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Abstract: This paper proposes a scale-invariant histogram of oriented gradients (SI-HOG) for pedestrian detection.
Most of the algorithms for pedestrian detection use the HOG as the basic feature and combine other features with the
HOG to form the feature set, which is usually applied with a support vector machine (SVM). Hence, the HOG feature is
the most efficient and fundamental feature for pedestrian detection. However, the HOG feature produces feature vectors
of different lengths for different image resolutions; thus, the feature vectors are incomparable for the SVM. The proposed
method forms a scale-space pyramid wherein the histogram bin is calculated. Thus, the gradient information from all
the scales is encapsulated in a single fixed-length feature vector. The proposed method is also combined with color and
texture features. The proposed approach is tested on three established benchmark pedestrian datasets: INRIA, NICTA,
and Daimler. An improvement of >4.5% in the miss rate is achieved for all the three datasets considered. We also show
that the SI-HOG can be applied to multiresolution datasets for which the HOG feature cannot be applied. Additionally,
the MapReduce model is used to obtain the same outcome. The results indicate that the proposed approach outperforms

the pedestrian-detection methods considered in this work.
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1. Introduction

In the field of computer vision, object detection in images and videos plays an imperative role. Object detection
in images involves labeling the desired objects, which are specified beforehand. One recognized area of object
detection is pedestrian detection. Various applications, such as human—computer interaction for video games,
robotics, video surveillance, and smart vehicles have motivated research on human and pedestrian detection.
Nonetheless, pedestrian detection is a challenging problem owing to the large intraclass variability arising from
clothing, color, appearance, and pose. In addition, external factors such as illumination, background clutter, and
partial occlusions further complicate the problem. Most pedestrian-detection algorithms involve similar stages
of computation. Firstly, the pixel-level content of the image undergoes complex transformations to represent
higher-level features, which are computed via feature-extraction methods. Secondly, these features for any given

spatial region are fed to a classifier, which determines whether the region represents a human.

2. Literature review
Even though extensive research has been performed on pedestrian detection, significant improvements were made

in recent studies, which suggests that the research has not reached a saturation point. There exists a considerable
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amount of literature related to pedestrian-detection methods. Several methods for feature extraction have been
proposed, including Edge Templates [1], the Haar wavelet [2], histogram of oriented gradients (HOG) [3], the
covariance descriptor [4], shape models [5], and SIFT descriptors [6].

In a major breakthrough, Dalal et al. proposed the HOG for extracting shape features. It is a dense
representation of gradient information for a region. It is invariant to slight changes in translation and rotation.
Local normalization helps in illumination changes. They also introduced a new annotated pedestrian dataset
called INRIA with varying background and pose. Satpathy et al. [7] modified the HOG using an 18-bin
histogram, yielding the extended histogram of oriented gradients (ExHOG). ExHOG solves an issue of HOG
wherein gradients of opposite directions in the same cell are assigned to the same histogram bin. Both linear and
nonlinear kernel support vector machines (SVM) were used and ExHOG with the nonlinear kernel performed
better for the INRIA and Daimler datasets. Nigam et al. [8] proposed a multiresolution approach for detecting
pedestrians using LBPs. This approach has two limitations: 1) it can be applied to only grayscale images
and 2) images must be resized to a fixed size scale. Consequently, the multiresolution property of the dataset
is lost. Overett et al. [9] introduced a multiresolution dataset (NICTA) of >25,551 pedestrians, which gives
a total of 50,000 pedestrians, including left and right reflection. The negative set was sampled from 5207
high-resolution people-free images. However, the authors focused on single-resolution image sets. Yan et al.
[10] proposed a multiresolution approach for traffic scenes. It employs a deformable part model [11] to map
low-resolution and high-resolution pedestrians onto a common space. The detector then learns from these
mapped features of different resolutions. However, correctly identifying true or false positives requires vehicle—
pedestrian localization, assuming that in traffic scenes, pedestrians are around vehicles. Thus, more complexity
is introduced to the system. Dollar et al. [12] evaluated the state-of-the-art pedestrian-detection methods.
Detection was performed at three scales: far, medium, and near. The images were captured using a camera
mounted on a vehicle. There was visible degradation for the far and near scales. Hurney et al. [13] combined
HOG with a texture feature, i.e. the local binary pattern (LBP), for grayscale pedestrian images. Feature
vectors of LBP variations with 16 & 8 neighborhoods and radii of 2 & 1, respectively, were obtained. The
feature vectors were given to a radial basis function (rbf)-kernel SVM. The results indicated that the HOG with
an LBP having neighborhood 8 and radius 1 outperformed others. Bilal et al. [14] used integer-only features
from color information and orientation histograms. Classification is done by implementing a soft cascade for
fast evaluation of kernel classifier. The authors could identify true negatives at the early stages from the kernel
function’s energies. Lahmyed et al. [15] proposed to use both visible and thermal image of a scene in pedestrian
detection system. They used a modification of the OTSU method to segment the thermal images in order to
get the locations of probable pedestrians. The locations get mapped to visible images, thereafter features are
calculated. Bastian BT et al. [16] proposed to merge data specific dictionary learned histogram of sparse codes
and aggregate channel features for pedestrian detection. Kumar et al. [17] proposed to combine histogram of
significant gradients, a variation of HOG with nonredundant uniform local binary pattern to yield a feature
descriptor. The authors then used a linear SVM classifier for feature training. Zhang et al. [18] proposed a
pedestrian detection method that combines HOG features with the color image’s edge features on depth images.
They used shearlet transform to yield edge features from the color images. The combined feature is used to train
the SVM classifier. Thus, the existing methods are unable to bridge the gap between the current performance
and the preferred performance. Park et al. [19] proposed a deformable part-based model for detecting large-

scale objects and a rigid template for small-scale objects. Context information of a scene is also utilized in the
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detection process to build a context-augmented multiresolution model. However, the context cues are more
effective in small-scale objects rather than large-scale ones.

