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Abstract: Let T be a nonempty, closed, and arbitrary set of real numbers, namely a time scale, and consider the
following delay dynamical equation

x∆ (t) = a (t)x (t) + f (t, x (ϑ (t))) , t ∈ T,

where ϑ stands for the abstract delay function. The main goal of this study is three-fold: obtaining the existence of
an equi-bounded solution, proving the asymptotic stability of the zero solution, and showing the existence of a periodic
solution based on new periodicity concept on time scales for the given delayed equation under certain conditions. In
our analysis, we propose an alternative variation of parameters formulation by using an auxiliary function to invert a
mapping for the utilization of fixed point theory.
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1. Introduction
Qualitative theory of differential and difference equations are extensively studied in the literature, and these
studies have been unified and generalized on arbitrary, nonempty, and closed subset of real numbers, namely
time scales. The theory of time scales has become a very popular research area in the last three decades since it
avoids separate studies of continuous and discrete time mathematical models. For an excellent review on time
scale calculus, we refer the readers to pioneering books [8, 9].

Fixed point theory is one of the fundamental tools in the qualitative analysis of dynamic equations. As
it is well known, one has to invert the problem and obtain an appropriate mapping for the utilization of the
fixed point theory to qualitatively analyze a dynamic equation. Contraction mapping principle plays a crucial
role in this study, so boundedness, stability, and periodicity for solutions of the delayed dynamical equation

x∆ (t) = a (t)x (t) + f (t, x (ϑ (t)))

are studied on time scales by proposing a mapping due to a new variation of parameters formula. Inspired by
the papers [23, 24], we define a mapping with the help of an auxiliary function, which we use to construct the
integrating factor, in the setup of our analysis. Thus, we obtain our results without using the conventional
variation of constants formula (see [8, Theorem 2.77]) unlike the existing literature. It should be pointed out
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that this method does not only provide an alternative approach but also relaxes a restrictive condition, i.e.
regressivity, on the delay dynamic equation.

We summarize the highlights of the manuscript as follows:

• Boundedness for the solutions of dynamic equations is considered by several researchers on continuous,
discrete and hybrid time domains. We refer to the monograph [20], and the papers [18, 23] as the related
studies focusing on boundedness of the solutions of differential and difference equations, respectively. As
a result of the noticeable interest on the qualitative properties of dynamic equations on time scales, the
existence of bounded solutions for the dynamic equations is also studied on hybrid time domains. We
refer to readers [6, 13, 21, 26] as remarkable studies. Motivated by the above given literature, we focus on
the equi-boundedness of the solutions for delay dynamic equations on time scales and provide sufficient
conditions for the existence of an equi-bounded solution as the first objective of the manuscript.

• Stability theory of dynamic equations is a voguish research area in pure and applied mathematics because
of its potential for application in numereous fields such as biology, physics, control theory, and economics,
among others. Undoubtedly, there is a vast literature which focuses on the asymptotic properties and the
stability of the solutions of dynamic equations. We refer to readers to [14, 27, 28] and [22, 23] as related
papers which employs fixed point theory to analyze stability for the solutions of differential and difference
equations, respectively. Additionally, we cite the inspiring papers [1, 7, 16, 25, 26] for the stability analysis
of dynamic equations on time scales. As the second task of the paper, we aim to utilize the new variation
of parameters formula for the stability analysis of delay dynamic equations on time scales. In our analysis,
we get necessary and sufficient conditions for the asymptotic stability of the zero solution via fixed point
theory. The use of the new variation of parameters formula enables us to obtain the stability result without
assuming a restrictive condition, namely ea (t, t0) → 0 as t → ∞ , which is used in the existing literature
(see [1, 7, 23, 26]). Thus, the obtained stability result significantly improves the established literature.

