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1. Introduction
Over a hundred million people around the world have been 
affected by the recent outbreak of the novel coronavirus 
(SARS-CoV-2), COVID-191. Some of the individuals 
infected with SARS-CoV-2 either remain asymptomatic 
or have mild symptoms while some of them are admitted 
to intensive care unit (ICU) with severe symptoms and 
develop severe acute respiratory distress syndrome 
(ARDS) (Chen et al., 2020b). SARS-CoV-2 infection 
accompanied by multiple organ failure syndrome mostly 
results in death due to damage in vital organs (Farooqui, 
2021). SARS-CoV-2 has known to affect mainly the 
respiratory system or lungs; nonetheless, symptoms 
associated with gastrointestinal (GI) system have been 
described as well in the patients with COVID-19. Fever, 
cough, sore throat, dyspnea, and fatigue have been 
reported as the most prevalent clinical symptoms. Over the 
past year, GI symptoms emerged as critical manifestations 
(Schmulson et al., 2021). Vomiting, nausea, and diarrhea 
1Worldometers (2021). Coronavirus cases [online]. Website https://
www.worldometers.info/coronavirus [accessed 20 May 2021].

have been described as the most prominent GI symptoms 
in COVID-19. Frequency of GI symptoms in COVID-19 
patients ranges from 5% to 80% with diarrhea ranging 
from 2% to 50% (Chen et al., 2020a, 2020b; Fortune and 
Sharaiha, 2020). Interestingly, GI manifestations have been 
reported as the first symptoms in some cases occurring 
even before the respiratory symptoms or fever (Song et 
al., 2020; Lin et al., 2020). It is well established that the 
digestive system contributes to the COVID-19 illness and 
gastrointestinal signs at the beginning or during the course 
of the disease should not be underestimated (Ferreira et 
al., 2020; Jin et al., 2020; Tao et al., 2020; Wan et al., 2020). 
While some of the patients display only the GI symptoms, 
some with GI symptoms, in particular diarrhea, developed 
severe respiratory complications requiring ventilation 
support in ICU admission more often relative to those 
with no GI symptoms (Jin et al., 2020; Pan et al., 2020; Wan 
et al., 2020). 

Zhang et al. (2021) performed a retrospective study 
with 409 severe and hospitalized COVID-19 patients 
and compared inflammatory markers of the patients 
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with diarrhea to those without diarrhea to understand 
the relationship between gastrointestinal symptoms and 
immune response in COVID-19 patients. Patients with 
diarrhea showed a low level of lymphocyte with reduced 
CD8+ T cells and highly increased tumor necrosis factor-
alpha (TNF-α), interleukin-10 (IL-10), and IL-6 levels. 
The severity of diarrhea with high frequency and long 
duration was correlated with the inflammatory profile and 
duration of the course of COVID-19. Moreover, diarrhea 
was reported more often and more severe among patients 
who died relative to those survived. Patients with diarrhea 
tended to develop multiple organ failure and stay in 
hospital longer. SARS-CoV-2 infection causes lung injury 
resulting in pneumonia with a hyperactive and imbalanced 
immune response (Li et al., 2020). Lymphocytopenia 
and raised level of proinflammatory cytokines and 
chemokines leading to “cytokine storm” have found to be 
associated with severe COVID-19 accompanied by severe 
acute respiratory syndrome in lung and multiple organ 
dysfunction (Huang et al., 2020; Kalantar-Zadeh et al., 
2020; Zheng et al., 2020). 

ARDS and sepsis-induced hypoxic damage, one of the 
factors causing oxidative stress, lead to neurodegenerative 
disorders and are associated with structural changes in 
the brain of the patients with COVID-19 (Dolatshahi et 
al., 2021). In a large-scale observational study comprising 
214 individuals with COVID-19, the ratio of the patients 
who declared neurologic complaints was about 36% 
(Mao et al., 2020). Neurologic symptoms reported in 
COVID-19 patients included headache, vertigo, altered 
consciousness, encephalitis, neuropathic pain, facial 
paralysis and olfactory disturbances, loss in sense of taste, 
cerebrovascular events, and seizure (Bureau et al., 2020; 
Mao et al., 2020). Although the mechanisms of neurologic 
damage were unclear in the COVID-19 patients, sepsis, 
systemic inflammatory response syndrome, and possible 
SARS-CoV-2 interaction with the angiotensin-converting 
enzyme 2 (ACE2) receptors in nerves, muscle, and brain 
were considered to discuss their involvement in the 
mechanism of action (Mao et al., 2020). Upregulation of 
the proinflammatory cytokines such as IL-6, IL-8, and 
TNF-α in COVID-19 patients, particularly in those with 
more severe disease, raises doubts whether the cause of 
the severe meningoencephalitis or/and other neurologic 
manifestations in COVID-19 patients is the peripheral 
inflammation rather than direct SARS-CoV-2 invasion 
(Benameur et al., 2020; Dolatshahi et al., 2021). Peripheral 
cytokines at increased level can cross the blood-brain 
barrier directly and trigger neuroinflammation, which 
contributes to the pathophysiology of neurodegenerative 
diseases including neuropathies (Costello and Dalakas, 
2020; Dolatshahi et al., 2021). Genetic predispositions, 
metabolic risk factors, and dysbiosis in gut microbiota, 
which are common risk factors for neurodegenerative 

diseases and COVID-19, are thought to be partly 
responsible for a higher incidence of neurodegenerative 
diseases in COVID-19 survivors (Dolatshahi et al., 2021). 
Since impaired intestinal microbiota decreases the gut 
epithelial integrity and activate the immune system by 
molecular mimicry and oxidative stress, gut microbial 
dysbiosis involves the viral invasion directly into the central 
nervous system (CNS) as well as the neurodegenerative 
processes by changing neurotransmission balance.

