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Abstract: In this paper, we present an explicit formula and recurrent relation for generalized Catalan numbers, from
which we can give corresponding formulas for Schröder numbers, large and small generalized Catalan numbers for the
special cases of our results.

Key words: Catalan number, Schröder number, explicit formula, recursive formula

1. Introduction

For any nonnegative integer n , the Catalan numbers Cn are defined by Cn = 1
n+1

(
2n
n

)
and can be generated

by

2

1 +
√
1− 4t

=

∞∑
n=0

Cnt
n.

These numbers are located in a very important position in combinatorial mathematics and a set of
exercises of Chapter 6 which describe 66 different interpretations of these numbers can be found in Stanley’s
book [33]. A number of generalizations of Catalan numbers have naturally appeared from the combinatorial
respects and many of properties have been discussed.

In recent years, Qi and his colleagues have investigated plenty of properties, identities, and relations for
Catalan numbers and their certain extensions. The authors of [19] discussed some integral representations of
Catalan numbers along with their some applications. Also, in [20], Qi et al. analyzed miscellaneous features such
as a novel expression, generating function, integral representation, asymptotic expansions, logarithmic convexity,
and inequalities for Catalan numbers and its some generalizations, called as Catalan function and Catalan-Qi
function. Moreover, congruence properties for Catalan numbers have been considered in [7, 8, 12–14].

For detailed knowledge, one can consult to the monograph [9] and newly other published articles [17, 18,
22, 23].

For any (c, r) ∈ Z2, c, r ̸= 0, a very large class of Catalan numbers with two parameters d
(c,r)
n , which

generalize a kind of generalized Catalan numbers, classical Catalan numbers and Schröder numbers, is introduced
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by

dc,r (t) =
1− (c− r) t−

√
1− 2 (c+ r) t+ (c− r)

2
t2

2rt
=

∞∑
n=0

dn (c, r) t
n (1.1)

and some significant properties and some combinatorial interpretations are provided in [6]. For brevity, we say
these numbers as (c, r)−Catalan numbers. Some special cases of these numbers are as follows:

· For (c, r) = (c, 1) and (c, r) = (1, r), we have large and small generalized Catalan numbers, respectively,
defined in [6].

· For (c, r) = (1, 1) , we have classical Catalan numbers Cn .
· For (c, r) = (2, 1) , we get large Schröder numbers Sn , defined by [2, Theorem 8.5.7]

1− t−
√
1− 6t+ t2

2t
=

∞∑
n=0

Snt
n.

· For (c, r) = (1, 2) , we deduce small Schröder numbers sn , defined by [2, Theorem 8.5.6]

1 + t−
√
1− 6t+ t2

4t
=

∞∑
n=0

snt
n.

Various number theoretic and analytic aspects of Schröder numbers can be found in [3, 4, 11, 15, 24, 27, 34, 35].
In this paper, the author derives a novel explicit formula for (c, r)−Catalan numbers helped by the

excellent identity for the Bell polynomials of the second kind, so-called Faà di Bruno formula (See Lemma 2.1,
below). Also, we deduce a recursive formula for (c, r)−Catalan numbers via analytic methods. Notice that
setting some particular cases of our formulas established here yields the counterpart formulas for large and small
generalized Catalan numbers, ordinary Catalan numbers, and large (and small) Schröder numbers.

Concretely, we achieve the following conclusions.

Theorem 1.1 The (c, r)−Catalan numbers dn (c, r) can be computed explicitly as

dn (c, r) =
1

2r

(
(c− r)

2

2 (c+ r)

)n+1 n+1∑
l=0

2l (2l − 3)!! (−1)
n+1−l

l!

(
c+ r

c− r

)2l(
l

n+ 1− l

)
,

where [−(2n+ 1)]!! denotes the double factorial of negative odd integers −(2n+ 1), given by

[−(2n+ 1)]!! =
(−1)n

(2n− 1)!!
= (−1)n

2nn!