• The shift operators denoted by δ± (s, t) are introduced to construct delay dynamic equations and a new
periodicity concept on time scales (see [2, 3]). The utilization of shift operators and the new periodicity
concept to define periodic structures enables us to focus on a more general class of time scales which is
not necessarily translation invariant, i.e. there exists a P > 0 such that t ± P ∈ T for all t ∈ T . We
give a detailed information about the shift operators in further sections. We refer to [4, 11, 12, 17] as
the examples of studies employing the new periodicity concept on time scales for the existence of periodic
solutions of dynamic equations due to fixed point theory. Moreover, we refer to the brand new monograph
[5], which excellently summarizes the recent advances in functional dynamic equations on time scales
regarding periodicity, stability, and boundedness of solutions for further reading. As the final goal of the
manuscript, we redefine the delay dynamic equation by using the backward shift operator δ− (s, t) as the
delay function and use the new variation of parameters formula to obtain the existence of the unique
periodic solution in shifts δ± in the light of new periodicity concept on time scales.

The paper is organized as follows. In the next section, we present an overview of time scale calculus
which provides the fundamentals for the readership. Section 3 is devoted to presentation of our main results. In
Subsection 3.1, we give the setup of our analysis, and present our boundedness and stability results. Besides, we
briefly introduce the new periodicity concept on time scales based on shift operators and present the existence
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result for periodic solution of the delay dynamic equation with respect to new periodicity concept in Subsection
3.2. The last section includes some examples as an implementation of our results.

2. Time scale essentials
Throughout the manuscript, we assume a familiarity with the theory of time scales. In this section, we just give
a short summary about the fundamentals of the time scale calculus. Given definitions, results, and examples
can be found in [8] and [9].

A time scale, denoted by T , is an arbitrary, nonempty, and closed subset of real numbers. The operator
σ : T → T , which is called forward jump operator, is defined by σ (t) := inf {s ∈ T, s > t} . The step size
function µ : T → R is given by µ (t) := σ (t) − t . We say a point t ∈ T is right-dense if µ (t) = 0 , and right-
scattered if µ (t) > 0 . Furthermore, a point t ∈ T is said to be left-dense if ρ (t) := sup {s ∈ T, s < t} = t and
left-scattered if ρ (t) < t . The notation [s, t)T indicates the intersection [s, t)∩T and the intervals [s, t]T , (s, t)T ,

and (s, t]T can be defined similarly.
A function f : T → R is said to be rd -continuous if it is continuous at right-dense points and its left-

sided limits exist at left-dense points. Moreover, we use the notation Crd in order to represent the set of all
rd -continuous functions on T . The set Tk is defined in the following way: If T has a left-scattered maximum
m , then Tk = T − {m} ; otherwise Tk = T. Furthermore, the delta derivative of a function f : T → R at a
point t ∈ Tk is defined by

f∆ (t) := lim
s→t

s̸=σ(t)

f (σ (t))− f (s)

σ (t)− s
.

We summarize the basic properties of delta derivative with the next result.

Theorem 2.1 Assume f, g : T → R are differentiable at t ∈ Tk. Then

i. (f + g)
∆
(t) = f∆ (t) + g∆ (t) .

ii. (αf)
∆
(t) = αf∆ (t) for any constant α.

iii. (fg)
∆
(t) = f∆ (t) g (t) + f (σ (t)) g∆ (t) = f (t) g∆ (t) + f∆ (t) g (σ (t)) .

iv. If f (t) f (σ (t)) ̸= 0, then 1
f is differentiable at t with

(
1

f

)∆

(t) = − f∆ (t)

f (t) f (σ (t))
.

v. If g (t) g (σ (t)) ̸= 0, then f
g is differentiable at t with

(
f

g

)∆

(t) =
f∆ (t) g (t)− f (t) g∆ (t)

g (t) g (σ (t))
.

Table 1 shows the main characteristics of three important examples of time scales:

1987



KOYUNCUOĞLU/Turk J Math

Table 1.

T R Z qZ ∪ {0}, q > 1

ρ (t) t t− 1 t
q

σ (t) t t+ 1 qt

µ (t) 0 1 (q − 1)t

f∆(t) f ′(t) ∆f(t) Dqf(t) =
f(qt)−f(t)

(q−1)t

Definition 2.2 A function p : T → R is said to be regressive if 1 + µ (t) p (t) ̸= 0 for all t ∈ Tk. We denote
the set of all regressive functions by R . Moreover, R+ stands for the set of all positively regressive elements of
R defined by

R+ = {p ∈ R : 1 + µ (t) p (t) > 0 for all t ∈ T} .

