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1. Introduction
With the increasing demand for energy in recent years, scientists have started to show great interest in alternative energy 
sources. Accordingly, hydrogen stands out as a sustainable, renewable, and clean energy source [1,2]. Hydrogen, which 
is a secondary energy source of the future, is considered as the most important energy carrier [3,4,5]. However, the most 
important issue for hydrogen is the storage problem, which limits its applicability. In this context, amine-boranes with high 
hydrogen storage capacity remain promising [6,7,8]. Dimethylamine borane (DMAB, (CH3)2NH•BH3) as solid hydrogen 
storage agent occupies a special position among the amine-boranes because of its gravimetric hydrogen storage capacity 
(6.9%) and its excellent stability and environmental friendliness [9,10,11]. Also, DMAB releases one equivalent dihydrogen 
(H2) using a suitable nanocatalyst (Eq. 1).

2Me2NH.BH3 (Me2N.BH2)2 + 2H2
catalyst

(1)	 (1)

There are several techniques to produce dihydrogen using DMAB, which is one of the best solid materials for hydrogen 
storage [12]. Usually, dihydrogen is acquired by dehydrogenation of DMAB catalyzed by convenient metal nanocatalysts at 
high temperatures or in a solvent environment [13,14,15,16,17,18,19,20,21,22,23,24]. Previously, we reported the effect of 
using oleylamine on copper(0) nanoparticles for the catalytic dehydrogenation of DMAB in solvent (5.0 mL toluene) and 
at relatively high temperature (50.0 + 0.1°C) [25]. In this study, we provided a full transformation of DMAB (Me2NHBH3) 
to cyclic aminoborane ([Me2NBH2]2) and obtained one equivalent dihydrogen with TOFapp (initial apparent turnover 
frequency) values of 158 and 71 h–1 for copper(0) nanoparticles with and without oleylamine, respectively [25]. More 
importantly, for the dehydrogenation of DMAB in the solution medium, the Arrhenius activation energies of copper(0) 
nanoparticles with and without oleylamine were calculated as Ea = 19 + 2 and 88 + 2 kJ mol-1, respectively, and these values 
were comparable to the others (Table, see later). Although copper nanoparticles with and without oleylamine used for the 
dehydrogenation of DMAB have high activity at 50.0 + 0.1°C, the Cu(0) nanoparticles achieved by reduction of copper(II) 
acetylacetonate in this study do not require stabilizers and solvents, and the dihydrogen is released upon dehydrogenation 
of DMAB at a lower temperature (nRT, 30.0 + 0.1°C). Nowadays, it is very important to perform economic studies, and, 
with this study, four important economic advantages were obtained: (i) no solvents, (ii) no stabilizers, (iii) no expensive 
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metals, and (iv) no high temperatures. The results are qualitatively compared with the catalytic effects of copper catalysts 
reported previously (see later). However, our recent study has shown that there is efficient and effective dihydrogen release 
in the dehydrogenation of DMAB even at temperatures below nRT in solvent-free environments using catalysts such 
as nickel (25.0 + 0.1°C) [26] and ruthenium (35.0 + 0.1°C) [27]. T﻿he literature survey shows that although there are a 
few copper nanoparticles or complexes synthesized using amine-boranes in solvent environment or at high temperature, 
there are no reports of using copper metal as a catalyst for green (solvent-free) dehydrogenation of DMAB [28,29]. As in 
previous studies, DMAB has two important roles as stabilizer and reducing agent in the synthesis of Cu(0) nanocatalysts 
(NCats) throughout the dehydrogenation reaction. Moreover, an experiment was carried out with the calculations of TOF 
(total frequency) and TON (turnover number) values to determine the catalytic lifetime of Cu (0) NCats. The result of this 
experiment showed that the Cu (0) NCats provided comparable TOFapp (47.7 h–1) and TON (456.5 at 50 h) values for green 
dehydrogenation of DMAB in nRT. Cu(0) NCats exhibited high activity and stability for the dehydrogenation reaction 
throughout the catalytic run thanks to the stabilizing property of molten DMAB and maintained their initial activity at 
81% even after the 5th run with full conversion in the green dehydrogenation of DMAB. Cu(0) NCats and by-products of 
DMAB formed after the dehydrogenation reaction were characterized by 11B NMR, UV–vis, ATR-FTIR, XRD, XPS, and 
TEM/HRTEM/TEM-EDX techniques. The heterogeneity of Cu(0) NCats synthesized from the green dehydrogenation of 
DMAB was tested using 0.1 equiv of carbon disulfide per copper atom. In order to calculate the rate law and activation 
energy (Ea), kinetic studies were performed throughout the green dehydrogenation of DMAB catalyzed by Cu(0) NCats 
depending on substrate amounts, catalyst amounts and temperature. Thus, it can be assumed that highly active Cu(0) 
NCats are a good option for the green dehydrogenation of DMAB at nRT and will make an important contribution to the 
literature.