(2n)!
, for n = 0, 1, ....

Theorem 1.2 The (c, r)−Catalan numbers satisfy the following recursive formula

d0 (c, r) = 1

and

dn+1 (c, r) = (c− r)dn (c, r) + r

n∑
l=0

dl (c, r) dn−l (c, r) , for n ≥ 0.
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2. Auxiliary theorems
We recall several lemmas below so as to prove our main results.

Lemma 2.1 ([5, p. 134 and 139]) For n ≥ k ≥ 0, the Bell polynomials of the second kind Bn,k (x1, x2, ..., xn−k+1)

is defined by

Bn,k (x1, x2, ..., xn−k+1) =

∞∑
1≤i≤n, li∈{0}∪N∑n
i=1ili=n,

∑n
i=1li=k

n!∏l−k+1
i=1 li!

l−k+1∏
i=1

(xi

i!

)li
.

The Faà di Bruno formula can be described as

dn

dtn
f ◦ h (t) =

n∑
k=0

f (k) (h (t))Bn,k

(
h′ (t) , h′′ (t) , ..., h(n−k+1) (t)

)
.

Lemma 2.2 ([5, p. 135]) Let a and b be any complex numbers and let n ≥ k ≥ 0, then, we have

Bn,k

(
abx1, ab

2x2, ..., ab
n−k+1xn−k+1

)
= akbnBn,k (x1, x2, ..., xn−k+1) .

Lemma 2.3 ([29, Sect. 3])For n ≥ k ≥ 0, we have

Bn,k (x, 1, 0, ..., 0) =
(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n.

Lemma 2.4 ([1, p. 40, Entry 5]) Let u (x) and v (x) be two differentiable functions such that v (x) ̸= 0, then,
we have for k ≥ 0

dk

dxk

[
u (x)

v (x)

]

=
(−1)

k

vk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u v 0 . . . 0 0
u′ v′ v . . . 0 0

u′′ v′′
(
2
1

)
v′ . . . 0 0

...
...

... . . . ...
...

u(k−2) v(k−2)
(
k−2
1

)
v(k−3) . . . v 0

u(k−1) v(k−1)
(
k−1
1

)
v(k−2) . . .

(
k−1
k−2

)
v′ v

u(k) v(k)
(
k
1

)
v(k−1) . . .

(
k

k−2

)
v′′

(
k

k−1

)
v′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

3. Proofs
In this section, we give the proofs of our theorems.

3.1. Proof of Theorem 1.1
Using Lemmas 2.1, 2.2 and 2.3, one has(√

1− 2 (c+ r) t+ (c− r)
2
t2
)(k+1)
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=

k+1∑
l=0

(
1

2

)
l

(
1− 2 (c+ r) t+ (c− r)

2
t2
)1/2−l

×Bk+1,l

(
−2 (c+ r) + 2 (c− r)

2
t, 2 (c− r)

2
, 0, 0, ..., 0

)
→

k+1∑
l=0

(
1

2

)
l

Bk+1,l

(
−2 (c+ r) , 2 (c− r)

2
, 0, 0, ..., 0

)
, as t → 0

=

k+1∑
l=0

(
1

2

)
l

(
2 (c− r)

2
)l

Bk+1,l

(
− (c+ r)

(c− r)
2 , 1, 0, 0, ..., 0

)

=

k+1∑
l=0

(
1

2

)
l

2l (c− r)
2l (k + 1− l)!

2k+1−l

(
k + 1

l

)(
l

k + 1− l

)[
− (c+ r)

(c− r)
2

]2l−k−1

, (3.1)

where (x)n denotes the falling factorial, defined for x ∈ R by

(x)n =

n−1∏
k=0

(x− k) =

{
x (x− 1) ...(x− n+ 1), if n ≥ 1;
1, if n = 0.

