maximum demands, respectively) and find the average of them over the total number of possible

(s,d) pairs (|SD|). Between lines 10 and 18 in Algorithm 2, we determine Predicted Remaining Bandwidth

269

AKIN et al./Turk J Elec Eng & Comp Sci

(PRBW(y,.) for each link (u,v). Therefore, we first compute the Temporary Predicted Remaining Bandwidth
(PRBW/°™) at line 11. Then, we calculate the number of pairs using the link (u,v) (2°) (line 12). To

(u,v)
determine 2", we need to use M (u,v) which is a pre-computed parameter by using Minimum-hop Disjoint
Paths Algorithm [21]. As explained in detail in [21], the algorithm computes M (u,v) parameter which is the
set of all possible (s,d) pairs that the minimum-hop edge-disjoint paths belonging to the pairs contain the link
(u,v). Between lines 13 and 17, we calculate PRBW(, ., that is used to determine the cost metric C(, . for

path computation. To do that, it is essential to compute probability of 2~ (Pr(Z")) over the number of total

(s,d) pairs, a.k.a |SD|. If M(u,v) is not null, we assume that Pr(2") x PRBW(tST)p of the link capacity is

available for the flows. The goal here is to increase the cost of using the common links (line 14). Thus, the
aim is to postpone the usage of common links to prevent early congestion. Otherwise, if M (u,v) is null, any
bandwidth capacity is not reserved to allow the routing algorithm to use the other links (non-common links)
for better load balancing (line 16). After obtaining PRBW(, .y, C(u,v)s,q), which is a new link cost metric,

is introduced as follow:

O, v) (5.t = Bri— (4)
where I(u,v) represents the total number of flows using the link (u,v). Then, DSP algorithm (which provides
one of the best performance and is easy to implement among the routing algorithms in [4]) is modified in order to
use this metric to compute paths (linel9). Modified DSP finds a path for a flow f 4)(r) by using equation 4,
while eliminating the links that PRBW(, . is less than the requested demand 7. Then, if the path p(, gy is
found, I(u,v) is updated for each link (u,v) belonging to p(s 4 (lines 20 —24). Then, the controller installs

rules to the switches on the computed path p(, 4.

3.2.2. Computational time analysis

In the proposed PM-NSI method, a modified DSP algorithm is used to compute paths. Before using it, we try
to predict the remaining bandwidth of the links. To do that, we use pre-computed M (u,v) parameter [21]. As
evaluated in detail in [21], the worst-case computation complexity of Minimum-hop Disjoint Path Algorithm is
O(|N|2L(BFS)), where L is the maximum degree and |N| is the number of vertices in the network. However,
these parameters are computed only once when the topology is created. So, the running time of the Algorithm
can be ignored.

In Algorithm 2, initially possible flow numbers between the previous NSI collection time and the current
time the flow has arrived are determined. Then, the total potential demand based on the possible flow numbers
is estimated. The computation time complexity of predicting remaining bandwidth of the links is O(|E|),
where |E| is the number of the links in the network (Algorithm 2 lines 10-18). Between lines 20 and 24,
T(u,v) is updated for each link, which gives O(|E|) as the running time in the worst case. In addition, in
line 19, PM-NSI executes a modified DSP algorithm (a.k.a dynamic version of well-known Dijkstra’s shortest
path algorithm) which uses equation 4 for path computation. AS indicated in [28], the time complexity of the
Dijkstra’s Algorithm is O(|E| + |E|log|N|), if priority queue is used as we have done for the implementation.
Otherwise, it would be O(|N|?) when array is used. Therefore, the computation time complexity of PM-NSI

270

AKIN et al./Turk J Elec Eng & Comp Sci

will be O(|E|) + O(JE|) + O(|E| + |E|log|N|) which equals to O(3|E| + |E|log|N|). However, since 3 is a
constant value, it is O(|E| + |E|log|N]).

Figure 2. ANSNET topology.