Gut microbiota communicates with the brain, which 
is called the gut–brain axis, maintaining homeostasis of 
the gastrointestinal and the nervous system (Rhee et al., 
2009). SARS-CoV-2 affects brain functions most likely 
through the gut–brain axis associated with dysbiosis and 
inflammation. Alteration of the microbial composition 
and its metabolites in the gut is associated with intestinal 
permeability and systemic immune responses with 
proinflammatory mediators which may lead to peripheral 
sensitization of chronic pain in COVID-19 patients 
(Leclercq et al., 2014; Thevaranjan et al., 2017). Therefore, 
emerging role of gut microbiota in neuropathic symptoms 
described by COVID-19 has attracted attention recently. 
This review highlights the role of the gut microbial 
dysbiosis on neuropathy in COVID-19 with association of 
dysbiosis-related inflammation. 

2. Gut microbiota in COVID-19 with the impact of 
medication 
Pathophysiology of the digestive manifestations in 
COVID-19 has not been fully uncovered; however, it is 
well known that there is a crosstalk between gut microbiota 
and lung, and growing evidence draws attention to the 
role of the gut microbiota in COVID-19 severity (Ferreira 
et al., 2020; Wan et al., 2020; Tao et al., 2020). Microbial 
populations in the gut contributes to health and influence 
the homeostatic and physiological functions in humans 
(Ostaff et al., 2013). While gut microbiota helps in 
maturation and development of defense system in human 
body, the immune system constructs the microbiota 
composition and functions. It is well known that healthy 
gut microbial composition is altered in various health 
conditions such as inflammatory bowel disease, arthritis, 
obesity, type 2 diabetes, and asthma (Aleman and 
Valenzano 2019; Hufnagl et al., 2020; Tai et al., 2015). 
Altered gut microbiota to an imbalanced state in healthy 
individuals, dysbiosis, causes a disruption in balanced 
immune functionality and a widespread inflammation. 
When infants are exposed to antibiotics resulting in a 
shift in the organization of the intestinal microbiota, in 
the future, their risk of developing inflammatory bowel 
disease increases due to the impact of gut microbiota 
on immune development early in life (Shaw et al., 2010; 
Hviid et al., 2011). Change in the gut microbiota alters the 
intestinal barrier integrity with its immunomodulatory 
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effect (Leclercq et al., 2014; Thevaranjan et al., 2017). 
Raised level of inflammation in intestine due to dysbiosis 
provokes epithelial barrier dysfunction, referred to as leaky 
gut, and may lead to multiple organ failure with secondary 
infection (Hanada et al., 2018; Fanos et al., 2020). 

The gut–lung axis maintaining host homeostasis and 
disease development with immunomodulation is thought 
to be involved in disease severity and extrapulmonary 
conditions of COVID-19 with the association of dysbiosis. 
Damage in the intestinal barrier integrity due to dysbiosis 
could result in SARS-CoV-2 translocation from lung to 
gut lumen via circulatory and lymphatic system (Gu et al., 
2005; Aktas and Aslim 2020). Conversely, decrease in the 
gut permeability due to dysbiosis could result in secondary 
infection by intestinal microorganisms and leads to 
multiple organ failure (Hanada et al., 2018; Deitch, 2012). 
Considering the gut–lung crosstalk with the association of 
gut permeability and systemic inflammation, individuals 
with gut dysbiosis could be at high risk for severe 
COVID-19. 

Several studies have reported change in microbial 
composition in feces from patients with COVID-19 (Table). 
Overall, SARS-CoV-2 infection decreases the diversity and 
increases the abundance of opportunistic pathogens in the 
gut. COVID-19 patients from different studies varied in 
their fecal microbial composition patterns (Table). This 
variation could be due to life style with different dietary 
habits among individuals or different treatment procedure 
applied in different hospitals.

Dysbiosis involved in sepsis is one of the reasons for 
the severity of SARS-CoV-2 infection with the association 
of the gut–lung axis. Some of the patients with COVID-19 
showing gastrointestinal symptoms, in particular diarrhea, 
could have dysbiotic gut microbiota when they were 
infected while for others who did not have dysbiotic 
gut microbiota when infected, the treatment procedure 
of COVID-19 might cause dysbiosis in their intestinal 
microbiota. Antibiotics are primary disruptors of gut 
microbiota breaking the balance between microbiota and 
immune system and causing metabolic and immunologic 
changes (Shaw et al., 2010; Hviid et al., 2011). Antibiotic-
associated diarrhea is one of the main side effects of 
antibiotic administration due to the altered organization 
of the intestinal microbiota (Hickson, 2011). Shift in the 
gut microbial composition due to antibiotics increases the 
risk of inflammatory disorders and new infections such as 
Clostridium difficile infection which generates Clostridium 
difficile-associated diarrhea (Shaw et al., 2010; Hickson, 
2011; Hviid et al., 2011). Antibiotics have been commonly 
used in COVID-19, particularly to prevent secondary 
infection, and this extensive antibiotic administration 
possibly has a role in disruption of the microbial balance 
leading to diarrhea in COVID-19 patients (Chen et al., 