On the other hand, if we take u (t) = 1− (c− r) t−
√

1− 2 (c+ r) t+ (c− r)
2
t2 and v (t) = 2rt in Lemma 2.4,

then we have

dn

dtn
(dc,r (t))

=
1

2r

(−1)
n

tn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u t 0 . . . 0 0 0

u′ 1
(
1
1

)
t . . . 0 0 0

u′′ 0
(
2
1

)
. . . 0 0 0

...
...

... . . . ...
...

...
u(n−2) 0 0 ...

(
n−2
n−3

) (
n−2
n−2

)
t 0

u(n−1) 0 0 . . . 0
(
n−1
n−2

) (
n−1
n−1

)
t

u(n) 0 0 . . . 0 0
(

n
n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2r

(−1)
n

tn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(−1)nu(n) (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣

t 0 . . . 0 0 0

1
(
1
1

)
t . . . 0 0 0

0
(
2
1

)
. . . 0 0 0

...
... . . . ...

...
...

0 0 ...
(
n−2
n−3

) (
n−2
n−2

)
t 0

0 0 . . . 0
(
n−1
n−2

) (
n−1
n−1

)
t

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

(
n

n− 1

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

u t 0 . . . 0 0

u′ 1
(
1
1

)
t . . . 0 0

u′′ 0
(
2
1

)
. . . 0 0

...
...

... . . . ...
...

u(n−2) 0 0 ...
(
n−2
n−3

) (
n−2
n−2

)
t

u(n−1) 0 0 . . . 0
(
n−1
n−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
1

2r

u(n) (t)

t
+

1

2r

(−1)
n

tn+1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

u t 0 . . . 0 0

u′ 1
(
1
1

)
t . . . 0 0

u′′ 0
(
2
1

)
. . . 0 0

...
...

... . . . ...
...

u(n−2) 0 0 ...
(
n−2
n−3

) (
n−2
n−2

)
t

u(n−1) 0 0 . . . 0
(
n−1
n−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2r

u(n) (t)

t
− n

t

1

2r

(−1)n−1

tn

∣∣∣∣∣∣∣∣∣∣∣∣∣

u t 0 . . . 0 0

u′ 1
(
1
1

)
t . . . 0 0

u′′ 0
(
2
1

)
. . . 0 0

...
...

... . . . ...
...

u(n−2) 0 0 ...
(
n−2
n−3

) (
n−2
n−2

)
t

u(n−1) 0 0 . . . 0
(
n−1
n−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2r

u(n) (t)

t
− n

t

dn−1

dtn−1
(dc,r (t))

=
1

t

[
u(n) (t)

2r
− n

dn−1

dtn−1
(dc,r (t))

]
.

Now, applying the L’Hospital rule, one can write that

lim
t→0

dn

dtn
(dc,r (t)) = lim

t→0

1

t

[
u(n) (t)

2r
− n

dn−1

dtn−1
(dc,r (t))

]

= lim
t→0

[
u(n+1) (t)

2r
− n

dn

dtn
(dc,r (t))

]
,

from which

lim
t→0

dn

dtn
(dc,r (t)) =

1

n+ 1
lim
t→0

u(n+1) (t)

2r
,

which can be reformulated as

dn (c, r) =
1

n!(n+ 1)2r
lim
t→0

u(n+1) (t) ,

from the generating function (1.1). We have already evaluated that the value limt→0 u
(n+1) (t) equals to (3.1).

Thus, substituting this in (3.1) and simplifying give the desired identity.

Remark 3.1 In particular (c, r) = (c, 1) and (c, r) = (1, r), we have

dn (c, 1) =
1

2

(
(c− 1)

2

2 (c+ 1)

)n+1 n+1∑
l=0

2l (2l − 3)!! (−1)
n+1−l

l!

(
c+ 1

c− 1

)2l(
l

n+ 1− l

)

and

dn (1, r) =
1

2r

(
(1− r)

2

2 (1 + r)

)n+1 n+1∑
l=0

2l (2l − 3)!! (−1)
n+1−l

l!