2. Experimental method
2.1. Materials 
Cu(acac)2 (Copper(II) acetylacetonate, 97%), dimethylamine-borane complex (DMAB, Me2NHBH3, 97%), carbon disulfide 
(CS2, ≥99%), THF-d8, and hexane (99%) were bought from Sigma-Aldrich. Ethanol was bought from Merck. Acetone was 

Table. Comparison of catalytic activity, particle size, and reusability catalysts reported plus activation energy of the catalytic 
dehydrocoupling of DMAB.

(Pre)catalyst TOF
(h–1)

Ea
(kJmol–1)

Particle size
(nm)

Reusability
(Cycle) Ref.

Dimethylammonium Hexanoate Stabilized Rh(0) NCs 60 34 1.9 aND [14]
OAm stabilized Ru(0) NPs 137 29 1.8 75% (5th) [21]
Pd NPs@Cu3(btc)2 75 173.5 4.3 80% (5th) [45]
Ru NPs/ZIF-8 0.98 42.5 1.9 85% (5th) [45]
mer-[Ru(N2Me4)3(acac)H] 0.3 85 aND aND [45]
bNi NPs c21 42 1.9 63% (5th) [26]
trans-[Ru(acac)2(OAm)2] 77.8 58 aND aND [45]
Pt(0)/OA@CNT 44.36 42.91 3.2 >80% (4th) [45]
Pt(0)/DOA@CNT 57.32 40.23 3.4 >80% (4th) [34]
Ru(0)/APTS 55 61 1.7 70% (6th) [16]
Copper(0) NPs 71 88 aND >54% (3th) [25]
OAm stabilized copper(0) NPs 158 19 3.5 74% (5th) [25]
bRu@PVP NCs d56 18 12.9 87% (5th) [27]
bRu@PS-co-MA NCs d29 45 24.9 63% (5th) [27]
bRu@Al2O3 NCs d51 25 11.9 80% (5th) [27]
bCu(0) NCats e47.7 16.6 2.9 81%(5th) This study