2020b; Guan et al., 2020). The level of depletion in microbial 
populations is much greater in antibiotic administered 
patients with COVID-19 (Zuo et al., 2020; Cao et al., 
2021;Yeoh et al., 2021). Previously, dysbiosis in mice by 
antibiotics were found to be associated with viral infections 
in distal organs (Ichinohe et al., 2011). They reported that 
antibiotics keep the commensal microbial populations in 
the gut from regulating immune defense against influenza 
A virus infection and mice had become more susceptible 
to the virus infection in lungs. Although there has been no 
effective treatment for COVID-19, a variety of treatment 
regimens have been applied to the patients infected by 
SARS-CoV-2 (Table). Gut microbiota can impact not only 
the disease symptoms and the severity of the illness but 
also the drug pharmacokinetics used to treat COVID-19 
and patient response to the therapy applied (Noh et al., 
2017; Zhang et al., 2018; Zimmermann et al., 2019). When 
the drug is metabolized by the gut microbiota before 
absorption, bioavailability of the drugs could be altered 
as well as the possible side effects. Hydroxychloroquine 
(HCQ) is an antimalarial drug that has been used for 
inflammatory disorders including rheumatoid arthritis for 
years. After the outbreak, it was one of the earliest drugs 
used for the prevention and treatment of COVID-19 due 
to its in vitro antiviral effect against SARS- CoV-2 (Yao 
et al., 2020). It has been demonstrated in mice that HCQ 
challenge significantly changed the gut microbial diversity 
with depletion in Firmicutes and increase in Bacteroidetes; 
however, it did not impact the immune response (Pan 
et al., 2021). While HCQ have been used alone in some 
COVID-19 cases, it is sometimes used in combination with 
azithromycin (Das et al., 2020). Due to adverse outcomes 
of COVID-19, related to immune response with increased 
proinflammatory cytokines resulting in cytokine storm, 
antiinflammatory drugs such as corticosteroids have been 
used as well (Felsenstein et al., 2020). Additionally, antiviral 
drugs such as favipiravir, remdesivir, and ribavirin have 
been commonly used for COVID-19 treatment. The list of 
the drugs that have been tested as COVID-19 therapeutic 
agent is much longer than those mentioned here. While 
some of them are administered alone, some are used in 
combination depending on the treatment regimen that 
has been used in clinical practice in different hospitals 
or different countries. However, in most of the studies, 
either information about the treatment procedure is 
limited or treatment regimen covers combination of two 
or more drugs including HCQ, antiviral drugs, steroids, 
and antibiotics and varies among patients involved in 
the same study (Ceccarelli et al., 2021; Cao et al., 2021; 
Livanos et al., 2021). Different therapeutic interventions 
can influence the intestinal microbiota and eventually 
impact the gastrointestinal manifestation in patients with 
COVID-19 and the severity of the illness associated with 
dysbiosis during the course of the disease. 
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Table. Changes in the composition of fecal microbiome of COVID-19 patients.

Modulation of fecal microbiota *Antibiotics *Antivirals or other 
drugs

Geographic 
location

Gastrointestinal 
symptoms References

↑ Ruminococcus gnavus, 
Eggerthella, Coprobacillus, 
Lachnospiraceae bacterium, Clostridium 
ramosum, and Eggerthella lenta 

↓ Alistipes sp AP11, Roseburia 
intestinalis, Burkholderiales bacterium, 
Eubacterium hallii, Parasutterella 
excrementihominis, 
Alistipes indistinctus, Coprobacter 
fastidiosus, Eubacterium eligens, 
Bacteriodales bacterium ph8, 
Bacteroides salyersiae, Odoribacter 
splanchnicus, Alistipes shahii, 
Ruminococcus bromii, 
and Bacteroides massiliensis

None, 
moxifloxacin, 
piperacillin/
tazobactam, 
cefuroxime, or 
levofloxacine

None, lopinavir/
ritonavir, arbidol, or 
ribavirin

Beijing, 
China

None, diarrhea, 
constipation, 
or abdominal 
distention

(Cao et al. 2021)

↑ Streptococcus, Clostridium, 
Haemophilus, and Proteobacteria 

↓ Prevotella, Akkermansia, 
Paraprevotella, and Lachnospira

Antibiotics 
(unspecified)

Antivirals 
(unspecified), 
corticosteroids, 
immunoglobulin, 
traditional Chinese 
medicine, probiotics, 
anticoagulation, or 
tocilizumab 
(anti-IL6R)

Hefei, 
China

Diarrhea, 
nausea, vomit, 
anorexia, 
or abdominal 
pain

(Tao et al. 2021)

↑ Enterococcus and Enterobacteriaceae

↓ Lactobacillus, Bifidobacterium, 
Faecalibacterium prausnitzii, 
Clostridium butyricum, Clostridium 
leptum, and Eubacterium rectale

Antibiotics 
(unspecified)

Antifungal drugs or 
probiotics NA NA ** (Tang et al. 2020)