To increase the performance, currently deep learning technologies are used to get a better feature
representation and hence, in turn, result in better detection. Xu et al. [20] proposed a beta R-CNN which
is based on 2D beta distribution to better handle occluded pedestrians. The main contribution lies in relating
the full body and visible part boxes of the occluded pedestrian to assign the pixels different probability values
which aids in emphasizing the visual mass center. Wu et al. [21] proposed a self-mimic learning method to
detect small-scale pedestrians. A deep CNN is trained by a mimic loss which enhances the small-scale pedestrian
representation by mimicking the richer feature representation of the large-scale pedestrians. Song et al. [22]
proposed a progressive refinement network (PRNet) for handling occlusion in pedestrian detection. PRNet
calibrates the visible-part anchors to generate full-body templates by following occlusion statistics. The authors
also incorporated occlusion loss and a receptive field backfeed to generate various receptive fields. Lin et al.
[23] proposed a deep feature learning system where suitable convolutional layers of varying receptive field sizes
are utilized to facilitate multiscale detection. A multiscale pedestrian attention guides the model to focus on
the pedestrians in the image. Karg et al. [24] described the pedestrian detection problem and the challenges it
poses in driver assistance systems. Evaluation parameters and various datasets are also discussed. The authors
focused on CNN based pedestrian detection.

The method proposed in this work adapts feature-extraction methods for different-scale datasets without
losing the multiresolution property. This is essential in real-world applications, as same-scale images are not
accessible in all scenarios. Our method achieves the following two objectives. 1) It can process multiresolution
images. It extracts shape features by introducing a scale-space in HOG. Weighted gradient information of
the scale-space ensures that the HOG feature vector is independent of resolution. 2) Previously, there has
been no fusion of shape features, texture features, and color features with the SVM classifier. Therefore, we
combine the proposed method, i.e. scale-invariant histogram of oriented gradients (SI-HOG), which gives the
scale-independent shape feature, with texture and color features. As shape features are the basis for pedestrian
detection, they are concatenated with texture and color features. Experiments are conducted to determine

which combinations yield the best performance.

2.1. Shape features
Visual characteristics of a region or object’s shape includes particulars about its boundary. Shape feature
descriptors encompass edge magnitude and direction, giving it a quantitative value. HOG is widely used to
extract shape feature. An introduction to HOG and its variants, HOG-18 [7] and extended-HOG (Ex-HOG) [7]
are specified in the proceeding section.
Histogram of oriented gradients (HOG): HOG [3] is a dense feature-extraction method. It gives informa-
tion for shape and is most popularly used for pedestrian detection [25, 26]. The process of obtaining the HOG
features is described in Algorithm 1.
Algorithm 1:

1. Consider an 8 x 8 cell size from an input image.

2. Compute the vertical (g,) and horizontal (g, ) gradients over this cell by using [-1,0,1] and [1,0,1]7

filters, respectively.
3. Obtain the magnitude (M) and direction () for each pixel by using equations 1 and 2.

4. Take a block size with 2 x 2 cells from the original image.
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5. Obtain the 1 x 9 histogram bin (H) for each cell of the block by considering M and 6 using equations

3 and 4.
. Concatenate the four 1 x 9 histogram bins of the whole block to form a 1 x 36 histogram bin.

. Normalize the histogram bin obtained in step 6.

. With a stride of 1, perform steps 2 to 7 for all the blocks in the image.

© 00 N O

. Concatenate all these histogram bins to obtain the feature vector for the whole image.

M (i,7) = 1/ 9% + 95 (1)

0 (i, j) = arctan <§i) 2)

H( 9%’? mod 9 x 20) = H< 9(;’0‘7) mod 9 x 20) + (M(i,5) % f1) (3)
H( 9(;)” mod 9 x 20) _ H( 9(;0” mod 9 x 20) + (MG, ) x f) @)

here, f; = 20 mod 20 g f, =1 f.

Histogram of oriented gradients (18 bins): The difference between HOG using a 9-bin histogram
(described in the previous section) and that using an 18-bin histogram is that for a cell, we obtain an 18-bin
histogram (0°, 20°, 40°, ..., 340°) as the direction is calculated in four-quadrant inverse tangent format.

Extended histogram of oriented gradients (ExHOG): Extended histogram of oriented gradients
[7] is obtained from the difference and sum of HOG-18 bins.

2.2. Color features

Color features are calculated on various color models. The color model gives measurable value to colors, in
the form of a tuple, having three or four values; showing the ratio in which color components are used. In the
proceeding section, color feature extraction algorithms are presented on hue, saturation, intensity (HSI) color

model.
(a) Color autocorrelogram Color correlogram [27] gives the joint probability of occurrence of all possible

pixel levels, which results in a feature matrix of size N x N denoted as Cy. To reduce feature vector length,
color autocorrelogram was proposed [27, 28] This color feature concentrate only on cooccurrence of the same
color, yields a feature vector of length IV, which are nothing but the diagonal values of color correlogram matrix
Cy.

(b) Interchannel voting Kanaparthi et al.! proposed a new color feature to acquire the relationship among

all the color channels, named as interchannel voting.