aND: not demonstrated. bThese nanoclusters were synthesized during green dehydrocoupling of DMAB. cThis TOF value was obtained 
within 4 h. dThese TOF values were obtained within 2 h. eThis TOF value was obtained after induction period within 50 h.
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used to clean all glass materials and Teflon-coated magnetic stir bars. All materials were rinsed a few times with copious 
amounts of distilled water and then dried at high temperature (110ºC) in the oven during the night. 
2.2. Characterization
Prior to transmission electron microscopy (TEM) analysis, nanocatalysts were washed by repeated centrifugation in 10 mL 
ethanol and redispersed by ultrasonication in 3×15 mL hexane. TEM instrument (JEM-2010F (JEOL), 200 kV, 4.5 Å point 
resolution) was used to acquire TEM, HRTEM, and TEM-EDX images of these prepared nanocatalysts. By withdrawing 
0.5 mL aliquots of Cu(0) NCats dispersed in hexane, they were transferred to deposit on silicon oxide coated copper grids 
TEM using a disposable polyethylene pipette. These grids were immersed in the solution for five seconds and then the 
volatiles were evaporated under an inert gas atmosphere. Magnifications of the nanocatalysts were performed between 100 
and 400 k. Assuming that the nanocatalysts were spherical, the diameters of the individual particles were calculated from 
the corresponding surface area. Size scattering was expressed as mean diameter ± standard deviation. 11B NMR spectra 
belong to DMAB and side product of DMAB (near 0.01 mg) obtained from the reactor in THF-d8 were recorded using 
Bruker Avance DPX 400 MHz spectrometer (128.15 MHz), and boron trifluoride etherate (BF3(C2H5)2O) was used as an 
external reference for them. Powder X-ray diffraction (XRD) patterns were recorded 2θ in the range of 5 to 90° using the 
Rigaku Ultima-IV diffractometer (CuKα, λ = 1.54051 Å, 40 kV, 55 mA) at 25 °C (room temperature, RT). To describe the 
elemental surface composition and chemical bonding properties, the XPS spectrum was recorded with a Specs-Flex XPS 
photoelectron spectrometer using an Al-coated anode of toroidal quartz single crystal design. The transmission energy 
values can be continuously selected from a minimum of 1 eV to 400 eV. UV–visible spectra of precursor Cu(acac)2 and 
Cu(0) NCats resolved in 20 µL hexane were recorded in the spectral range of 200–800 nm using a Shimadzu 1800 double 
beam spectrometer. The infrared spectra of DMAB and its by-products were recorded using a Perkin Elmer A 100 ATR/
FTIR spectrometer. 
2.3. Common processes and detailed kinetic studies for the green dehydrogenation of DMAB catalyzed by Cu(0) NCats
To perform the green dehydrogenation of DMAB under nitrogen atmosphere, an experimental setup consisting of jacketed 
reactor (50 mL), teflon-covered mixing bar, magnetic mixer (IKA®C-Mag HS7), and fixed temperature bath (Polyscience 
12107-15 water bath) was set up. All reactions for the dehydrogenation of DMAB catalyzed by Cu(0) NCats were carried 
out according to the standard Schlenk technique, which used fixed amounts of molten DMAB and Cu(acac)2 at nRT. 
The jacketed reactor was closed after addition of the calculated amounts of reactants, the temperature was fixed using 
thermostatic bath, and, at the same time, the stirrer was rotated at 1000 rpm. This procedure was repeated for all reactions. 
The data of pressure versus time of hydrogen release during the catalytic dehydrogenation reaction were calculated using 
Microsoft Office Excel 2010 and Origin2016 and then converted into the equivalent and volume (mL) of hydrogen per 
mole DMAB.

Kinetic studies of the dehydrogenation of DMAB catalyzed by Cu(0) NCats were performed in three groups depending 
on the amounts of DMAB and copper and temperature. The first group experiments were carried out as a function of catalyst 
amount, keeping the number of moles of DMAB fixed (2.0 mmol) and varying the number of moles of Cu(acac)2 between 
0.1–0.3 mmol at nRT. The second group experiments were performed as a function of substrate amount, mol Cu(acac)2 
was kept fixed (0.2 mmol) and mol DMAB was varied between 1.0–3.0 mmol at nRT. The third experiments were carried 
out as a functionof temperature, moles of Cu(acac)2 and DMAB were kept constant (0.2 and 2.0 mmol), respectively, and 
the temperature was varied between 25–45 ºC. Arrhenius plot [30] and values of kobs (observed rate constant) obtained 
from the slopes of the linear sections of the dehydrogenation curves were used to calculate the activation energy (Ea). 
2.4. Determination of catalytic lifetime for green dehydrogenation of DMAB catalyzed by Cu(0) NCats
The value of the total turnover number (TON) was used to determine the lifetime of Cu(0) NCats throughout green 
dehydrogenation of DMAB. In order to determine lifetime of Cu(0) NCats during green dehydrogenation of DMAB, a 
new experiment was started with 0.2 mmol Cu(acac)2 and 2.0 mmol DMAB at nRT. When the expected hydrogen gas 
release was complete, more DMAB was readded to the reaction medium, and this process continued in this manner until 
no further hydrogen gas release was monitored.
2.5. Heterogeneity test for Cu(0) NCats throughout green dehydrogenation of DMAB 
Recent studies have clearly shown that CS2 has high poisoning ability and is used in heterogeneity tests of metal 
nanoparticles because CS2 adsorbs on the metal surface due to the reduced reaction medium [26]. Generally, a poisoning 
test is carried out as follows: In the dehydrogenation of 2.0 mmol molten DMAB in a solvent-free environment, 0.1 equiv. 
of CS2 per copper was added to in situ formed 0.2 mmol of Cu(0) NCats after the 50% conversion. By observing the rate of 
dihydrogen release after and before the addition of CS2 (0.1 equiv. per copper) to the dehydrogenation reaction, the effect 
of the poison was followed and measured. The poisoning experiments were terminated when dihydrogen release was no 
longer monitored. 
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2.6. Reusability, isolability, and bottlability of Cu(0) NCats in green dehydrogenation of DMAB
After the dehydrogenation of DMAB (2.0 mmol) was completed in the presence of Cu(0) NCats achieved from the reducing 
precursor Cu(acac)2 (0.2 mmol ) at nRT, the reaction was stopped. The reaction flask was then sealed and separated from 
a graduated glass tube. Finally, after releasing the hydrogen pressure, it was transferred to a new reaction flask under N2 
atmosphere. Using 20 mL of cold hexane, the solid mixture was precipitated under inert atmosphere, and these suspended 
particles were separated by filtration. Then, the solid was washed with ethanol (3x20 mL), the isolated colloid was dried 
under vacuum and obtained as a black powder. This black powder was reused by adding DMAB again at nRT to determine 
its catalytic activity throughout the green dehydrogenation (five runs in total). 