↑ Collinsella aerofaciens, Collinsella 
tanakaei, Streptococcus infantis, 
and Morganella morganii 

↓ Parabacteroides merdae, 
Bacteroides stercoris, Alistipes 
onderdonkii, and Lachnospiraceae 
bacterium

NA NA Hong Kong, 
China

None or 
diarrhea *** (Zuo et al. 2021)

↑ Streptococcus, Rothia, Veillonella, 
Erysipelatoclostridium, and Actinomyces 

↓ Ruminococcaceae,
Fusicatenibacter, Anaerostipes, 
Agathobacter, unclassified 
Lachnospiraceae, and Eubacterium hallii

NA NA Zhejiang, 
China

None or 
diarrhea (S. Gu et al. 2020)



AKTAS and ASLIM / Turk J Biol

394

Modulation of fecal microbiota *Antibiotics *Antivirals or other 
drugs

Geographic 
location

Gastrointestinal 
symptoms References

↑ Ruminococcus gnavus, 
Ruminococcus torques, and 
Bacteroides dorei 

↓ Bifidobacterium adolescentis, 
Faecalibacterium prausnitzii, and 
Eubacterium rectale

Antibiotics 
(unspecified)

None, lopinavir/
ritonavir, ribavirin, 
or oseltamivir. 
Corticosteroids 
or proton pump 
inhibitor

Hong Kong, 
China

None or 
diarrhea (Yeoh et al. 2021) 

↑ Clostridium hathewayi, Actinomyces 
viscosus, and Bacteroides nordii

↓ Eubacterium ventriosum, 
Faecalibacterium prausnitzii, Roseburia, 
and Lachnospiraceae.

Amoxycillin, 
clavulanate 
cephalosporin, 
or tetracycline

Lopinavir/ritonavir, 
or ribavirin. 
Interferon beta-1b

Hong Kong, 
China

None or 
diarrhea (Zuo et al. 2020)

↑ Streptococcus, Clostridium, 
Lactobacillus, and Bifidobacterium

↓ Bacteroidetes, Roseburia, 
Faecalibacterium, Coprococcus, and 
Parabacteroides.

NA NA Anhui, 
China NA (Tao et al. 2020)

*Single or combination of two or more. ** Predominant fecal microbiota was detected by qPCR. *** Change in the microbiota in fecal samples with 
signature of high SARS-CoV-2 infectivity relative to the fecal samples with signature of low-to-none SARS- CoV-2 infectivity. NA, no information 
available

Table. (Continued).

3. Gut–brain axis in COVID-19
Alternatively, diarrhea or other gastrointestinal 
manifestations could be the result of the gut-brain axis. 
Physiological processes of functional gastrointestinal 
disorders were found to be involved in dysregulation of 
bidirectional gut–brain interaction in addition to dysbiosis 
of the gut microbiota with inflammation and impaired 
gut barrier (Black et al., 2020). Interactions between the 
gut microbiota and the brain have been explored, and 
the results indicate that intermediaries resulting from 
the interaction between the gut immune system and 
the microbiota may impact the brain functions (Mayer 
et al., 2014; Shanahan and Quigley, 2014). Changes in 
the bidirectional relationship between the gut and the 
nervous system have been shown to play an important 
role in irritable bowel syndrome (IBS) pathogenesis and 
associated functional gastrointestinal disorders with GI 
manifestations such as abdominal pain, diarrhea, or/and 
constipation (Mari et al., 2020; Simpson et al., 2020; Holvoet 
et al., 2021). It is interesting that germ-free animals have 
been found to exaggerate the activation of hypothalamic–
pituitary–adrenal axis, a central stress response system, in 
response to stress. This hyperresponsiveness was reversed 
by restructuring the microbiota with fecal suspension 
from animals kept in a pathogen-free environment or 
through oral inoculation of B. infantis (Sudo et al., 2004; 
Smith and Vale 2006). Although the exact mechanism is 