4. Performance evaluation

A centralized RYU SD-WAN controller is used on a Mininet emulator to implement PM-NSI and the existing
periodic NSI (PNSI) collection methods. RYU is one of the SDN controllers used for research and development
purposes in academia and industry. It supports OpenFlow protocols and gives better performance than
Floodlight in terms of packet loss, latency, and jitter [33]. In addition to PNSI, the DSP algorithm is chosen
which provides one of the best performances among the routing algorithms evaluated in [4]. For PM-NSI,
the aforementioned modified version of DSP that uses the cost metric, which is determined for PM-NSI, is
implemented. If the controller computes the path for a flow, it then installs the rules on the Mininet switches
on the path by using the OpenFlow protocol. Then, the flow loads the network as much as request r. The

controller rejects the flow if it cannot find a feasible path for the flow.

Table . Simulation parameters of performance evaluation.

Parameter Value
Number of links |E)| 108
Number of nodes |N| 32

Bandwidth capacity BW(,) | uniform(2,10) Mbps

Demand 7 of flow f(,a)(7) uni form(200, 500) kpbs

NSI collection period 3, 5,10, 20, 30,50 and 100 seconds
Average Rate « 3

For tests, in order to fairly compare both methods, the same values for link bandwidth, requested
demands, and topology for the network as done in [4, 21] are used. Thereby, the UDP flows with randomly

selected demands are generated and the performance measurements is observed on the hosts using Linux software

271

AKIN et al./Turk J Elec Eng & Comp Sci

and iperf. Flows are randomly generated in every uniform(1,5) seconds. Thus, we choose a = 3, which is the
average rate of the coming flows. For a flow f(, 4)(r), source s and destination d nodes (hosts) are selected
randomly from any hosts and requested demand r from wuniform(200,500) kbps. For the network topology,
the expanded ANSNET topology is used (Figure 2), which has 108 bidirectional links with 32 nodes [4]. We
randomly selected the bandwidth capacity from uniform(2,10) Mbps for each link. As different from [4, 21],
all nodes have hosts that can generate and transfer flows between each other in our tests. The parameters used

in simulation are summarized in Table .
The following performance measurement metrics have been chosen for tests:

Total traffic load on the controller (TTLC)
Cumulative length of NSI collection messages, which carries port (link) statistics between switches and
the controller! [10].

Number of accepted flows (NAFs)

The number of routed flows that the routing algorithm is able to compute path.

Total transferred data (TTD)

The total transferred data carried through the network for the accepted flows.

Loss rate (LR)
The percentage of the lost packets of accepted flows.

Total jitter (TJ)

The total latency of packets of accepted flows when they are transferring through the network.

The proposed PM-NSI method is evaluated together with the existing periodic collection method, named
PNSI. For both NSI collection methods, the controller communicates with the switches to collect port (link)
statistics at every 7 seconds. Both methods are compared for every 7 = 3,5,10,20,30,50, and 100 s as
in [4]. The goal is to show that PM-NSI gives better results with respect to loss rate LR and total jitter TJ at
longer period time.

Collecting NSI at longer periods () significantly reduces TTLC. As seen in Figure 3, TTLC is getting
around 3.8,2.30,1.12,0.59,0.36,0.23 MB for .7 = 3,5, 10,20, 30,50, and 100 s, respectively.

However, if the controller performs the PNSI method, although increasing period time reduces the
controller load, it causes the controller to acquire inaccurate link state information which results in worse
QoS because of unfeasible path computation for the requested flows. Furthermore, decreasing the period time
does not provide better performance since it causes performance degradation on the controller because of the
traffic overload [4, 21]. Therefore, it is very important to provide a trade-off between NSI collection period
and accuracy of obtained link state information. The proposed PM-NSI algorithm provides a way to do this

trade-off.
Collecting NSI is needed to keep the controller up to date with the global view of the topology and

dynamically changing link state information. Since the view of the topology is not changing frequently, it
could be acceptable to collect NSI in longer period. However, having the up-to-date link state information is

important in terms of packet loss [29]. For this reason, the controller needs to collect NSI in shorter periods to

IFlowgrammable (2021). OpenFlow [online]. Website http://flowgrammable.org/sdn/openflow/message-layer/ [accessed 23
April 2021]

272

AKIN et al./Turk J Elec Eng & Comp Sci

4.0 4

— [TTLC

5 354 P

=

o

E o

8 — 3.0 1

0 Q

El= 254 [

HE ' -

=)

S P

— ‘;‘2.0- o

< 0

o=

a0 °

o2 151

= ¢

b= P

=

= 1.0 q °

£ b .