Kanaparthi SK, Raju USN, Shanmukhi P, Aneesha GK, Rahman MEU. Image retrieval by integrating global correlation of color
and intensity histograms with local texture features. Multimedia Tools and Applications 2019. doi: 10.1007/s11042-019-08029-7

3056



PANIGRAHI and UNDI/Turk J Elec Eng & Comp Sci

2.3. Texture features

Although no formal definition exists, the texture feature is defined as a feature consisting of mutually related
elements. It provides a measure of properties such as smoothness, coarseness, and regularity, which play a vital
role in many image-processing applications. Different local patterns, such as LBP [29], ULBP [29], CS_LBP
[30], LEP [31], DSP [32], LDP [33], LTrP [34], and ILBP [35], are used to extract texture information from an

image.

2.4. Support vector machine

The SVM [36] is one of the most widely used mechanisms for solving pattern-classification problems. It is
a supervised learning method that maximizes the margin of a linear decision boundary (hyperplane), thus
achieving maximum separation between the two object classes. For pedestrian classification, linear and nonlinear

SVM classifiers have been used in combination with various feature sets [37-39)].

2.5. Big image data processing (BIDP)

Big data [40] is an encompassing term for any collection of datasets that are massive in scale, diverse, and
complex. Initially, big data was defined according to the “three Vs”: volume, velocity, and variety. Now, people
discuss seven Vs; the other four Vs are veracity, value, visualization, and variability [41]. The authors in [42]
have witnessed the increase from thousands of images to billions of images in the past 20 years, which has
resulted in BIDP. In this work, we used MapReduce (MR) in MATLAB integrated with the Hadoop distributed
file system (HDF'S).

3. Proposed methodology

To perform pedestrian detection, first, feature extraction is performed. Because we are focusing on pedestrians,
the most important feature is shape. For extracting shape information, the best-performing feature is HOG.
A dataset containing images of different resolutions (dimensions) produces HOG feature vectors of different
lengths, because HOG features are dependent on the size of the image. This becomes an obstacle for the
classifier. If we wish to apply HOG, all the images in the dataset must be resized to the same size. Hence, the
multiresolution property is lost. In the proposed method, we address this problem by utilizing a scale-space
pyramid to extract shape features, which are not dependent on the size of the image. The process is described
in Algorithm 2 and Figure 1 (note: The symbol ‘*’ represents multiplication and the symbol ‘X’ represents
that its left and right operands are width and height respectively of a matrix).
Algorithm 2: The algorithm is divided into two parts, i.e. Part I and II.
Part I (feature extraction)
1. Consider three scales to construct a pyramid structure by placing the image at the bottom (Scalel) and
then subsampling it with a factor of 2 to create another image (Scale2). The process is repeated on
Scale 2 to obtain the third image (Scale3). For Scale 1, take the largest dimension R, , the maximal
resolution from the set, having a resolution, let us say, p X . The resolution for Scale 2 is p/2 x q/2,
and that for Scale 3 is p/4 x q/4.
2. For each image, a scale-space (S;, 1 < j < 3) pyramid is constructed with the three resolutions, as
described in Step 1.

3. For Scale 1, consider the cell size as m x m. For Scale 2, the cell size is m/2 x m/2 and for Scale 3, it
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ism/4 x m/4. Thus, the same number of cells is maintained for all the scales.

N &

final feature vector for the image.

where the size of Hgcare; =9 X
Part II (Classification)

1. The feature vectors of both positive and negative images (with labels 1 and —1, respectively) are used to

train the SVM.
2. The test set feature vector including the positive and negative images is given to the trained SVM model

to obtain a label (either 1 or —1).

3
ijl Hscale,j

3

Obtain a 9-bin histogram (H) using equations 3 and 4 for every cell in a scale S;, with 1 < j < 3.
Concatenate the histogram bins obtained in Step 4 for each scale S; to form Hcqie,j, where 1 < j < 3.
Take the average of Hscale,17 Hscale,?y and Hscale,3 aCCOYdng to equation S.

Considering 2 x 2 overlapping cells with a stride of 1, apply block normalization on H,,, to obtain the

3. The actual and predicted labels of the test set are compared to obtain a confusion matrix.
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Figure 1. Proposed SI-HOG method. Scale-invariant feature extraction of training and testing images for calculation
of performance metrics.

In Figure 1, the image dataset is divided into two parts, i.e. training and testing images. Both the
Training and testing images are subdivided into positive and negative images. On these images, Algorithm 2’s
Part 1 (feature extraction) is applied to obtain SI-HOG. The size of the SI-HOG feature vector obtained is 9

-Actual Label

x X4 from the scale space pyramid. The mathematical proof is given below:

m*xm

1. The concatenated Histogram (Hgcqe ;) Of all the scales (S;) is formed as:

1.1. Scale 1: The resolution of image is p X q and the cell size is m x m. Therefore, we get 2L
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number of cells. For each cell, a 9-bin histogram is formed. Thus, for scale 1, 9 x % (=Hscale,1) is yielded

by concatenating each 9-bin histogram vertically.

1.2. Scale 2: The resolution of image is p/2 x /2 and the cell size is m/2 x m/2. Therefore, we get
% number of cells which results in 2L

p*q
m*m

a cells. Similarly, for each cell, a 9-bin histogram

is formed. Finally, for scale 2 also, 9 x (=Hscale,2) is yielded by concatenating each 9-bin
histogram vertically.

1.3. Scale 3: The resolution of image is p/4 x q/4 and the cell size is m/4 x m/4. Therefore, we get

a % number of cells which results in £ cells. Similarly, for each cell, a 9-bin histogram
is formed and 9 x P*L (= H,q 3) is yielded by concatenating each 9-bin histogram vertically.