not known fully yet, gut microbiota is capable of impacting 
stress and visceral hypersensitivity (Moloney et al., 2016). 
Recent studies performed fecal microbiota transplantation 
(FMT) from healthy donors to patients with IBS and 
reported that modulation of the gut microbiota by 
FMT relieved symptoms such as abdominal pain in IBS 
patients compared to the control group (Johnsen et al., 
2018, 2020; El-Salhy et al., 2021; Holvoet et al., 2021). GI 
microbiota is a critical piece with its potential to affect 
neuro-immuno-endocrine pathways. The gut microbiota 
and its metabolic products are capable of modifying GI 
functions by impacting the gut barrier integrity, immune 
function, enteric nervous system (ENS), and brain (Mayer 
et al., 2014). Studies support that microbiota is involved 
in adult neural plasticity including microglia activation 
and neurogenesis and is necessary for normal brain 
development and healthy brain functions in adulthood 
(Hsiao et al., 2013; Ogbonnaya et al., 2015; Stilling et al., 
2015). Antibiotic-induced microbiota depletion in mice 
affects cognitive behaviors and anxiety in addition to the 
gut–brain axis neuromodulators including neuropeptides, 
monoamines, and tryptophan (Desbonnet et al., 2015). 
Conversely, the brain can modify the environment of the 
gut microbiota through ENS, autonomic nervous system, 
and hypothalamic pituitary axis by altering the luminal 
secretion, epithelial integrity, mucosal immunity, and 
release of neurotransmitters (Rhee et al., 2009; Mayer, 
2011). 
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Metabolites produced by gut microbiota such as 
tryptophan, serotonin, GABA, and short chain fatty acids 
and immune molecules generated during the immune 
response against microbes can signal through the intestinal 
cells and affect the gut locally. Moreover, these molecules 
can signal through the endocrine and neurocrine system 
associated cells and impact extraintestinal organs such 
as the brain (Mayer et al., 2014). Short chain fatty acids 
produced by intestinal microbiota play an important role 
in maturation and activation of microglia cells which 
are macrophage-like immune cells in the CNS (Lin et 
al., 2020). Microbial products can translocate to the 
circulatory system from the gut and reach the blood-brain 
barrier. With the changes in the gut microbial composition, 
increased intestinal permeability and activated immune 
response may lead to systemic inflammation and impact 
the blood-brain barrier, and eventually induce neural 
injury and neurodegeneration with neuroinflammation 
(Rhee et al., 2009; Heiss and Olofsson 2019). Furthermore, 
gastrointestinal tract is the largest endocrine organ in 
the human body and produce intestinal hormones via 
the enteroendocrine system with a wide range of targets 
both intestinal and extraintestinal (Ahlman and Nilsson, 
2001). Intestinal hormones, such as neuropeptide Y, 
glucagon-like peptide 1, and peptide YY, produced by 
enteroendocrine cells play a role in pain modulation with 
the association of the immune and nervous systems. It 
has been shown that gut microbiota communicates these 
enteroendocrine cells and impact the enteroendocrine 
metabolism. SARS‐CoV‐2 infection is thought to result in 
symptoms of vomiting or nausea through either inducing 
enteroendocrine release in the gut mucosa or impacting 
the brainstem directly after getting into the circulatory 
system (Andrews et al., 2021).

4. Gut microbiota and inflammation associated 
neuropathy in COVID-19 
Although SARS-CoV-2 mainly infects the respiratory 
system, nervous system has been found to be involved 
in COVID-19 as well, with neurological symptoms 
including anosmia, headache, anorexia, vertigo, altered 
consciousness, encephalitis, neuropathic pain, facial 
paralysis and olfactory disturbances, and loss in sense 
of taste (Bureau et al., 2020; Mao et al., 2020; Wu et al., 
2020). SARS-CoV-2 recognizes the ACE2 receptor and 
invades the host cell via type II transmembrane serine 
protease (TMPRSS2) (Zhang et al., 2020). Since the ACE2 
receptor and the TMPRSS2 are expressed at relatively low 
levels in the brain, it is hard to state for now that SARS-
CoV-2 directly invades the CNS and causes neurological 
damage. It has been thought that the gut–brain axis may be 
involved in COVID-19, and SARS-CoV-2 might affect the 
CNS via intestine associated inflammation (Shi et al., 2020; 
Wu et al., 2020). Coronaviruses damage the structure and 

function of the nervous system with their ability of entering 
the cerebrospinal fluid (Marasco et al., 2021). Although the 
mechanism(s) by which SARS-CoV-2 reaches the central 
nervous system is essentially unknown, it is believed that 
the blood-brain barrier is involved in the invasion path 
(Marasco et al., 2021). Previously, neurotropic viruses 
were shown to infect the ENS continuously and cause GI 
dysfunction (Brun et al., 2010). 

Decrease in gut barrier function with the change in 
the gut microbiota due to viral infection will modify the 
blood-brain barrier integrity and let bacteria, bacterial 
metabolites, and toxins translocate to the brain via systemic 
circulation, then will cause damage in brain functions 
(Lin et al., 2020). Vagus nerve is linked to the neurons 
in the ENS and carries information from the intestine to 
the brain; therefore, ENS dysfunction can impact both 
the gastrointestinal system and brain functionality via 
gut-brain axis (Tognini, 2017). Recently, Deffner et al. 
(2020) explored a histological evidence of alternative 
routes for SARS-CoV-2 neuroinvasion and performed 
immunostainings for ACE2 and TMPRSS2 in the human 
ENS and choroid plexus. They reported that enteric 
neurons and glial cells in the small and large intestine and 
choroid plexus epithelium cells expressed both ACE2 and 
TMPRSS2. Studies suggest that SARS-CoV-2 reaching the 
gut directly or indirectly invades the ENS and travels to the 
brain via vagus nerve to impact the central nervous system 
(Jakhmola et al., 2020; Deffner et al., 2020). Moreover, 
damage in the ENS could cause intestinal dysmotility and 
disturbed barrier function which lead to translocation 
of gut microbes and their metabolites into the systemic 
circulation to the brain, suggesting the bidirectional 
interaction between gut and the nervous system. On the 
other hand, coronaviruses are thought to move to the brain 
via motor or sensory nerve endings along with retrograde 
neuronal transport through the motor proteins including 
kinesin and dynein (Cataldi et al., 2020; Marasco et al., 
2021). Recently, ENS has been suggested to be the route 
for SARS CoV-2 to enter the brain and the virus would 
reach the brain through vagal and/or splanchnic nerves 
(Esposito et al., 2020).