2 o051 ° H
= (-]

ool L, ’ . N

3sc Ssc 10sc 20sc 30sc 50sc 100sc

NSI collection Periods

Figure 3. Total Traffic Load on the Controller during NSI collection under ANSNET topology in every 3, 5,10, 20, 30, 50
and 100 seconds.

obtain accurate and up-to-date link state information. However, collecting NSI in shorter periods can also cause
overload on the controller, which also decreases the performance of the controller. Thus, it is crucial to pick an
optimal period to balance the accuracy of the link state and the controller overload. Accordingly, as seen in
Figure 4, PNSI provides the best loss rate when it collects NSI in every 5 s. The loss rate increases exponentially
when the collection period increases, obviously because the controller does do not have accurate link-state
information. One may observe that shorter period time to collect NSI does not give the best performance as
seen for 3 s in Figure 4. The reason for that is collecting NSI in every 3 s increases TTLC, which negatively
affects the responsiveness of the controller [4]. Besides, LR of PM-NSI is about 0.1% for 3 — 20 s periods.
Furthermore, PM-NSI provides a similar LR every 50 s compared to the best case of PNSI with 5 s. Thus, the
proposed PM-NSI method reduces TTLC by around 1000% while providing a similar LR performance.

Jitter, which is the latency and response time in milliseconds, is also one of the important aspects of
the network [31]. Especially, it is absolutely crucial for real-time latency-sensitive applications such as video
conferencing, VoIP calls, online video gaming and so on [30]. If the jitter is high, it negatively affects the quality
of communication that decreases transfer speeds [31]. As seen in Figure 5, PM-NSI gives better total jitter
(TJ) for every collection periods. PM-NSI minimizes TJ at 7 = 20 s collection period. However, TJ is not
zero because of the switches-controller communication, background traffic, and path installation processes [32].
As seen in Figures 4 and 5, although PM-NSI gives much better results than PNSI, the performances of both
decrease when the period increases. The reason is that the controller has old NSI which misleads it to use
the same remaining bandwidth of the links and find the same paths for the different flows that have the same
source-destination pairs, which results in congestion on the links. Although PM-NSI provides much better
results when the collection period 7 is up to 100 s for LR and 20 s for TJ, its performance also decreases (still
better than PNSI) when the collection period is higher than 50 s. To better explain this, we need to evaluate
Figures 6 and 7.

273

AKIN et al./Turk J Elec Eng & Comp Sci

34 -
%%- .1 PNSI <
3171 1 PM-NSI o
3% ‘
27 4 °
2
il °
7 q
& 224
=) 21 A [o]
~ 201 X q
L 197 —
Qﬁ N~ 17 1 -
16 1
S 151) o||”
o %‘31' -
1 q
= 12 1 — -
11 4 o] (o] [o]
197) 41
8 o o (o]
7 ' -
g- -
3] o o ol
3 D q_
%Z H ﬂ o a o H o||_
0 :_| I'_| T T T
3sc Ssc 10sc 20sc 30sc 50sc 100sc

NSI collection Periods

Figure 4. Loss rate (%) under ANSNET topology with PM-NSI and PNSI in every 3,5, 10, 20, 30,50, and 100 s.

14001 [2-2] PNSI D]

130071] PM-NSI K q

1200 4 o D

1100 q

10001 B ° P
g 9001 { 9

N g o D
5 800 ! {1
s - s

== 7007 b — le o D
g 600 1 q D] q | |

= 5004 P q g o D
w0d P q g o Jii

q D D q

2001 b q g o b
1007 clj D El D q[|

0 T T T T T

3sc Ssc 10sc 20sc 30sc 50sc 100sc

NSI collection Periods

Figure 5. Total jitter (ms) under ANSNET topology with PM-NSI and PNSI in every 3,5, 10, 20, 30,50, and 100 s.