Definition 2.3 (Exponential function) For h > 0 , set Ch := {z ∈ C : z ̸= −1/h} , Jh := {z ∈ C : −π/h <

Im(z) ≤ π/h} and C0 := J0 := C . For h ≥ 0 and z ∈ Ch , the cylinder transformation ξh : Ch → Jh is given
by

ξh(z) :=

z, h = 0
1

h
Log(1 + zh), h > 0.

Then, the exponential function on T is presented in the form

ep(t, s) := exp

{∫ t

s

ξµ(τ)
(
p(τ)

)
∆τ

}
for s, t ∈ T.

It is well known that if p ∈ R+ , then ep(t, s) > 0 for all t ∈ T . Moreover, the exponential function
y(t) = ep(t, s) is the solution to the initial value problem y∆ = p(t)y, y(s) = 1 . Other properties of the
exponential function are given in the following lemma.

Lemma 2.4 Let p, q ∈ R . Then

i. e0(t, s) ≡ 1 and ep(t, t) ≡ 1 ;

ii. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s) ;

iii. 1
ep(t,s)

= e⊖p(t, s) where, ⊖p(t) = − p(t)
1+µ(t)p(t) ;

iv. ep(t, s) =
1

ep(s,t)
= e⊖p(s, t) ;

v. ep(t, s)ep(s, r) = ep(t, r) ;

vi.
(

1
ep(·,s)

)∆

= − p(t)
eσp (·,s)

.

Let α ∈ R be a constant. Table 2 demonstrates some exponential functions over particular time scales
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Table 2.

T eα(t, t0)

R eα(t−t0)

Z (1 + α)
t−t0

hZ (1 + hα)
(t−t0)/h

qN0 , q > 1
∏

s∈[t0,t)

[1 + (q − 1)αs] , t > t0

1
nZ

(
1 + α

n

)n(t−t0)

Theorem 2.5 (Variation of constants) Let t0 ∈ T and y0 ∈ R. The unique solution of the regressive initial
value problem

x∆ (t) = a (t)x (t) + f (t) , y (t0) = y0

is given by

x (t) = ea (t, t0) y0 +

t∫
t0

ea (t, σ (τ)) f (τ)∆τ.

3. Main results
3.1. Boundedness and stability
3.1.1. Setup
Let T be a time scale unbounded from above and t0 ∈ T is fixed.

We focus on the following nonlinear delay dynamic equation

x∆ (t) = a (t)x (t) + f (t, x (ϑ (t))) , t ∈ T, (3.1)

where a : [t0,∞)T → R and f : [t0,∞)T × R → R . Together with the rd -continuity assumptions on the
functions a and f , we also suppose that f (t, 0) = 0 . Moreover, ϑ : [t0,∞)T → [ϑ (t0) ,∞)T indicates the delay
function with the properties

i ϑ (t) < t for all t ∈ T

ii ϑ is strictly increasing with limt→∞ ϑ (t) = ∞.

In Table 3, we give some examples of time scales with their delay functions
By letting ξ : [ϑ (t0) , t0]T → R, we denote the solution of (3.1) by xξ := x (t, t0, ξ) which satisfies (3.1)

for all t ∈ [t0,∞)T and xξ = ξ (t) on [ϑ (t0) , t0]T . We assume ξ ∈ B, where B is the Banach space of bounded
functions with the supremum norm, i.e.

∥ξ∥ = sup
t∈[ϑ(t0),t0]T

|ξ (t)| < ∞.

We provide the following lemma which is fundamental for the proofs of main results.
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Table 3.