Severe SARS-CoV-2 infections have been found to be 
associated with neuropsychological effects and COVID-19 
patients have been diagnosed with neuropathic pain 
including olfactory tract neuropathy, motor peripheral or 
axonal neuropathy, and sensory neuropathy (Abdelnour et 
al., 2020; Ghosh et al., 2020; Kirschenbaum et al., 2020; Li et 
al., 2021; Odriozola et al., 2021). The somatosensory nerve 
signals are sent to the brain from the spinal cord for further 
processing the sense of temperature, pressure, pain, touch, 
and vibration. Diseases impacting somatosensory nervous 
system such as diabetes, infections, nerve trauma, and 
autoimmune diseases can dysfunction the sensory signals 
into the spinal cord and the brain and lead to disorders 
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associated with neuropathic pain (Campbell and Meyer, 
2006). Neuropathic pain impairing the quality of life in 
patients reflects both central and peripheral sensitization 
and immune mechanism is involved in this matter of 
fact. Cooperation between the nervous system and the 
immune system have emerged as key in pain development 
(Ellis and Bennett, 2013). Proinflammatory cytokines 
and chemokines such as IL-1β and TNF-α construct the 
fundamental mechanism building the neuroimmune 
communication and lead to hyperalgesia and allodynia 
following nerve injury (Ellis and Bennett, 2013; Campbell 
and Meyer, 2006). Inhibition of increased chemokines and 
cytokines, and their receptors in central and peripheral 
nervous systems notably alleviates neuropathic pain. As 
mentioned earlier, the microbial composition plays a pivotal 
role in modulation of the immune system development, in 
addition to the pathogenesis of many inflammatory-related 
diseases (Rooks and Garrett, 2016). Amaral et al. (2008) 
explored the impact of microbiota on inflammatory pain 
with germ-free and conventional mice exposed to various 
inflammatory stimuli such as LPS, TNF-α, IL-1β, CXCL1, 
PGE2, and carrageenan. Their results demonstrated that 
commensal microbiota is required for mice to generate 
inflammatory hypernociception.

The gut microbiota is implicated in maintaining the 
function of the CNS via the immune system, endocrine 
system, or nervous system (Tognini, 2017; Chen et al., 
2021). Previously, the contribution of the gut microbiota 
to the pathogenesis of the neuropathic pain accompanying 
cancer chemotherapy and inflammatory pain have been 
shown in studies using antibiotic-treated mice and germ-
free mice (Amaral et al., 2008; Shen et al., 2017). Ding 
et al. investigated whether gut microbiota impact the 
neuropathic pain and if T-cell mediated immune responses 
are involved in this process using a mouse model of 
peripheral nerve injury-induced chronic neuropathic pain 
(Ding et al., 2021). Their results demonstrated that changes 
in the gut microbiota alter the development of neuropathic 
pain via shaping the balance between proinflammatory and 
antiinflammatory T cells. In another recent study using 
the same neuropathic pain model in rats, the relationship 
between the intestinal microbiota and related metabolites 
in neuropathic pain was explored (Chen et al., 2021). Gut 
microbiota, serum and spinal cord metabolomics, and 
pain‑related parameters were compared to unravel their 
relation to each other. They reported that changes in the gut 
microbial composition was significantly correlated with 
the changes in the level of serum metabolites indicating 
that gut microbiota involved in modulating neuropathic 
pain and related metabolites, especially metabolites 
taking role in neuroinflammation signaling pathways, 
including arachidonic acid, beta-hydroxy butyric acid, 
3-methylhistidine, 2-hydroxybutanoic acid, N6,N6,N6-

trimethyl-l-lysine, l-histidine, l-anserine, l-tyrosine, 
dopamine, anthranilic acid, and kynurenic acid. 

Neurotransmitters, which can be either inflammatory 
or noninflammatory mediators, contribute to pain 
perception. GABA and glutamate are neurotransmitters 
commonly found in the body as inhibitory and excitatory 
neurotransmitters, respectively (Strandwitz et al., 
2019). Both bacteria and host are capable of converting 
glutamate to GABA associated with regulating level of 
proinflammatory cytokines, modulating pain status, and 
maintaining gastrointestinal tract innervation. Human 
gut microbiota is predicted to comprise genera that are 
able to produce or consume GABA such as Escherichia, 
Bacteroides, and Parabacteroides species. GABA level has 
been reported to be modulated by altering the intestinal 
microbial composition, in particular Bacteroides which is 
negatively correlated with the brain signatures linked to 
depression (Strandwitz et al., 2019).

The interaction between the nervous system and the 
immune system is bidirectional; the nervous system, 
therefore, regulates innate and adaptive immunity and 
vice versa (Pitocco et al., 2021). The autonomic nervous 
system modulates the immune response via negative 
feedback process after the inflammatory cells deliver the 
sensory information. Once afferent neurons are activated, 
inflammatory mediators such as TNF-α can reach the 
CNS via circumventricular organs lacking blood-brain 
barrier. SARS-CoV-2 infection damages lungs with a 
hyperactive and imbalanced immune response (Li et 
al., 2020). Increased number of the proinflammatory 
cytokines in COVID-19 patients results in cytokine storm 
which is associated with severe COVID-19 and multiple 
organ dysfunction (Huang et al., 2020; Kalantar-Zadeh et 
al., 2020; Zheng et al., 2020). The gut–lung axis maintains 
host homeostasis and disease development with the 
association of immune system. The communication of the 
gut microbiota with immune system and lung influences 
the COVID-19 severity in patients with extrapulmonary 
conditions including neuropathy. SARS-CoV-2 infection 
may disturb the healthy intestinal microbiota and cause 
immune dysfunction and generalized inflammation 
(Aktas and Aslim, 2020). This dysbiosis may impair 
the gut permeability resulting in secondary infection 
with increased inflammation and affect distal organs via 
circulatory and lymphatic system. 