As seen in Figure 6, PNSI accepts more flows than PM-NSI in every .7 = 3 — 100 s. While PM-NSI
accepts similar number of flows (around 63) for every collection period, the number of accepted flows NAF
is increasing for PNSI when the collection period increases. However, accepting more flow does not guarantee

that the method works better. As seen in Figure 7, total transferred data (TTD) decreases when the collection

274

AKIN et al./Turk J Elec Eng & Comp Sci

100 —
[=—d PNSI o b
904 1 PM-NSI - q
- q (o) Ji
g 809 _ q o b ¢
g |
=] o o}] q (] 3 Ji
9 q g o J i q]
a2~ 604 9] D[] D 17 [] q o D
o'y — — — — — — —
O q g o D q
o 50 - - - - - - -
< Z o b) d[| |0 o ([]
S] | q| | | e[| PIL | q|]
()
2 9| | D] | b (|] | | q| | of| | D] |
g 30 q g o) b ¢
z o Jil D[] | q| | o Jill
207 q g o b ([q/]
w0d 9L D] | D (1] | | q| | of| | D] |
|| q | o || o] D | | q | |
0
3sc 5sc 10sc 20sc 30sc 50sc 100sc
NSI collection Periods

Figure 6. Number of accepted flows (NAF) under ANSNET topology with PM-NSI and PNSI in every 3,5, 10, 20, 30, 50,
and 100 s.

period increases, while it gives equivalent results for PM-NSI for every collection periods. Furthermore, when
the collection period increases, the controller accepts more flow than the network can carry. Therefore, LR and
TJ gets higher as seen in Figures 4 and 5. Thus, by predicting future possible load, PM-NSI only accepts the
maximum number of flows that the network can handle. Although it seems that PM-NSI transfers less data
through the network, due to lower LR and TJ of PM-NSI, it maintains quality of service (QoS) for the accepted

flows.

5. Conclusion and future work

To obtain dynamically changing network state information (NSI) of a network is one of the key issues for
routing in SD-WAN. Basically, a logically centralized SD-WAN controller periodically queries port (link) state
information from underlying switches at predetermined time periods. However, the collected NSI is valid at the
time the reply message is created by the switches. When the controller receives the message, the collected NSI
on the message has already become out of date. In addition, collecting NSI with shorter periods will not be a
solution for the issue, because it will cause protocol overload in the controller. Collecting at longer period will
increase inaccuracy, although it decreases protocol overhead. Obviously, in both scenarios, existing periodic NSI
method does not provide an effective mechanism to collect NSI. Accordingly, we proposed an effective prediction
method for NSI that aims to predict NSI which allows to collect NSI at longer periods resulting in reducing
controller load and providing more accurate NSI to compute more feasible paths for the flows. In our tests,
we observed that PM-NSI provides more accurate NSI to the controller at longer period. Thus, the controller
does not exceed the number of accepted flows that the network can carry. Therefore, it reduces loss rate and
total jitter which results in better quality of service for the accepted flows. Seemingly, PM-NSI sacrifices the
total transferred data. In essence, PNSI sacrifices quality of service because all accepted flows lose packets and

encounter latency during transmitting through the network.

275

AKIN et al./Turk J Elec Eng & Comp Sci

950
900 H 1 - 1 PM-NSI
ssol K P P m N Y s I ONEY

q g o D

R o D q o| —

8 750H . _ _ — H

& 7004 | O | Pl P L B

S ol 9L PIL PIL | d | 9] P|L

\c; 600 H || (_ C_ 0_ D || | (_

SASSO- all pILl P [| d[1 9] P|L

_OE 500 K | | q g Of [| D q)

gasop o | 0| | p || | | q| | of[| p|| |

& 400y q d ‘o) D ¢

£ o o bl b | dI1 o[l Pl

g 300 — — — — — — —

= | B q fo ol | Ppl[] q

g ool 9L J1l b ||| [| q| | o|| | Jil

= 150 H || (_ C_ 0_ D | | | (_
100 H 0_ D | | D | | | C_ O_ D ||
sg-\ | q] ql 1 pell] P[] |4 q/

3sc Ssc 10sc 20sc 30sc 50sc 100sc

NSI collection Periods

Figure 7. Total transferred data under ANSNET topology with PM-NSI and PNSI in every 3, 5,10, 20, 30,50, and 100

S.

In the future, it is planned to modify the proposed PM-NSI for the SD-WAN-based network that has

logically centralized multiple controllers. Furthermore, we intend to generalize PM-NSI with other topologies

and also try to modify for overcoming with other scalability issues. In addition, we aim at enhancing one of

the short term traffic prediction algorithms based on long short-term memory (LSTM) to predict NSI more

accurately and reduce further controller load [23-26].