Time scale Delay function
T = R ϑ (t) = t− τ, τ ∈ R+

T = Z ϑ (t) = t− τ, τ ∈ Z

T = {t = k − qm : k ∈ Z,m ∈ N0, q ∈ (0, 1)} ϑ (t) = t− τ, τ ∈ Z+

T =hZ ϑ (t) = t− hτ, τ ∈ hZ

T = N1/2 ϑ (t) =
√
t2 − τ2, τ ∈ N1/2

T =qZ ∪ {0} , q > 1 ϑ (t) = t/τ, τ ∈ qN

Lemma 3.1 The nonlinear delay dynamic equation (3.1) has a solution x if and only if

x (t) = ξ (t0) ep (t, t0) +

t∫
t0

ep (t, σ (τ)) ([a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ))))∆τ, for all t ∈ [t0,∞)T ,

where p : [t0,∞)T → R is regressive.

Proof We multiply both sides of (3.1) with e⊖p (t, t0) and obtain

x∆ (t) e⊖p (t, t0) = a (t)x (t) e⊖p (t, t0) + f (t, x (ϑ (t))) e⊖p (t, t0) .

As a consequence of Lemma 2.4, we rewrite the above equation as follows

[x (t) e⊖p (t, t0)]
∆
=

e⊖p (t, t0)

1 + µ (t) p (t)
([a (t)− p (t)]x (t) + f (t, x (ϑ (t)))) . (3.2)

Integrating the equation (3.2) from t0 to t yields

x (t) = ξ (t0) ep (t, t0) +

t∫
t0

ep (t, σ (τ)) ([a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ))))∆τ.

This proves the assertion. 2

We construct the following sets as a preparation for the main results:

Bk ⊂ B so that Bk := {x ∈ B : ∥x∥ ≤ k} , (3.3)

M1 := {x : T → R : x (t0) = ξ (t0) and x ∈ Bk for t ∈ [t0,∞)T} , (3.4)

and
M2 := {x ∈ M1 : x (t) → 0 as t → ∞} . (3.5)

We should point it out that M1 and M2 are complete metric spaces with the metric

d (x1, x2) = sup
t∈[t0,∞)T

|x1 (t)− x2 (t)| .

1990



KOYUNCUOĞLU/Turk J Math

We define the mapping H as follows:

(Hx) (t) :=


ξ (t) if t ∈ [ϑ (t0) , t0]T

ξ (t0) ep (t, t0) +

t∫
t0

ep (t, σ (τ)) ([a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ))))∆τ if t ∈ [t0,∞)T
. (3.6)

In the next part, we concentrate on the equi-boundedness of the solutions of (3.1).

3.1.2. Equi-boundedness

We shall start by presenting the following definition in the light of [20].

Definition 3.2 The solution of (3.1) is said to be equi-bounded if for t0 ∈ T and any l > 0, there exists a
k := k (t0, l) so that |ξ (t)| ≤ l on t ∈ [ϑ (t0) , t0]T implies |x (t, t0, ξ)| ≤ k for t ∈ [t0,∞)T .

For proving the existence of an equi-bounded solution of delay dynamic equation (3.1), we shall make
the following assumptions: Let g : [t0,∞)T → (0,∞) and α > 0. We introduce the following conditions

C1
t∫

t0

|ep (t, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ ≤ α < 1 for all t ∈ [t0,∞)T .

C2
|f (t, x)− f (t, y)| ≤ g (t) ∥x− y∥ for any x, y ∈ Bk,

where Bk is as in (3.3).

Theorem 3.3 Assume C1 and C2. If there exists a positive constant U such that |ep (t, t0)| ≤ U for all
t ∈ [t0,∞)T , then (3.1) has an equi-bounded solution.