(
1 + r

1− r

)2l(
l

n+ 1− l

)
,
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which are the explicit formulas for large and small generalized Catalan numbers, respectively. For (c, r) = (2, 1)

and (c, r) = (1, 2), we have the explicit formulas for large and small Schröder numbers as

dn (2, 1) = Sn = 2sn+1 =
1

2

1

6n+1

n+1∑
l=0

2l (2l − 3)!! (−1)
n+1−l

l!
9l
(

l

n+ 1− l

)
,

which is Theorem 1 of [21].

3.2. Proof of Theorem 1.2
By (1.1), one can write √

1− 2 (c+ r) t+ (c− r)
2
t2 = 1− (c− r) t− 2rtdc,r (t) .

If we square on both sides of this equation, then,

1− 2 (c+ r) t+ (c− r)
2
t2

=

(
1− (c− r) t− 2r

∞∑
n=0

dn (c, r) t
n+1

)2

= 1− 2(c− r)t+ (c− r)
2
t2 + 4r2

( ∞∑
n=0

dn (c, r) t
n+1

)2

− 4r

∞∑
n=0

dn (c, r) t
n+1 + 4r (c− r)

∞∑
n=0

dn (c, r) t
n+2

= 1− 2(c− r)t+ (c− r)
2
t2 + 4r2t2

∞∑
n=0

[
n∑

l=0

dl (c, r) dn−l (c, r)

]
tn

− 4r

∞∑
n=1

dn−1 (c, r) t
n + 4r (c− r)

∞∑
n=2

dn−2 (c, r) t
n

= 1− 2(c− r)t+ (c− r)
2
t2 + 4r2

∞∑
n=2

[
n−2∑
l=0

dl (c, r) dn−l−2 (c, r)

]
tn

− 4r

∞∑
n=1

dn−1 (c, r) t
n + 4r (c− r)

∞∑
n=2

dn−2 (c, r) t
n

= 1− 2(c− r)t+ (c− r)
2
t2 − 4rtd0 (c, r)− 4r

∞∑
n=2

dn−1 (c, r) t
n

+ 4r (c− r)

∞∑
n=2

dn−2 (c, r) t
n + 4r2

∞∑
n=2

[
n−2∑
l=0

dl (c, r) dn−l−2 (c, r)

]
tn

= 1− 2(c− r + 2rd0 (c, r))t+ (c− r)
2
t2

− 4r

∞∑
n=2

[
dn−1 (c, r)− (c− r) dn−2 (c, r)− r

n−2∑
l=0

dl (c, r) dn−l−2 (c, r)

]
tn,
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from which, we conclude that
d0 (c, r) = 1

and

dn−1 (c, r)− (c− r) dn−2 (c, r)− r

n−2∑
l=0

dl (c, r) dn−l−2 (c, r) = 0, for n ≥ 2.

Hence, the proof is completed.

Remark 3.2 In particular (c, r) = (c, 1) , we have the counterpart recursive formula for large generalized
Catalan numbers as

d0 (c, 1) = 1

and

dn+1 (c, 1) = (c− 1)dn (c, 1) +

n∑
l=0

dl (c, 1) dn−l (c, 1) , n ≥ 0.

Similarly, we can get the recursive formula for small generalized Catalan numbers by taking (c, r) = (1, r).

Furthermore, for (c, r) = (2, 1) and (c, r) = (1, 2), our formula reduces to the recursive formulas large
and small Schröder numbers

Sn+3 = 3Sn+2 +

n∑
l=0

Sl+1Sn−l+1

and

sn+4 = 3sn+3 + 2

n∑
l=0

sl+2Sn−l+2,

given by [25, Eqs. 6 and 7], respectively.

Remark 3.3 Recently, some significant studies such as [10, 16, 26, 28–32, 36–38] have been exhibited in order
to cope with some exhaustive applications of the Bell polynomials of the second kind.
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