(1]

2]

3]

[5]

[6]

276

References

Feamster N, Rexford J, Zegura E. The road to SDN: an intellectual history of programmable networks. ACM
SIGCOMM Computer Communication Review. 2014; 44 (2):87-98. doi: 10.1145/2602204.2602219

Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S et al. Software-defined networking: A
comprehensive survey. Proceedings of the IEEE. 2014; 103 (1):14-76. doi: 10.1109/JPROC.2014.2371999

Raghavan B, Casado M, Koponen T, Ratnasamy S, Ghodsi A et al. Software-defined internet architecture: decou-
pling architecture from infrastructure. In: 11th ACM Workshop on Hot Topics in Networks (HotNets-X1I); Redmond,
WA 2012. pp. 43-48.

Akin E, Korkmaz T. Comparison of routing algorithms with static and dynamic link cost in software defined
networking (sdn). IEEE Access 2019; 7: 148629-44. doi: 10.1109/ACCESS.2019.2946707

Kim H, Feamster N. Improving network management with software defined networking. IEEE Communications
Magazine. 2013; 51 (2):114-9. doi: 10.1109/MCOM.2013.6461195

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L et al. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM computer communication review. 2008;38 (2):69-74. doi: 10.1145/1355734.1355746

Goransson P, Black C, Culver T. Software Defined Networks: A Comprehensive Approach. Morgan Kaufmann,
2016.

(8]

[18]

[19]

[20]

AKIN et al./Turk J Elec Eng & Comp Sci

Yang Z, Cui Y, Li B, Liu Y, Xu Y. Software-defined wide area network (SD-WAN): Architecture, advances and
opportunities. In: 28th International Conference on Computer Communication and Networks (ICCCN); Valencia,
Spain 2019. pp. 1-9. doi: 10.1109/ICCCN.2019.8847124

Karakus M, Durresi A. A survey: Control plane scalability issues and approaches in software-defined networking
(SDN). Computer Networks. 2017; 112:279-93. doi: 10.1016/j.comnet.2016.11.017

Pfaff B, Lantz B, Heller B. Openflow switch specification, version 1.3. 0. Open Networking Foundation. 2012.

Curtis AR, Mogul JC, Tourrilhes J, Yalagandula P, Sharma P et al. DevoFlow: Scaling flow management for high-
performance networks. In: Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM); Toronto Ontario,
Canada 2011. pp. 254-265.

Yu M, Rexford J, Freedman MJ, Wang J. Scalable flow-based networking with DIFANE. ACM SIGCOMM Computer
Communication Review. 2010; 40 (4): 351-62. doi: 10.1145/1851275.1851224

Yu BY, Yang G, Yoo C. Comprehensive prediction models of control traffic for SDN controllers. In: 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft); Montral, Canada 2018. pp. 262-266.

Bianco A, Giaccone P, Mashayekhi R, Ullio M, Vercellone V. Scalability of ONOS reactive forwarding applications
in ISP networks. Computer Communications; 2017; 102:130-8. doi: 10.1016/j.comcom.2016.09.007

Bianco A, Giaccone P, Mahmood A, Ullio M, Vercellone V. Evaluating the SDN control traffic in large ISP networks.
In: IEEE International Conference on Communications (ICC); London, UK 2015. pp. 5248-5253.

Mu M, Stokking H, Den Hartog F. Network delay and bandwidth estimation for cross-device synchronized media.
Springer, Cham MediaSync. 2018; pp.649-676. doi: 10.1007/978-3-319-65840-7.