Proof Suppose that C1 and C2 hold. Let l > 0 be given and the initial function ξ for the solution of (3.1)
satisfies |ξ (t)| ≤ l for all t ∈ [ϑ (t0) , t0]T . Let the positive constant k be chosen so that the inequality

lU + αk ≤ k

holds. Now, we will show that H maps M1 into M1, where M1 and H are as in (3.4) and (3.6), respectively.
For x ∈ M1, consider

|(Hx) (t)| =

∣∣∣∣∣∣ξ (t0) ep (t, t0) +
t∫

t0

ep (t, σ (τ)) ([a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ))))∆τ

∣∣∣∣∣∣
≤ |ξ (t0) ep (t, t0)|+

t∫
t0

|ep (t, σ (τ))| |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ

≤ lU + k

t∫
t0

|ep (t, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ

≤ lU + αk ≤ k for t ∈ [t0,∞)T ,
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which obviously implies H : M1 → M1. As the next step, we prove the mapping H is contraction. Let
x1, x2 ∈ M1. Then, we have

|(Hx1) (t)− (Hx2) (t)| ≤
t∫

t0

[|ep (t, σ (τ))| |a (τ)− p (τ)| ∥x1 − x2∥

+ |ep (t, σ (τ))| |f (τ, x1 (ϑ (τ)))− f (τ, x2 (ϑ (τ)))|]∆τ

≤ ∥x1 − x2∥
t∫

t0

|ep (t, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ

≤ α ∥x1 − x2∥ ,

which indicates H is a contraction. By contraction mapping principle, we deduce that H has a unique fixed
point which solves (3.1) and consequentially, (3.1) has an equi-bounded solution. 2

Remark 3.4 In [18], authors consider the nonlinear delay difference equation

x (t+ 1) = a (t)x (t) + b (t)x (t− g (t)) + c (t)∆x (t− g (t)) , (3.7)

where ∆ stands for the forward difference operator, a, c : Z → R and g is an appropriate delay function,
and they studied the existence of equi-bounded solutions for (3.7) under sufficient conditions. The assumption
a (t) ̸= 0 for all t ∈ Z is made in [18, Theorem 3.1], which implies the regressivity of the equation if we rewrite
(3.7) as

∆x (t) = (a (t)− 1)x (t) + b (t)x (t− g (t)) + c (t)∆x (t− g (t)) . (3.8)

If one sets c = 0, ϑ (t) = t − g (t) , and f (t, x (ϑ (t))) = b (t)x (t− g (t)) , then the relationship between (3.8)
and (3.1) is obvious when T = Z. We shall emphasize that as a consequence of using a new variation of
parameters formula for (3.1), Theorem 3.3 does not involve regressivity condition on the coefficient of the delay
dynamic equation unlike [18, Theorem 3.1]. Thus, we do not only unify but also improve the exisiting literature
by providing less conditions.

3.1.3. Asymptotic stability

This part is devoted to obtain necessary and sufficient conditions for the asymptotic stability of the zero solution
of (3.1) due to fixed point theory. First, we provide the following definitions due to [16].

Definition 3.5 The zero solution of (3.1) is said to be stable, if for any ε > 0 and t0 ∈ T , there exists a
γ (t0, ε) > 0 such that |x0| ≤ γ implies |x (t, x0, t0)| < ε for all t ≥ t0.

Definition 3.6 The zero solution of (3.1) is said to be asymptotically stable, if it is stable and x (t, x0, t0) → 0

as t → ∞.

For the construction of the stability theorem, we shall write the following condition in addition to C1
and C2:

1992



KOYUNCUOĞLU/Turk J Math

C3 For t1 > t0 (t1 ∈ T) , there exists a t2 > t1 (t2 ∈ T) so that for t > t2 and x ∈ Bk

|f (t, x (ϑ (t)))| ≤ g (t) ∥x∥tt1 , (3.9)

where Bk is as in (3.3) and then norm ∥x∥ts is given by

∥x∥ts := sup
h∈[s,t]

|x (h)|

similar to [22].

Next, we present our stability result for the delay dynamic equation (3.1) without assuming the function a

is regressive, and instead of making the assumption ea (t, t0) → 0 as t → ∞ we ask the asymptotic property
ep (t, t0) → 0 as t → ∞ . We shall point out that the following result is comparable with [22, Theorem 2] when
T = Z, and it relaxes the first and the last condition of [22, Theorem 2] due to the utilization of new variation
of parameters formula.