3. Results and discussion
3.1. Achieving and identification of Cu(0) NCats in green dehydrogenation of DMAB
As is well known, the dehydrogenation of DMAB does not proceed without a catalyst, whether it is a solvent or a solvent-
free environment. Therefore, we first tested the Cu(acac)2 salt, which we intended to use as a precursor catalyst, in the 
presence of various solvents for the dehydrogenation of DMAB at nRT. No formation of Cu(0) NCats and no manufacture 
of dihydrogen were observed with this precursor throughout the green dehydrogenation of DMAB in many solvents 
(THF, toluene, etc.) at nRT. By using cheap metals such as copper for the green dehydrogenation of DMAB, it is clear that 
special conditions are required for the classical synthesis of a highly stable and active nanocatalyst, such as increasing 
the temperature or using a suitable stabilizer. This assumption was confirmed by our recent work, in which oleylamine 
was used as a stabilizer, and highly active copper(0) nanoparticles were synthesized throughout the dehydrogenation of 
DMAB in toluene solution at a relatively higher reaction temperature (50.0 ± 0.1°C) [25]. Moreover, this study, like our 
previous studies [26,27], supports that the best results for the synthesis of active and stable Cu(0) NCats are obtained 
from the dehydrogenation of DMAB under solvent-free (green) environmental conditions. Consequently, Cu(0) NCats 
that are active and stable even after several weeks of storage were synthesized in situ without stabilizer and solvent by 
using Cu(acac)2 as a precursor throughout the dehydrogenation of DMAB at nRT. Moreover, these nanocatalysts and the 
dehydrogenation reaction products isolated after washing in ethanol were identified by 11B NMR, UV–vis, ATR-FTIR, 
XRD, XPS, and TEM/HRTEM/TEM-EDX techniques. 

The catalytic activity of Cu(0) NCats throughout the catalytic green dehydrogenation of DMAB was measured using 
the standard Schlenk technique as described in the Experimental Section. First, a series of experiments were performed 
to determine the effect of the mol ratio of DMAB:Cu(0) NCats on the green dehydrogenation of the catalytic DMAB, and 
it was found that this ratio is about 10 to provide and monitor the full reduction from the Cu2+ to the Cu0 oxidation state. 
This ratio is the best-known to obtain high activity of cheap and nonnoble metals such as copper for the catalytic green 
dehydrogenation of DMAB [25]. When the formation of Cu(0) NCats was completed (after ~45 min of induction period), 
dihydrogen release from the green dehydrogenation of DMAB started and the hydrogen pressure was manually recorded 
from the water level in the graduated glass tube minute by minute (Figure 1). While no dihydrogen release was monitored 
throughout the induction period of about 45 min required for reduction of Cu2+ to Cu0, it was clearly observed that almost 
all of the dihydrogen (1.0 equiv) was rapidly removed within the first 45 min after catalyst formation (hence, the total time 
of approximately 110 min after induction time). The plot of dihydrogen release versus time shows that the formation of 
Cu(0) NCats and the concomitant green dehydrogenation of DMAB occurred in a short time. Herein, it is clearly seen that 
Cu(0) NCats have high stability and activity in hydrogen production from green dehydrogenation of DMAB (Figure 1). 