Yu C, Liang Q, Lianghui D, Feng Y. Estimating Available Bandwidth Using Overloading Stream with Variable
Packet Size. In: TEEE 3rd International Conference for Convergence in Technology (I2CT); Pune, India; 6 Apr
2018. pp. 1-6. doi:10.1109/12CT.2018.8529381

Abut F, Leischner M. An Experimental Evaluation of Tools for Estimating Bandwidth-Related Metrics. Interna-
tional Journal of Computer Network & Information Security. 2018;10 (7). doi:10.5815/ijcnis.2018.08.01

Jasim AH, Ogren N, Minovski D, Andersson K. Packet probing study to assess sustainability in available bandwidth
measurements: Case of high-speed cellular networks. Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications. 2020;11 (2):106-25. doi: 10.22667/JOWUA.2020.06.30.106

Al-Najjar A, Layeghy S, Portmann M, Indulska J. Enhancing quality of experience of voip traffic in SDN based
end-hosts. In: IEEE 2018 28th International Telecommunication Networks and Applications Conference (ITNAC)
2018; pp. 1-8. doi: 10.1109/ATNAC.2018.8615286

Akin E, Korkmaz T. Link-prioritized network state information collection in SDN. In: IEEE International Confer-

ence on Communications (ICC); Shanghai, China 2019. pp. 1-7.

Karakus M, Durresi A. A scalability metric for control planes in software defined networks (sdns). In: IEEE
30th International Conference on Advanced Information Networking and Applications (AINA); Crans-Montana,
Witzerland 2016. pp. 282-289.

Tian Y, Zhang K, Li J, Lin X, Yang B. LSTM-based traffic flow prediction with missing data. Neurocomputing.
2018; 318:297-305. doi: 10.1016/j.neucom.2018.08.067

Cao S, Liu W. Lstm network based traffic flow prediction for cellular networks. In: International Conference on
Simulation Tools and Techniques (SIMUtools); Chengdu, China 2019. pp. 643-653.

Li J, Gao L, Song W, Wei L, Shi Y. Short term traffic flow prediction based on LSTM. In: Ninth International
Conference on Intelligent Control and Information Processing (ICICIP); Wanzhou, China 2018. pp. 251-255.

Wei W, Wu H, Ma H. An autoencoder and LSTM-based traffic flow prediction method. Sensors. 2019; 19 (13) :2946.
doi: 10.3390/s19132946.

277

[27]

28]

[29]

[30]

[31]

32]

[33]

278

AKIN et al./Turk J Elec Eng & Comp Sci

Goransson P, Black C, Culver T. The OpenFlow Specification. In: Goransson P, Black C, Culver T. Software
Defined Networks: A Comprehensive Approach. 2nd ed. Morgan Kaufmann, 2017, pp. 89-136.

Fredman ML, Tarjan RE. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of
the ACM (JACM). 1987;34 (3):596-615. doi: 10.1109/SFCS.1984.715934

Alsaeedi M, Mohamad MM, Al-Roubaiey AA. Toward adaptive and scalable OpenFlow-SDN flow control: A survey.
IEEE Access. 2019 Aug 1;7:107346-79. doi: 10.1109/ACCESS.2019.2932422

Amiri M, Al Osman H, Shirmohammadi S,Abdallah M. An SDN Controller for Delay and Jitter Reduction in
Cloud Gaming. In: Proceedings of the 23rd ACM International Conference on Multimedia (MM); Association for
Computing Machinery, New York, NY, USA 2015; 1043-1046. doi:10.1145/2733373.280639

Numan PE, Yusof KM, Marsono MN, Yusof SK, Fauzi MH et al. On the latency and jitter evaluation of software
defined networks. Bulletin of Electrical Engineering and Informatics. 2019; 8 (4):1507-16. doi: 10.11591 /eei.v8i4.1578

Chahlaoui F, Dahmouni H. Towards QoS-enabled SDN networks. In: IEEE 2018 International Conference on
Advanced Communication Technologies and Networking (CommNet); Marrakech, Morocco 2018; pp. 1-7. doi:
10.1109/COMMNET.2018.8360251

Chouhan RK, Atulkar M, Nagwani NK. Performance Comparison of Ryu and Floodlight Controllers in Differ-
ent SDN Topologies. In: 1st IEEE International Conference on Advanced Technologies in Intelligent Control,
Environment, Computing & Communication Engineering (ICATIECE); Bangalore, India 2019, pp. 188-191. doi:
10.1109/ICATIECE45860.2019.9063806

	Introduction
	Background and related studies
	NSI collection methods
	Periodic network state information (PNSI) collection
	Prediction method for NSI collection (PM-NSI)
	Details of the proposed method
	Computational time analysis

	Performance evaluation
	Conclusion and future work