2. As all the histogram of the scales are given equal importance, Hscale,1, Hscale,2 and Hgcqre,3 €ach are

multiplied by a factor of % and then summed to get Hguyg. The size of Hguyy will be equal to that of

p*q
mxm *

Hscale,l ) Hscale,Q and Hscale,3 ’ ie. 9 x
3. As per the construction of a block in Figure 1 comprising of four cells, Hy.g is block normalized following

L2-norm to yield the final feature vector. The length of the final feature vector is given in equation 6.

Length of SI-HOG feature vector = number of blocks x length of each block (6)

where number of blocks = (£-1) * (;£ —1) and length of each block = number of cells per block * number of
bins = 4 * 9 = 36.

The feature vector yielded from positive training set is assigned label ‘1’ and that of negative training
set is assigned label ‘-1’ The feature vector along with the label vector from the training set is used to train
SVM, which yields a model. The positive testing set and the negative testing set along with their actual labels
are given as input to the SVM model. The output is a set of predicted labels which is further used to construct

confusion matrix and the performance metrics

We used the state-of-the-art MapReduce (MR) paradigm to obtain the final results. In general, this
paradigm can be used for processing a large number of images. In our proposed method, we used two MR
Jobs. MR Jobl was used to convert the image dataset into sequence files. Sequence file is a native MapReduce
data structure which is formed by the concatenation of (key, value) pairs. As image datasets have small images,
sequence files group them to form a large file which is suitable for MapReduce. It is primarily used in MapReduce
as input/output formats. Sequence files for Jobl were formed by concatenating individual images as key and
the pixel values of images as value. The MR Job2 took the sequence files and calculated the feature vector of all
the images. For Job2, the output was a (key, value) pair comprising only the image number and feature vector.
The feature vectors were given to the SVM in the training phase, which provides the model. The same process
was applied for the testing image dataset and then the confusion matrix was obtained, whereby we evaluated

the performance of the proposed method. The entire process is shown in Figure 2.
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Figure 2. MR paradigm for the proposed SI-HOG. Computation of scale-invariant feature extraction of training and
testing for calculation of performance metrics by using MapReduce paradigm.

4. Results and discussions

We compared the proposed method with existing algorithms for three standard pedestrian datasets: INRIA!,
NICTA?, and Daimler®. For the three datasets, per-window evaluation was employed. The value of m, which
determines the cell size for the scale-space, was 16, 8, and 12 for INRIA, NICTA, and Daimler, respectively.
These values were experimentally determined to perform well for the datasets. For INRIA, a linear SVM classifier
with a regularization parameter (C) of 0.01 was used, whereas for NICTA and Daimler, a nonlinear SVM
classifier with an rbf kernel was used. The classification was performed using the LIBSVM machine-learning
library. From the SVM, the confusion matrix was obtained, as explained in Subsection 4.1. Then, performance
metrics were obtained, as given in Subsection 4.2. Details regarding the dataset usage and properties are
presented in Subsection 4.3. Subsection 4.4 discusses the performance for the INRIA, NICTA, and Daimler
pedestrian datasets. Subsection 4.5 describes the Friedman test analysis of the results. Subsection 4.6 describes

the implementation using the MR model.

4.1. Confusion matrix
For binary classification, i.e. two-class (person or nonperson) classification, the SVM generates a predicted label
of 1 (positive/person) or —1 (negative/nonperson). Given the actual label of the test set, a 2 x 2 confusion
matrix is formed. From the confusion matrix, the following resulting particulars are obtained.

True Positive(TP): A pedestrian is present in the test image and the image is classified as positive.

False Positive(FP): No pedestrian is present in the test image and the image is classified as positive.

False Negative(FN): A pedestrian is present in the test image and the image is classified as negative.

True Negative(TN): No pedestrian is present in the test image and the image is classified as negative.

LINRIA Pedestrian Dataset (2005). Dalal N, Triggs B. [online]. Website: http://pascal.inrialpes.fr/data/human/ [accessed
07 August 2020].

2NICTA Pedestrians Dataset (2008). Overett G, Petersson L, Brewer N, Andersson L, Pettersson N. [online]. Website:
https://data.csiro.au/collections/#collection/CIcsiro:23454v1 [accessed 07 August 2020].

3Daimler Mono Ped. Classification Benchmark Data Set (2006). Munder S, Gavrila DM. [online] Website: http://www.
lookingatpeople.com/download-daimler-ped-class-benchmark/index.html [accessed 07 August 2020].
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4.2. Detection metrics [43, 44]

On the basis of the four values from the confusion matrix, the receiver operator characteristics (ROC) and the
detection error tradeoff( DET) curve are obtained.

Receiver operator characteristics (ROC) curve [45]: The ROC curve is a two-dimensional graph formed
by plotting the false-positive rate (FPR) on the X-axis against the true-positive rate (TPR) on the Y-axis.
Detection error tradeoff (DET) curve [46]: The DET curve is a log—log curve with the error rates on both

axes, giving uniform treatment to both types of error, i.e. false positive and false negative.

4.3. Dataset properties

To evaluate the performance of the proposed method, we used three standard pedestrian datasets: INRIA,
NICTA, and Daimler. The INRIA pedestrian dataset contained images of pedestrians against a wide variety
of backgrounds, including crowds. The images were available in normalized windows of size 64 x 128. The
same size was maintained while extracting negative windows. Bicubic interpolation was used to form the
multiresolution datasets. The NICTA pedestrian dataset contained both positive and negative pedestrian
images having six resolutions: 8 x 20, 16 x 20, 16 x 40, 32 x 40, 32 x 80, and 64 x 80. Thus, we did
not need to create multiresolution images, as they were already provided. The Daimler pedestrian dataset
contained images with a size of 18 x 36 extracted from videos captured in various settings to avoid biases in
clothes and pose. Similar to the case of INRIA, we obtained multiresolution images via resizing. Both NICTA
and Daimler provided additional person-free images, i.e. negative images, for bootstrapping. The characteristics
of the INRIA, NICTA, and Daimler datasets are presented in Table 1.