During the green dehydrogenation of DMAB, the formation and oxidation state of Cu(0) NCats were monitored by 
UV and XPS spectroscopies (Figure 2). The UV–visible spectra and color change (from blue to black) explain the rapid 
degradation of Cu(acac)2 (Cu2+) to copper nanocatalysts (Cu0) after a visible induction period of ~45 min during the 
dehydrogenation of DMAB. Figure 2a shows the UV-visible spectra of solutions containing Cu(acac)2 in hexane before and 
after injection into the reaction solids mixture. Examination of the UV spectra reveals three absorption peaks at λmax= 
243, 323, and 563–803 nm for Cu(acac)2, which can be attributed to the charge transfer from metal to ligand (CTML), π-π* 
electron transition and d-d electron transition, respectively (Figure 2a) [31]. After the reduction of Cu2+ ions, these bands 
disappeared, and a characteristic Mie exponential decay profile for copper nanocatalysts was observed, which is consistent 
with the literature [32]. 

High-resolution XPS analysis of Cu(0) NCats (Figure 2b) confirmed the presence of copper in agreement with TEM-
EDX result. Figure 2b shows that this XPS spectrum contains two prominent bands at 934.15 and 951.24 eV, assigned to 
Cu(0) 2p3/2 and Cu(0) 2p1/2, respectively [33,34]. Additionally, two relatively weak peaks resulting from shaking properties 
were observed for Cu(0) 2p3/2 and Cu 2p1/2 around 931.76 and 953.85 eV, respectively. These peaks, attributable to Cu2+, are 
compelling evidence and indicate the presence of an 3d9 open shell. The observation of Cu2+ in the XPS spectrum can be 
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explained as that Cu(0) NCats can be oxidized (CuO) due to exposure to air during sample preparation [35,36]. The peak 
around 942.31 eV observed in Figure 2b was also attributed to the Cu2+satellite [37].

TEM images, histogram, and EDX data of Cu(0) NCats were shown in Figure 3. TEM images were used to determine 
the morphology and calculate the average particle size of Cu(0) NCats. TEM images recorded in different magnifications 
(Figures 3a, 3b) and histogram (Figure 3c) showed that 266 nontouching Cu(0) NCats in situ achieved using precursor 
Cu(acac)2 throughout the green dehydrogenation of DMAB are well distributed. The average particle size of the Cu(0) 
NCats obtained in situ was calculated to be 2.9 ± 0.2 nm by single counting from the TEM image (Figure 3c). The particle 
size of Cu(0) NCats is comparable to other catalysts, and it can be clearly seen that it is smaller than that of most other 
catalysts (see Table). As can be seen from the EDX data (Figure 3d), the nanocatalyst sample contains an only copper 
element. Thus, it can be said that our Cu(0) NCats are not oxidized during TEM sampling (see Section 2.2., The TEM grid 
also contains Cu) [26,27]. 

Figure 4 shows the powder XRD pattern and HR-TEM analysis of Cu(0) NCats synthesized in situ during the green 
dehydrogenation of DMAB. In the powder XRD pattern, it was observed that three reflection peaks were centered at 2θ = 
∼ 36.58, 43.28, 50.42°, and these peaks were assigned to Cu (111), (200) and (220) planes, indicating a face-centered cubic 
structure in the crystal lattice (Figure 4a) [38,39]. The Cu(111) diffraction peak of the obtained nanocatalyst was used to 
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calculate the average crystallite size and lattice parameter value of the metal nanocatalysts. Also, the Scherrer formula was 
used to calculate the average crystallite size of Cu(0) NCats, and its size was calculated to be 2.78 nm. It can be clearly seen 
that this diameter is pretty close to the diameter (2.9 nm) calculated using the TEM image. HR-TEM analysis was used to 
investigate the crystallinity of the Cu(0) NCats synthesized in situ during the green dehydrogenation of DMAB (Figure 
4b). Accordingly, no agglomeration was observed for the Cu(0) NCats that were well distributed in hexane. As can be seen 
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from Figure 4b, the plane of Cu(111) on the prepared nanocatalysts has an interval distance of 0.210 nm and is exceedingly 
close to the Cu(111) interval distance of 0.209 nm, and this finding is in agreement with the literature [25,40,41,42]. 