Moreover, gut microbiota plays a role in managing the 
tryptophan availability for kynurenine pathway involved 
in both central nervous and gastrointestinal system for 
inflammation regulation (Follmer, 2020; Zhang et al., 2021). 
Inflammation and tryptophan along with kynurenine 
pathway is thought to be linked to depression-like behavior 
with the association of dysbiosis and gut permeability 
(Leclercq et al., 2014). In addition, kynurenine was shown 
to induce pain hypersensitivity (Huang et al., 2016). 
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Tryptophan serves as a precursor molecule to serotonin, 
kynurenine, and other downstream metabolites produced 
in the kynurenine pathway, and changes in the tryptophan 
availability can impact the ENS and CNS functionality in 
the gut–brain axis (O’Mahony et al., 2015; Kennedy et al., 
2017). Inflammatory cytokines can induce the expression 
of the enzyme, indoleamine-2,3-dioxygenase (IDO), being 
involved in tryptophan catabolism through the kynurenine 
pathway and regulating hyperinflammatory responses 
(O’Mahony et al., 2015; Xiao et al., 2021). Tryptophan 
metabolism was shown to be altered in COVID-19 patients 
with an increased kynurenine:tryptophan ratio suggesting 
an elevated IDO activity (Shen et al., 2020; Thomas et al., 
2020; Ansone et al., 2021). Recently, Xiao et al. (2021) 
studied integrated metabolites and cytokine analysis 
in COVID-19 patients and reported that kynurenine 
positively correlated with proinflammatory cytokines 
while tryptophan negatively correlated with those. 
Moreover, decrease in metabolites such as kynurenine 
represented the alleviation of the hyperactivation of 
tryptophan-kynurenine pathway. It has been demonstrated 
that plasma tryptophan concentration was increased in 
germ-free mice with decreased kynurenine:tryptophan 
ratio and the tryptophan level was normalized with 
colonization of the mice postweaning, suggesting the role 
of gut microbiota on tryptophan metabolism (Clarke et 
al., 2013). In another study feeding rats with Lactobacillus 
johnsonii, they found that level of serum kynurenine was 
significantly decreased in L. johnsonii fed rats compared 
to the controls (Valladares et al., 2013). Furthermore, 
plasma level of kynurenine was found to be increased in 
the patients with IBS relative to the controls and the IBS 
severity is correlated with kynurenine:tryptophan ratio 
(Fitzgerald et al., 2008; Gerard Clarke et al., 2009, 2012). 
These studies could indicate the possible link between 
the tryptophan metabolism and the gut–brain axis. Gut 
dysbiosis in COVID-19 patients may be the reason for the 
dysfunction of the kynurenine pathway which has been 
suggested to play an important role in oxidative stress 
and neuroinflammation in neurodegenerative diseases 
(Follmer, 2020). Significantly elevated levels of IL-6 and 
TNF-α are correlated with COVID-19 severity, and the 
concentration of IL-6 in COVID-19 patients is linked to 
the tryptophan metabolism into the kynurenine pathway 
(Zhang et al., 2021; Follmer, 2020). COVID-19 impairs the 
healthy gut microbiota and leads to immune dysfunction 
and generalized inflammation (Aktas and Aslim, 2020). A 
high level of peripheral cytokines crossing the blood-brain 
barrier induces the neuroinflammation which contributes 
to the pathophysiology of neurodegenerative diseases 
including neuropathies (Costello and Dalakas, 2020; 
Dolatshahi et al., 2021). On the other hand, various tissues 
and organs including respiratory and digestive tracts 
express ACE2 receptors, and corrupted ACE2 expression 

is thought to be related to viral infection, dysbiosis in gut 
microbiota, and immune imbalance (Chhibber-Goel et al., 
2021). ACE2 was shown to maintain the neutral amino 
acid (tryptophan) transporter B0AT1 in the gut and 
coordinate antimicrobial peptides which helps gut stability 
(Hashimoto et al., 2012). Diminished tryptophan level due 
to impaired ACE2 expression fails to induce the secretion 
of antimicrobial peptides which then leads to pathogen 
survival and dysbiosis in the gut (Chhibber-Goel et al., 
2021; Rajput et al., 2021). Since this dysbiosis subsequently 
results in susceptibility to the intestinal inflammation, 
the COVID-19 patients with GI complications may have 
increased respiratory distress relative to the patients with 
no gut involvement (Chhibber-Goel et al., 2021; Rajput et 
al., 2021; Zhang et al., 2021).

5. Gut microbiota targeted interventions in COVID-19
Taken together all these interactions between the gut 
microbiota, the immune system, and the distal organs 
including lung and brain, gut microbial dysbiosis could be 
the reason of the neurologic complications seen in severe 
COVID-19 patients with the association of dysbiosis-
related neuroinflammation. SARS-CoV-2 affects brain 
functions most likely through the gut–brain axis and 
induces neuropathy associated with dysbiosis-related 
inflammation.