Table 1. Characteristics of the INRIA, NICTA, and Daimler pedestrian datasets.

. Image Training Testing
Dataset Resolution
dimension | No. of | No. of No. of | No. of
Positive | negative positive | negative
Images | images images | images
Single 64 x 128 | 2416 1218 * 10 | 1132 4530 * 10
INRIA (color) . 128 x 256 | 805 406 * 10 | 377 151 * 10
Multi 64 x 128 | 805 406 * 10 | 377 151 * 10
32 x 64 805 406 * 10 | 378 151 * 10
Single 64 x 80 12000 18000 6000 9000
64 x 80 2000 3000 1000 1500
32 x 80 2000 3000 1000 1500
NICTA (color) Multi 32 x 40 2000 3000 1000 1500
16 x 40 2000 3000 1000 1500
16 x 20 2000 3000 1000 1500
8 x 16 2000 3000 1000 1500
Single 18 x 36 4800 24000 2400 12000
) 72 x 144 | 1600 8000 800 4000
Daimler (gray) )
Multi 36 x 72 1600 8000 800 4000
18 x 36 1600 8000 800 4000
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4.4. Performance metrics for different image datasets

The ROC curves for the INRIA single-resolution and multiresolution datasets are presented in Figures 3a and
3b, respectively. The proposed method exhibited the best performance among the feature-extraction methods
tested. Here, we have shown ROC curves for only one dataset. The DET curves for the INRIA, NICTA,
and Daimler single-resolution and multiresolution datasets are shown in Figures 4a and 4b, Figures 5a and 5b,
and Figures 6a and 6b, respectively. For the grayscale-image dataset Daimler, the miss rate values at 1072
are listed in Table 2, on the basis of the DET curves shown in Figure 6. And according to the DET curves
shown in Figures 4 and 5, the miss rate values at 1073 are presented in Table 3 for the single-resolution and
multiresolution images from both the color-image datasets: INRIA and NICTA. In the single-resolution case,
the proposed method achieved the lowest miss rate for all three datasets, i.e. INRIA, NICTA, and Daimler
(7.47%, 20.56%, and 33.20%, respectively). The second lowest miss rate was achieved by HOG-9. Thus, the
proposed method was the best-performing method when compared with other shape features as well as texture
and color features. To depict an object better, texture (LBP), and color (autocorrelogram & interchannel)
features are combined with HOG-9 and SI-HOG. For INRIA and NICTA, combining texture and color features
with the proposed method further improved the miss rate. In contrast, because Daimler was a grayscale dataset,
only texture features were employed in the proposed method. In the case of Daimler, significant changes in
the miss rate were not observed. In the multiresolution case, as HOG-9 and other variants of HOG could not
be applied, the proposed method was the only shape feature-extraction method. With the addition of texture
and color information, miss rates of 6.98% and 40.24% were achieved for INRIA and NICTA, respectively. For
Daimler, the addition of texture information to SI-HOG yielded a miss rate of 33.21%. Therefore, SIFHOG was
the best-performing method with the lowest miss rate and the performance was improved via the addition of
color and texture information. Table 4 shows comparison of the miss rates of the proposed method with the
existing multiresolution methods.

Results of fusion strategies: Two fusion strategies namely weighted and k-fold SI-HOG+LBP+AutoCor and SI-
HOG+LBP+Interchannel are evaluated for INRIA, NICTA, and Daimler single- and multiresolution datasets.
The miss rates for Daimler datasets are shown in Table 2 and for INRIA and NICTA datasets are shown
in Table 3. In the case of weighted methods, the weight was taken with respect to the ratio of (TP+TN)
to (TP+FN+FP+TN) of each method. The weight was multiplied by their respective train and test feature
vectors to form weighted feature vectors. In the case of k-fold, the total of the train-test set was divided into k
parts where k = 5. Then the performance was evaluated on the train:test set in the ratio of 4:1 parts. In the
case of weighted fusion, there is an improvement in miss rate in the single and multiresolution INRIA dataset
and in the single resolution NICTA dataset. In the case of k-fold fusion, there is a significant improvement of
miss rate in the single resolution INRIA and the multiresolution NICTA datasets and also in both the single

and multiresolution Daimler datasets. The fusion methods are reflected in their respective DET curves.

4.5. Friedman test analysis

Friedman test [47] is significantly used in the statistical analysis used in research studies. This test with a
significance level of 95% and « = 0.05 was conducted to the miss rates yielded by each of the algorithms.
In this work, there are 14 and 6 independent variables in the case of single- and multiresolution datasets,
respectively. Including the fusion strategies, there are 18 and 10 independent variables in the case of single- and
multiresolution datasets, respectively. The rank of each of these variables are examined using the Friedman test.

The null hypothesis states that all the algorithms are equivalent. The mean rank produced by Friedman test
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Figure 3. Receiver operator characteristic curve for INRIA pedestrian dataset. This graph shows the false positive per
window vs detection rate curve for (a) single resolution images of the dataset. (b) Multiresolution images of the dataset.

Table 2. Miss rates for single-resolution and multiresolution images from the Daimler pedestrian dataset at 0.01 false
positives per window.