Theorem 3.7 Assume that the conditions C1-C3 are satisfied. Then, the zero solution of (3.1) is asymptoti-
cally stable if and only if

ep (t, t0) → 0 as t → ∞. (3.10)

Proof Suppose that C1-C3 and (3.10) hold and set

S := sup
t∈[t0,∞)T

|ep (t, t0)| . (3.11)

First of all, we show that if x ∈ M2, then (Hx) ∈ Bk, where H is defined in (3.6). Choose a positive constant
γ so that the inequality γS + αk ≤ k is satisfied. We assume ξ ∈ Bγ and x ∈ M2 , where the set M2 is given
in (3.5). Note that x ∈ Bk since x ∈ M2. In the sequel, we obtain the following inequality

|(Hx) (t)| ≤ |ξ (t0)| |ep (t, t0)|+
t∫

t0

|ep (t, σ (τ))| |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ

≤ γS + ∥x∥
t∫

t0

|ep (t, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ

≤ γS + αk ≤ k,

which shows (Hx) ∈ Bk.

As the next step, we prove that (Hx) (t) → 0 as t → ∞. It is clear that x (t) → 0 as t → ∞ since
x ∈ M2. That is, there exists t1 > t0 (t1 ∈ T) such that |x (t)| < ε

3 whenever t ≥ t1. On the other hand, there
exists t2 > t1 (t2 ∈ T) so that the inequality (3.9) holds by C3 for t > t2 > t1 . In the sequel, we focus on the
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integral term of the mapping H and obtain

∣∣∣∣∣∣
t∫

t0

ep (t, σ (τ)) ([a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ))))∆τ

∣∣∣∣∣∣
≤

t∫
t0

|ep (t, σ (τ))| |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ

=

t2∫
t0

|ep (t, σ (τ))| |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ

+

t∫
t2

|ep (t, σ (τ))| |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ.

This yields

∣∣∣∣∣∣
t∫

t0

ep (t, σ (τ)) ([a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ))))∆τ

∣∣∣∣∣∣
≤ ∥x∥

t2∫
t0

|ep (t, t2)| |ep (t2, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ

+

t∫
t2

|ep (t, σ (τ))|
(
|a (τ)− p (τ)| |x (τ)|+ g (τ) ∥x∥τt1

)
∆τ

≤ ∥x∥ |ep (t, t2)|
t2∫

t0

|ep (t2, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ

+ ε

t∫
t2

|ep (t, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ

≤ αk |ep (t, t2)|+ α
ε

3
. (3.12)

Notice that we have γ |ep (t, t0)| < ε
3 and αk |ep (t, t2)| < ε

3 for t > t2 > t1 due to the condition (3.10). By
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considering (3.12), we get

|(Hx) (t)| ≤ |ξ (t0)| |ep (t, t0)|+
t2∫

t0

|ep (t, σ (τ))| |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ

+

t∫
t2

|ep (t, σ (τ))| |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ

≤ γ |ep (t, t0)|+ αk |ep (t, t2)|+ α
ε

3

<
ε

3
+

ε

3
+ α

ε

3
< ε,

which indicates (Hx) (t) → 0 as t → ∞. Thus, H maps M2 into M2.

Besides, one may easily obtain the inequality

|(Hx1) (t)− (Hx2) (t)| ≤ α ∥x1 − x2∥

for an arbitrary pair x1, x2 ∈ M2 as it is done in the proof of Theorem 3.3. Consequently, H has a unique fixed
point in M2 which solves (3.1) for t ∈ [t0,∞)T .

As the concluding step, we show that the zero solution of (3.1) is stable. For ε > 0 and ε < k are given,
we choose γ < ε which satisfies γS + αε < ε, where ξ ∈ Bγ and S is as in (3.11). Let t̃ > t0