The product obtained after catalytic dehydrogenation of DMAB was properly characterized by 11B-{1H}-NMR and 
ATR-FTIR spectroscopies (Figure 5). 11B-{1H}-NMR spectra were recorded after preparation as described in Section 2.2 
and used to determine the product obtained after the dehydrogenation reaction of DMAB (bottom) and pure DMAB 
(top). As shown in Figure 5a, the resonance signal of DMAB at d = -14.58 ppm was replaced by the signal at d = 4.61 ppm 
of the [Me2NBH2]2 (cyclic dimer) after the green dehydrogenation reaction. Also, ATR-FTIR spectra (Figure 5b) were 
used to show differences between pure DMAB and the product formed after the dehydrogenation reaction. According 
to this, the typical N-H bending and N–H stretching absorption bands of pure DMAB disappeared at 1155 and 3210 
cm–1, respectively, while its B–H stretching bands at 2377 and 2271 cm–1 were shifted to 1960 cm–1 at the end of the 
dehydrogenation reaction [43]. Furthermore, the newly formed B-N stretching band at 1615 cm–1 in the FTIR spectrum 
of the [Me2NBH2]2 can be explained as a change in DMAB after the dehydrogenation reaction. All these data in the ATR-
FTIR and 11B-{1H}-NMR spectra show that Me2NHBH3 is fully transformed to the [Me2NBH2]2. 
3.2. Calculation of activation energy from kinetic studies performed for green dehydrogenation of DMAB catalyzed by 
Cu(0) NCats
The kinetic study of the Cu(0) NCats formed in situ during the dehydrogenation of DMAB was carried out in three sets by 
observing the dihydrogen release as a function of catalyst and substrate amounts and reaction temperature. 

In the first set, while the reaction temperature and the amount of DMAB were fixed at nRT (30.0 + 0.1°C) and 2.0 
mmol, respectively, the effect of catalyst amount on the dihydrogen release rate in the dehydrogenation of DMAB was 
investigated by varying the initial amount of copper in the range of [Cu]0= 0.10–0.30 mmol (Figure 6). Figure 6a indicates 
the plots of time versus mol of hydrogen per mol of DMAB throughout dehydrogenation of DMAB, which was performed 
starting from a constant substrate amount of 2.0 mmol and various amounts of Cu(acac)2 at nRT. An induction period 
(~45 min) observed during the green dehydrogenation of DMAB can be explained as the time required for the formation 
the catalytically active copper nanocatalysts after the reduction of Cu(acac)2. As expected, the slope calculated from the 
linear part of the plots showed that there is a linear relationship between the dihydrogen release rate and the amount of 
Cu(acac)2 after the induction time. Figure 6b demonstrates the plot of the logarithmic initial rate of dihydrogen release, 
calculated from the slope of the plots in Figure 6a, versus the logarithmic initial amount of copper after induction period. 
The slope resulting from a linear fit of the plot is nearly 0.82, indicating that the dehydrogenation of DMAB is first-order 
with respect to the amount of Cu(acac)2.

In the second set, the relationship between initial dihydrogen release rate and substrate amount was investigated by 
varying the initial amount of DMAB ([DMAB]0= 1.0–3.0 mmol) at constant copper amount (0.2 mmol) and temperature 

(a)

δ = -14.58 ppm

δ = 14.61 ppm

[Me2NBH2]2

Me2NBH3
(b)

[Me2NBH2]2

Me2NBH3

Wavelenght (nm)
40 30 20 10 0 -10 -20 -30 - 40

ppm (t1)

4000 3000 2000 1000

Figure 5. (a) 11B-{1H}-NMR and (b) ATR-FTIR spectra of the solid mixture containing DMAB (2.0 mmol), Cu(acac)2 (0.2 mmol) before 
and after catalytic dehydrogenation reaction.
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(nRT) (Figure 7). As shown in Figure 7a, the dihydrogen volume increased with the increasing amount of DMAB, but 
the induction period decreased throughout the dehydrogenation of DMAB. Plotting the logarithmic initial dihydrogen 
release rate versus the logarithmic initial DMAB amount in Figure 7b gives a straight line with a slope of about 0.34. This 
demonstrates that the dehydrogenation of DMAB is about half-order respect to the DMAB amount. In view of these 
results, the catalytic rate law for the dehydrogenation of DMAB catalyzed by Cu(0) NCats can be written as in Eq 2.