Miss rate (%)
Method Daimler

Single-resolution | Multiresolution
LBP 48.74 69.38
HOG-9 37.89 NA
HOG-18 53.12 NA
Ex-HOG 49.39 NA
SI-HOG(Proposed) 33.20 32.93
HOG-9+LBP 36.60 NA
SI-HOG+LBP 32.67 33.31
Weighted SI-HOG+LBP | 33.17 34.06
k-fold SI-HOG+LBP 13.98 12.87
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Figure 4. Detection error tradeoff curve for INRIA pedestrian dataset. This graph shows the false positive per window
vs miss rate in log-log scale for (a) Single-resolution images of the dataset. (b) Multiresolution images of the dataset.

for each of the pedestrian algorithm is given in Table 5. The proposed method SI-HOG has the highest rank
when compared with single methods, i.e. among LBP, AutoCor, Interchannel, HOG-9, HOG-18, Ex-HOG, and
SI-HOG. The proposed concatenation, i.e. SI-FHOG+LBP+AutoCor and SI-HOG+LBP+Interchannel has the
first and second ranks, respectively, in the case of single resolution. In the case of multiresolution, both have the
first rank. In the case of single resolution, the calculated chi-square is 25.557. The critical value of chi-square at
a degree of freedom (k-1) 13 is 21.026; where k is the number of algorithms. As the calculated value of chi-square
is greater than the critical value of chi-square, the null hypothesis is rejected. In the case of multiresolution, the
calculated chi-square is 9.428. The critical value of chi-square at degree of freedom 5 is 11.070. As the calculated
chi-square is less than the critical chi-square, the null hypothesis is failed to be rejected. Iman et al. [48] showed
that Friedman’s chi-square is undesirably conservative and gave a better statistic which is distributed according
to the F-distribution with k-1 and (k-1)(N-1) degrees of freedom; where k and N are the number of algorithm
and datasets, respectively. On application of F-distribution on the multiresolution datasets, the calculated
F-distribution is 16.482. The critical value of F-distribution with degree of freedom (5,5) and « = 0.05 is 5.05.
As the calculated F-distribution is greater than the critical F-distribution, the null hypothesis is rejected.

Friedman test analysis including the fusion strategies:The Friedman test is conducted on the two fusion strategies
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Figure 5. Detection error tradeoff curve for NICTA pedestrian dataset. This graph shows the false positive per window
vs miss rate in log-log scale for (a) Single resolution images of the dataset. (b) Multiresolution images of the dataset.

namely weighted and k-fold SI-FHOG+LBP+AutoCor and SI-HOG+LBP+Interchannel. In the case of single
resolution INRIA and NICTA datasets, there are 18 algorithms whose Mean Rank yielded is [18, 17, 16, 12.75,
15, 14, 9, 10.5, 7, 12.25, 5.5, 10.5, 3, 5.5, 2.5, 7, 2.5, 3] as per the sequence in Table 3. It can be observed
that except for the weighted SI-HOG+LBP+Interchannel all the 5 proposed methods are with high mean rank.
The calculated chi-square is 32.88. The critical value of chi-square at a degree of freedom (k-1) 17 is 27.59;
where k is the number of algorithms. As the calculated value of chi-square is greater than the critical value of
chi-square, the null hypothesis is rejected. In the case of multiresolution INRIA and NICTA datasets, there are
10 algorithms whose mean rank yielded [9.5, 9.5, 8, 6, 3.5, 3.5, 3, 4, 3.5, 4.5] as per the sequence in Table 3. In
this case, the 6 proposed methods are with top ranks as well. The calculated chi-square is 13.09. The critical
value of chi-square at a degree of freedom 9 is 16.919. As the calculated chi-square is less than the critical
chi-square, the null hypothesis is failed to be rejected. On application of F-distribution on the multiresolution
datasets, the calculated F-distribution is 2.665. The critical value of F-distribution with degree of freedom (9,9)
and a = 0.05 is 3.17. There is rejection of null hypothesis here as well. It may be concluded that this is due
to, among the 10 methods considered, the 6 fusions of SI-HOG yielded similar mean ranks.
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Figure 6. Detection error tradeoff curve for Daimler pedestrian dataset. This graph shows the false positive per window
vs miss rate in log-log scale (a) Single resolution images of the dataset. (b) Multiresolution images of the dataset.

4.6. Complementarity and diversity analysis

The measures complementarity and diversity are used to quantify the success in ensembling features in this work.
Through complementarity analysis, the superiority of the fusion strategies can be determined. Complementarity
analysis can be done by counting the number of TPs. In this work, the TN is mentioned as well. This gives us
a better understanding of the hit rates of the ensemble feature strategies. For the INRIA, NICTA, and Daimler
single and multiresolution datasets, these values are reflected in Tables 6-8, respectively. It can be observed
that the proposed SI-HOG+LBP+AutoCor and SI-HOG+LBP+Interchannel along with its fusion strategies i.e.
weighted and k-fold method amount to a greater quantity of TPs and TNs. Diversity analysis is an important
factor in ensemble methods. It shows that even when the miss rate of two or more methods can be similar,
the overlap of TPs can be different, which serves as an essential measure for fusion strategies. Nonpairwise
diversity is quantified by the interrater agreement measure «[49] given in equation 7. The pairwise diversity is
calculated by Q statistics[50] given in equation 8. The pairwise and nonpairwise diversity of INRIA, NICTA
and Daimler single and multiresolution datasets are given in Tables 68, respectively. It can be observed that
the fused models and the fusion strategies involving the proposed method are giving varying levels of diversity.
The fusion of the methods increases the TPs and decreases the false negatives (FNs) in the ensemble model.

Below an example for both k and Q statistics calculation is given.
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Table 3. Miss rates for single-resolution and multiresolution images from the INRIA and NICTA pedestrian datasets
at 0.001 false positives per window.