Targeted microbial alteration in the GI system could be 
a strategy to attenuate the disease symptoms in COVID-19 
patients. Fecal microbiota transplantation (FMT) 
performed to treat patients with Clostridium difficile 
infection is an excellent example of maintaining health 
and disease through microbiota modification (Bakken et 
al., 2011). FMT is an effective powerful way of modulating 
the disrupted intestinal microbiota and improving 
immunity and could be considered an alternative 
approach to reduce neuropathy in COVID-19 patients 
and the disease severity. Diabetic neuropathy is thought 
to play a role in COVID-19 severity with dysfunction of 
the autonomic nervous system determining the failure in 
regulation of immune response and leading to decrease in 
pulmonary function (Pitocco et al., 2021). FMT has been 
promoted as an alternative strategy to relieve diabetic 
neuropathy in a patient with history of diabetes and 
hypertension for 8 years (Cai et al., 2018). Recently, FMT 
procedure has been applied to improve chronic norovirus 
infection in an immunosuppressed patient with kidney 
transplant (Barberio et al., 2020). After 5 days of FMT, 
the stool sample was negative for norovirus infection with 
complete symptom resolution. FMT has been evaluated 
as a potential strategy to manage viral hepatitis as well2 
(Sehgal et al., 2020). There is one clinical trial published on 
FMT application against COVID-19 with a few limitations 
such as small sample size (Liu et al., 2021). The study 
2ClinicalTrials.gov. (2021). ClinicalTrials. https://clinicaltrials.gov/
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was performed on patients cured and discharged from 
hospital instead of COVID-19 patients under treatment in 
hospital and the trial was nonrandomized. They reported 
that FMT restored the gut microbiota by increasing the 
abundance of Faecalibacterium and Bifidobacterium. 
Probiotics are another approach for targeted microbial 
modulation in the gastrointestinal system that could help 
with improving COVID-19 symptoms. Experimental 
and clinical studies exploring the impact of probiotics on 
respiratory system viruses, such as influenza, to improve 
the severity of viral respiratory tract infections and to 
decrease the risk of infection have been documented well 
(Singh and Rao, 2021). Clinical trials2 all around the world 
are ongoing to test the impact of probiotics on modulation 
of the gut microbiota and the efficacy in patients with 
COVID-19 patients with only two of them published 
yet. In a trial comprising 70 individuals, SARS-CoV-2–
positive patients received either only the required drug 
therapy or a commercial multistrain probiotic formulation 
along with the drug therapy during hospitalization 
(d’Ettorre et al., 2020). The probiotic supplementation 
showed a reduction in the severity of COVID-19 patients 
with improvement in diarrhea and other COVID-19–
associated symptoms within about 72 h. Moreover, risk 
of developing respiratory failure and the ratio of the 
patients moved to ICU were higher in the nonprobiotic 
group relative to the probiotic group. Another trial with 
the same probiotic formulation delivered to 200 patients 
with severe COVID-19 pneumonia, the mortality rate, 
the ICU hospitalization emergency, and the length of 
hospitalization were evaluated (Ceccarelli et al., 2021). The 
mortality rate was much higher in the nonprobiotic group 
with 30% compared to the probiotic group with 11%. 

6. Conclusion
It is well established that gut microbiota contributes to the 
COVID-19 severity with the association of the gut–lung 

axis (Ferreira et al., 2020; Jin et al., 2020; Wan et al., 2020; 
Tao et al., 2020). Gut microbiota serves as an extra organ 
and maintains physiological and homeostatic functions 
by communicating distal organs with the association of 
immunomodulation (Dachuan et al., 2019; Dapeng et 
al., 2020). The gut–brain axis is another crosstalk that gut 
microbiota is involved in COVID-19 manifestations and 
severity of the disease. This axis is linked to various tissues 
and organs, including immune cells, autonomic nervous 
systems, glands, brain, and intestine, with its microbial 
composition and communicates with each to preserve 
homeostasis. Recent studies support that gut microbiota 
plays a crucial role in neuropathic pain, abdominal pain, 
headache, and inflammatory pain (Amaral et al., 2008; 
Guo et al., 2019; Cuozzo et al., 2021). Dysbiosis of the gut 
microbiota, either at the onset of SARS-CoV-2 infection 
or during the course of the disease with drug treatment, 
could be the reason for COVID-19 manifestations, 
including neuropathic pain, abdominal pain, headache 
and more. Although there has been no effective drug or 
treatment for COVID-19, a variety of treatment regimens 
have been applied to the patients infected by SARS-CoV-2. 
Different therapeutic interventions can result in dysbiosis 
and eventually impact the brain through the gut–brain 
axis with drug-associated dysbiosis. Regardless of the 
order of the incidents leading to dysbiosis in patients 
with COVID-19, alteration in the gut microbiota tends 
to influence the bidirectional relationship between the 
gut and the brain. Considering the relationship between 
the gut microbiota and the immune system influencing 
the neuropathy in COVID-19 patients, rebuilding the 
gut microbiota to maintain a healthy status could be 
an alternative strategy to improve the neuropathy in 
COVID-19 patients. Specific interventions such as live 
biotherapeutics or microbiota-derived metabolites-based 
approaches might be effective in COVID-19 patients for 
dysbiosis-associated neuropathy.
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