(
t̃ ∈ T

)
such

that
∣∣x (t̃)∣∣ > ε and |x (u)| < ε for u ∈

[
t0, t̃

)
T . If x is a solution of (3.1), then

∣∣x (t̃)∣∣ ≤ γ
∣∣ep (t̃, t0)∣∣+ t̃∫

t0

∣∣ep (t̃, σ (τ)
)∣∣ |[a (τ)− p (τ)]x (τ) + f (τ, x (ϑ (τ)))|∆τ

≤ γS + α ∥x∥

< γS + αε < ε,

which yields a contradiction with
∣∣x (t̃)∣∣ > ε when t̃ ≥ t0. That means |x (t)| < ε for all t ∈ [t0,∞)T and

consequently the zero solution of (3.1) is asymptotically stable.
On the contrary, suppose that x is asymptotically stable and the condition (3.10) does not hold; that is

there exists a sequence {tn} with tn → ∞ as n → ∞ such that

lim
n→∞

|ep (t0, tn)| = w ̸= 0. (3.13)

By using C1 together with (3.13), we get the following inequalities

|ep (t0, tn)|
tn∫

t0

|ep (tn, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ ≤ α |ep (t0, tn)| ,

and
tn∫

t0

|ep (t0, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ ≤ αw. (3.14)
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It is clear that the sequence represented by (3.14) is bounded, and consequentially, it has a convergent subse-
quence. For the readership, we shall not change the notation used in (3.14). Thus, we assume that

lim
n→∞

tn∫
t0

|ep (t0, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ = w∗.

To obtain a contradiction to for the conclusion of the proof, we also suppose that

tn∫
tñ

|ep (t0, σ (τ))| (|a (τ)− p (τ)|+ g (τ))∆τ <
1− α

2S2
, (3.15)

where S is as in (3.11) and ñ is sufficiently large.
Next, we consider the solution xξ := x (t, tñ, ξ) of (3.1) with xξ = ξ (t) on [ϑ (tñ) , tñ]T and ξ (tñ) = γ.

Since the solution is assumed to be asymptotically stable, one may write |x (t)| < Q for t > tñ with
x (tñ) = ξ (tñ) = γ. For all t ≥ tñ, we have

|x (t)| ≤ γ |ep (t, tñ)|+
t∫

tñ

|ep (t, σ (τ))| (|a (τ)− p (τ)| |x (t)|+ |f (τ, x (ϑ (τ)))|)∆τ

≤ γS + α sup
t≥tñ

|x (t)| ,

which provides

|x (t)| ≤ γS

1− α
for all t ≥ tñ. (3.16)

As the following step, we write

|x (tn)| ≥ γ |ep (tn, tñ)| −
tn∫

tñ

|ep (tn, σ (τ))| (|a (τ)− p (τ)| |x (t)|+ |f (τ, x (ϑ (τ)))|)∆τ

≥ γ |ep (tn, tñ)| −
γS

1− α

tn∫
tñ

|ep (tn, σ (τ))| (|a (τ)− p (τ)|+ g (t))∆τ

= γ |ep (tn, tñ)| −
γS

1− α
|ep (tn, tñ)| |ep (tñ, t0)|

tn∫
tñ

|ep (t0, σ (τ))| (|a (τ)− p (τ)|+ g (t))∆τ

≥ |ep (tn, tñ)|
[
γ − γS

1− α
S
1− α

2S2

]
=

γ

2
|ep (tn, tñ)| ,

where we utilized (3.16) together with (3.11) and (3.15). By using (3.13), we deduce that

|x (tn)| ≥
γ

2
|ep (tn, tñ)| =

γ

2
|ep (tn, t0)| |ep (t0, tñ)| →

γ

2
as n → ∞

which contradicts with the asymptotic stability of the solution. This finalizes the proof. 2
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Remark 3.8 The condition (3.10) of Theorem 3.7 may look as a very restrictive condition for the regressive
function p. However, the limit result

ep (t, t0) → 0 as t → ∞

holds for any negative-valued function p satisfying |p (t)| ≤ ω for all t ∈ T, where ω > 0 and −ω ∈ R+. We
refer to [1, Example 1] for the proof of this fact.