Rate = kapp[Cu]0.82[DMAB]0.34	 Eq 2
In the third set, the effect of reaction temperature on the initial rate of dihydrogen release was examined at different 

temperatures in the range of 25–45 °C, while the amounts of DMAB and Cu(acac)2 were kept constant at 2.0 and 0.2 mmol, 
respectively (Figure 8). As clearly shown in Figure 8a, the catalytic activity increased with increasing temperature, while the 
induction period decreased throughout the dehydrogenation of DMAB. The kobs (observed rate constant) were calculated 
from the slopes of the dihydrogen release plots after the induction period, and these values were used to determine the 
activation energy for the green dehydrogenation of DMAB using the Arrhenius plot in Figure 8b. The activation energy 
for the catalytic dehydrogenation of DMAB catalyzed by Cu(0) NCats was calculated from the Arrhenius plot as Ea= 16.6 
± 2 kJmol–1. Table demonstrates that this activation energy may be the lowest activation energy achieved in the green 
dehydrogenation of DMAB performed using other catalysts. 
3.3. Lifetime study of Cu(0) NCats in the green dehydrogenation of DMAB
The lifetime study of the copper catalyst was started by adding 2.0 mmol of DMAB to Cu(0) NCats (0.2 mmol) throughout 
the green dehydrogenation reaction at nRT. When dihydrogen release was complete, additional DMAB was added. This 
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process was continued until no more hydrogen was released. As expected, the induction period observed with the first 
DMAB addition was not observed with the other additions. As a result of this experiment, TON and TOFapp were found to 
be 456.5 over 50 h and 47.7 h–1, respectively during the green dehydrogenation of DMAB until deactivation of the copper 
catalyst because of bulk metal aggregation (Figure 9). TON and TOF values showed that Cu(0) NCats are highly stable and 
long-lived catalysts in the green dehydrogenation of DMAB, although no stabilizer or supporter was used. These TOFapp 
and TON values can be compared with most other catalysts synthesized by both green (solvent-free) and conventional 
(in solvent) methods reported hitherto (Table). As can be seen in Table, the TOF value generally increases as the particle 
size of the metal catalysts decreases. The reason for this can be considered that the TON and the TOF values also increase, 
because the small particle size of the metal catalysts has large active surface areas.
3.4. Heterogeneity testing for Cu(0) NCats in the green dehydrogenation of DMAB
To determine heterogeneity, a series of poisoning studies were performed for Cu(0) NCats in the green dehydrogenation of 
DMAB using CS2 as a poison, as detailed in Section 2.5 [44]. The use of CS2 is aimed to prevent the substrate from access 
the active site as a result of the strong binding of the poison to the metal center. Briefly, poisoning experiments for the 
green dehydrogenation of 2.0 mmol DMAB catalyzed by 0.2 mmol Cu(0) NCats were performed by adding 0.1 mol of CS2 
per mol of copper under an inert atmosphere after 50% conversion of the green dehydrogenation of DMAB at nRT and 
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then monitoring the reaction by changes in dihydrogen pressure as in previous experiments. Figure 10 reveals that Cu(0) 
NCats were poisoned with a strong poison such as CS2, and the dihydrogen release was fully halted after the addition of 0.1 
equiv CS2 to the reaction medium. This is the clearest indication that the catalysis is heterogeneous [45]. From these results, 
it can be concluded that the dehydrogenation of DMAB is a heterogeneous catalysis and Cu(0) NCats are the kinetically 
competent catalyst.
3.5. Reusability and isolability of Cu(0) NCats in the green dehydrogenation of DMAB
Reusability and isolability are two crucial criteria for heterogeneous catalysts. Therefore, the reusability and isolability of 
Cu(0) NCats were tested for the green dehydrogenation of DMAB at nRT. When dehydrogenation of DMAB catalyzed 
by Cu(0) NCats in the first run was ceased, black powder of Cu(0) NCats was isolated and then washed with 3×20 mL 
ethanol. The washed Cu(0) NCats was dried in vacuo and stored under inert atmosphere, and this process was repeated 5 
times. It was found that the initial activity and conversion at the 5th run of Cu(0) NCats in the dehydrogenation of DMAB 
were 81% and >99%, respectively (Figure 11a). Also, the dihydrogen release achieved to 1.0 equiv. in the whole catalytic 
runs. The catalytic activity of Cu(0) NCats decreased by 19% in the 5th run. The increasing size of Cu(0) NCats because of 
the decrease in the number of atoms on the active surface and agglomeration of the metal can be the reason. TEM image 
(Figure 11b) and particle size histogram (Figure 11c) of Cu(0) NCats taken after the 5th use confirmed this condition, with 
the average size increasing from 2.9 ± 0.2 nm to 5.3±0.2 nm. Besides, poor mixing in the green environment might also 
have contributed negatively to the size growth of the metal. From these results, it was clearly understood that Cu(0) NCats 
exhibited quite high reusability and isolability in the green dehydrogenation of DMAB. 