Miss rate (%)
Method INRIA NICTA

Single- Multi- Single- Multi-

resolution | resolution | resolution | resolution
LBP 99.25 88.87 91.97 94.39
AutoCor 92.51 98.05 75.85 83.08
Interchannel 92.24 77.09 71.46 70.57
HOG-9 11.98 NA 26.56 NA
HOG-18 57.24 NA 63.55 NA
Ex-HOG 34.53 NA 49.31 NA
SI-HOG(Proposed) 7.47 9.88 20.56 54.03
HOG-9+LBP 8.19 NA 25.25 NA
HOG-9+AutoCor 6.51 NA 18.32 NA
HOG-9+Interchannel 8.39 NA 26.56 NA
HOG-9+LBP+AutoCor 4.35 NA 17.56 NA
HOG-9+LBP+Interchannel 7.53 NA 26.33 NA
SI-HOG+LBP-+AutoCor 3.49 7.83 14.65 40.24
SI-HOG+LBP+Interchannel 3.28 6.98 19.31 48.93
Weighted SI-HOG+LBP+AutoCor 3.26 5.24 14.70 49.14
Weighted SI-HOG+LBP+Interchannel | 3.81 5.74 20.41 50.14
k-fold SI-HOG+LBP+AutoCor 1.55 14.20 17.50 27.25
k-fold SI-HOG+LBP+Interchannel 1.23 21.18 17.60 34.08

Table 4. Comparison of miss rates for INRIA pedestrian dataset.

Methods Miss rate (%)
Lin et al. [23] 4.7

Nigam et al. [§] 7
SI-HOG+LBP+Interchannel (Ours) | 3.28

Diversity computation example of k-fold SIHOG+LBP+Interchannel for NICTA single resolution dataset:-
SI — HOGrp = 3532; SI — HOGpy = 81; SI — HOGpp = 96; SI — HOGrn = 5291
LBPrp = 3242; LBPpy = 371; LBPpp = 680; LBPry = 4707
Interchannelrp = 3177; Interchannelpy = 436; Interchannelpp = 676; LBPry = 4711
1. k: The value of L = 3, N = 9000. Applying the equation 7, the value of p = 0.913 and & = 0.529.
2. Qqv: The average of Qsr_moa,LBP, QSI1-HOG,Interchannel and QLBP,Interchannel 18 computed here.
For Qsr—moc.Lpp, Nt = 7949, N =177, N9 = 0 and N'° = 874. Applying the equation

in 87 QSI—HOG,LBP =1 SiInﬂarly, QS]—HOG,Interchannel = 1 and QLBP,Interchannel = 0.999.
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Table 5. Average ranking of the pedestrian detectors on the single and multiresolution dataset using Friedman statistical

test.
Methods Single-resolution Multiresolution
Mean rank | Rank | Mean rank | Rank
LBP 14 12 5.5 4
AutoCor 13 11 5.5 4
Interchannel 12 10 4 3
HOG-9 8.75 7 NA NA
HOG-18 11 9 NA NA
Ex-HOG 10 8 NA NA
SI-HOG(Proposed) 5 4 3 2
HOG-9+LBP 6.5 5 NA NA
HOG-9+AutoCor 3.5 3 NA NA
HOG-9+Interchannel 8.25 6 NA NA
HOG-9+LBP+AutoCor 2.5 2 NA NA
HOG-9+LBP+Interchannel | 6.5 5 NA NA
SI-HOG+LBP+AutoCor 1.5 1 1.5 1
SI-HOG+LBP+Interchannel | 2.5 2 1.5 1
Therefore, Qg = 0.999.
1N L N
=1- £ Z]ifj(lljl—(zlj))/fﬁl _lgij)) where, 1(zj) = ;yﬂ and p = ﬁ Jz_:l l(z5) (7)

where L is the number of detectors and N is the count of the groundtruth. The y;; term refers to whether the

it" detector detects j** ground truth or not and then assigned to 1 or 0 respectively.

L—-1 L

2 NllNOO _ N01N10
av — T 7+ a4~ 7 h 3 ik — 8
@ L(L-1) ; k:zi;—lQ K where, Qi NTILIN00  NOI IO (8)

where L is the number of detectors. For two detectors, ¢ and k, the Q statistics is given by Q; ;. The N 1
and N are the number of hits and misses made by both the detectors respectively. N°! is the number of
groundtruth missed by first detector and hit by second detector. The converse count is assigned to N'0. The
total groundtruth count N = N1 + N00 4 N0 1 10,

4.7. Implementation using MapReduce (MR) model

We implemented the proposed method by using the MR programming model. Four different cluster setups were
used, as well as MR programming with MATLAB and Hadoop. In these implementations, all the images were
converted into .seq files and uploaded to the HDFS. The images were read from the HDFS and executed on a

single system with the following specifications: 4 workers/12 workers parallel pool/3 node Hadoop cluster.
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Table 6. Complementarity and diversity (nonpairwise and pairwise) analysis of INRIA single- and multiresolution

datasets.
INRIA
) Single Resolution Multiresolution

Fusion methods

Complement | Diversity Complement | Diversity

-arity Non Pair | -arity Non Pair

[TP,TN] -pairwise | -wise | [TP,TN] -pairwise | -wise

K Qav K Qav

HOG-9+LBP [1084,4514] 0.096 1.000 | NA NA NA
HOG-9+AutoCor [1091,4514] 0.004 0.899 | NA NA NA
HOG-9+Interchannel [1082,4512] 0.018 0.934 | NA NA NA
HOG-9+LBP+AutoCor [1099,4516] -0.101 0.940 | NA NA NA
HOG-9+LBP+Interchannel [1099,4519] | —0.077 0.955 | NA NA NA
SI-HOG+LBP-+AutoCor [1112,4517] -0.106 0.950 | [1093,4514] 0.452 0.920
SI-HOG~+LBP-+Interchannel [1104,4520] -0.077 0.965 | [1081,4506] 0.452 0.920
Weighted SI-HOG+LBP+AutoCor [1106,4517] 0.167 0.940 | [1085,4520] 0.453 0.926
Weighted SI-HOG+LBP+Interchannel | [1104,4522] 0.167 0.940 | [1084,4520] 0.453 0.926
k-fold SI-HOG+LBP+AutoCor [733,3307] -0.147 0.956 | [671,3341] 0.457 0.889
k-fold SI-HOG+LBP+Interchannel [730,3307] -0.068 0.983 | [667,3343] 0.457 0.889