4. Conclusions
Consequently, in this work, an active, cheap, and readily available metal such as copper was used as a catalyst for the green 
dehydrogenation of DMAB at nRT. It was found that the green dehydrogenation of DMAB catalyzed by Cu(0) NCats 
exhibited very high catalytic activity, although an induction time (~45 min) was observed during the in situ formation of 
Cu(0) NCats after Cu(acac)2 reduction. Furthermore, the experiment of catalytic lifetime indicated that Cu(0) NCats was 
the long-lived catalyst with TON and TOFapp values of 456.5 over 50 h and 47.7 h–1 , respectively, before deactivation in 
the green dehydrogenation of DMAB at nRT. As understood from the reusability and isolability studies, Cu(0) NCats was 
easily distributed in hexane, and its activity in the green dehydrogenation of DMAB did not change even after the 5th use. 
Also, its initial catalytic activity was retained by 81% even at the 5th run, while the full transformation of Me2NHBH3 to 
[Me2NBH]2 plus 1.0 equiv of dihydrogen was completed at nRT. On that account, this Cu(0) NCats having highly reusability 
and isolability is a good example for the green dehydrogenation of DMAB. The novel and remarkable contribution of this 
study to the literature is that no stabilizers, solvents, or supporters were used for the green dehydrogenation of DMAB 
in nRT. Moreover, the characterization of heterogeneous Cu(0) NCats has been reportedto be very economical with this 
new method using advanced spectroscopic techniques. It was observed that Cu(0) NCats with particle size of 2.9+0.2 nm 
exhibited rather high activity in green dehydrogenation of DMAB. Kinetic studies on the first and second sets showed 
that the green dehydrogenation of DMAB catalyzed by Cu(0) NCats is first-order with respect to catalyst amount, while 
it is about half-order with respect to DMAB amount. Also, the kinetic study on the 3rd set reveals that examination of 
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temperature change is of great importance for calculation of the activation energy for dihydrogen release rate in the green 
dehydrogenation of DMAB catalyzed by Cu(0) NCats. As can be clearly seen in Table, the activation energy for the green 
dehydrogenation of DMAB catalyzed by Cu(0) NCats (Ea= 16.6 ± 2 kJ mol−1) in the green medium at nRT is much lower 
than the one achieved by using both Ni(0) nanoparticles (Ea= 42 ± 2 kJ mol−1) at 25.0 ± 0.1°C [26] and Ru NCs (Ea= 18 ± 
2, 45 ± 2, 25 ± 2 kJ mol−1 for Ru@PVP, Ru@PS-co-MA and Ru@Al2O3 NCs, respectively) at 35.0 ± 0.1°C [27]. The orders 
of activation energies for the above catalysts obtained for the similar reactions are lined up as Cu(0) nanocatalysts < Ru@
PVP NCs ≈ Ru@Al2O3 nanoclusters < Ni(0) nanoparticles < Ru@PS-co-MA nanoclusters. 

The very economical preparation of Cu(0) NCats in solvent-free media shows that it is an environmentally friendly and 
atom-economical catalyst in hydrogen production. It can be clearly stated that this method will open a new path for the 
design of transition metal catalysts with good dispersibility and high stability in the future and provide alternative catalysts.
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