Table 7. Complementarity and Diversity(Non-pairwise and Pairwise) Analysis of NICTA Single and multiresolution

datasets

NICTA
Fusion methods Single-resolution Multiresolution

Complement | Diversity Complement | Diversity

-arity Non Pair | -arity Non Pair

[TP,TN] -pairwise | -wise | [TP,TN] -pairwise | -wise

K Qav K Qav

HOG-9+LBP [5871,8803] 0.238 1.000 | NA NA NA
HOG-9+AutoCor [5870,8810] 0.337 1.000 | NA NA NA
HOG-9+Interchannel [5882,8823] 0.214 1.000 | NA NA NA
HOG-9+LBP+AutoCor [5912,8833] 0.377 1.000 | NA NA NA
HOG-9+LBP+Interchannel [5878,8817] 0.517 1.000 | NA NA NA
SI-HOG+LBP+AutoCor [5913,8845] 0.375 1.000 | [5825,8780] 0.446 0.994
SI-HOG+LBP+Interchannel [5891,8827] 0.515 1.000 | [5747,8751] 0.480 1.000
Weighted SI-HOG+LBP+AutoCor [5914,8841] 0.318 1.000 | [5750,8738] 0.455 0.999
Weighted SI-HOG+LBP+Interchannel | [5884,8814] 0.310 1.000 | [5740,8727] 0.453 1.000
k-fold SI-HOG+LBP+AutoCor [3572,5311] 0.418 1.000 | [3532,5222] 0.466 0.999
k-fold SI-HOG+LBP+Interchannel [3561,5304] 0.529 0.999 | [3525,5212] 0.413 1.000
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Table 8. Complementarity and diversity (nonpairwise and pairwise) analysis of Daimler single- and multiresolution
datasets.

Daimler
. Single-resolution Multiresolution
Fusion methods
Complementarity | Diversity Complementarity | Diversity
[TP,TN] Non Pair | [TP,TN] Non Pair
-pairwise | -wise -pairwise | -wise
K Qav K Qav
HOG-9+LBP [1313,11826] 0.528 0.960 | NA NA NA
SIHOG+LBP [1450,11834] 0.471 0.950 | [1450,11823] 0.471 0.952
Weighted STHOG-+LBP | [1400,11838] 0.488 0.957 | [1412,11834] 0.482 0.955
k-fold STHOG+LBP [1285,7118] 0.135 0.879 | [1278,7119] 0.132 0.875

5. Conclusion

We proposed a scale-space pyramid-based shape feature-extraction method: SI-HOG. SI-HOG overcomes the
shortcoming of HOG, i.e. it is not applicable to multiresolution images, by considering gradient information
from different scales of an image, making it resolution-independent. Furthermore, we proposed the addition of
texture and color information to SI-HOG for extracting a more detailed form of features. We evaluated the
performance using three datasets, i.e. INRIA, NICTA, and Daimler, considering both single-resolution and
multiresolution images. In NICTA, both single-resolution and multiresolution images were available, whereas
for INRIA and Daimler, multiresolution images were created using bicubic interpolation. SI-HOG outperformed
the existing LBP, AutoCor, Interchannel, HOG-9 bins, HOG-18 bins, and ExHOG methods in both the single-
resolution and multiresolution cases for all three datasets. When texture and color features were added, for
INRIA and NICTA, SI-HOG+LBP+Interchannel and SI-HOG+LBP+AutoCor exhibited the best performance
in both the single-resolution and multiresolution cases. For Daimler, the results did not vary significantly with
the addition of texture features (SFHOG+LBP). Hence, SI-HOG is the best-performing shape feature among
all the individual feature-extraction methods tested in this work. The proposed method was also tested with
two fusion methods: weighted and k-fold and the results are compared. Friedman test analysis is performed
on all the methods and the ensemble methods are analyzed by complementarity and diversity (nonpairwise and

pairwise) computation.
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. SI-HOG

SVM
HOG

. ExHOG

LBP
rbf

. PRNet
. HSI

. BIDP
. MR

. HDFS
. ROC

. FPR

. TPR

. DET
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Scale-invariant histogram of oriented gradients
Support vector machine

Histogram of oriented gradients

Extended histogram of oriented gradients
Linear binary pattern

radial basis function
Progressive refinement network

Hue saturation intensity

Big image data processing
MapReduce

Hadoop distributed file system
Receiver operator characteristics
false-positive rate

true-positive rate

Detection error tradeoff



	Introduction
	Literature review
	Shape features
	Color features
	Texture features
	Support vector machine
	Big image data processing (BIDP)

	Proposed methodology
	Results and discussions
	Confusion matrix
	Detection metrics ref43,ref44
	Dataset properties
	Performance metrics for different image datasets
	Friedman test analysis
	Complementarity and diversity analysis
	Implementation using MapReduce (MR) model

	Conclusion