3.2. Periodicity
We indicate the property

f (t± T ) = f (t) for a fixed T > 0 and for all t ∈ T

as the conventional periodicity notion for a function defined on a time scale. Notice that, in order to define a
periodic function on a time scale T, one has to ensure that T is translation invariant (additively periodic) that
is there exists a P > 0 such that t ± P ∈ T for all t ∈ T (see [19]). We shall emphasize that addition is not
the only way to step forward and backward on a time scale. Additive periodicity condition is a very restrictive
condition for time scales since it rules out several time scales involving qZ∪{0} on which q -difference equations
are constructed. Thus, we may use shift operators δ± to define a backward and forward motion on time scales,
and this approach sparks off studying periodicity notion for time scales which are not necessarily additively
periodic.

Before obtaining sufficient conditions for the existence of a periodic solution in shifts δ± for delay dynamic
equations on time scales, we provide the following introductory part for the readership.

3.2.1. New periodicity concept on time scales
In this section, we introduce basics of the shift operators and the new periodicity concept on time scales under
the guidance of [2] and [3]. The definitions, and results given in this part of the paper can be found in [3].

Definition 3.9 Let T∗ be a nonempty subset of the time scale T including a fixed number t0 ∈ T∗ such that
there exists operators δ± : [t0,∞)T × T∗ → T∗ satisfying the following properties:

1. The function δ± are strictly increasing with respect to their second arguments, if

(T0, t) , (T0, u) ∈ D± := {(s, t) ∈ [t0,∞)T × T∗ : δ± (s, t) ∈ T∗} ,

then
T0 ≤ t ≤ u implies δ± (T0, t) ≤ δ± (T0, u) ;

2. If (T1, u) , (T2, u) ∈ D− with T1 < T2, then δ− (T1, u) > δ− (T2, u) and if (T1, u) , (T2, u) ∈ D+ with
T1 < T2, then δ+ (T1, u) < δ+ (T2, u) ;

3. If t ∈ [t0,∞)T , then (t, t0) ∈ D+ and δ+ (t, t0) = t. Moreover, if t ∈ T∗, then (t0, t) ∈ D+ and
δ+ (t0, t) = t;

4. If (s, t) ∈ D±, then (s, δ± (s, t)) ∈ D∓ and δ∓ (s, δ± (s, t)) = t;

5. If (s, t) ∈ D± and (u, δ± (s, t)) ∈ D∓, then (s, δ∓ (u, t)) ∈ D± and δ∓ (u, δ± (s, t)) = δ± (s, δ∓ (u, t)) .
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Then the operators δ+ and δ− are called forward and backward shift operators associated with the initial
point t0 on T∗ and the sets D+ and D− are domain of the operators, respectively.

Example 3.10 Table 4 shows examples of shift operators δ± (s, t) on particular time scales:

Table 4.

T t0 T∗ δ− (s, t) δ+ (s, t)

R 0 R t− s t+ s

Z 0 Z t− s t+ s

qZ ∪ {0} 1 qZ t
s st

N1/2 0 N1/2
(
t2 − s2

)1/2 (
t2 + s2

)1/2
Lemma 3.11 Let δ± be the shift operators associated with the initial point t0. Then we have the following:

1. δ− (t, t) = t0 for all t ∈ [t0,∞)T ;

2. δ− (t0, t) = t for all t ∈ T∗;

3. If (s, t) ∈ D+, then δ+ (s, t) = u implies δ− (s, u) = t and if (s, u) ∈ D−, then δ− (s, u) = t implies
δ+ (s, t) = u;

4. δ+ (t, δ− (s, t0)) = δ− (s, t) for all (s, t) ∈ D+ with t ≥ t0;

5. δ+ (u, t) = δ+ (t, u) for all (u, t) ∈ ([t0,∞)T × [t0,∞)T) ∩ D+;

6. δ+ (s, t) ∈ [t0,∞)T for all (s, t) ∈ D+ with t ≥ t0;

7. δ− (s, t) ∈ [t0,∞)T for all (s, t) ∈ ([t0,∞)T × [s,∞)T) ∩ D−;

8. If δ+ (s, .) is ∆ -differentiable in its second variable, then δ∆t
+ (s, .) > 0;

9. δ+ (δ− (u, s) , δ− (s, v)) = δ− (u, v) for all (s, v) ∈ ([t0,∞)T × [s,∞)T) ∩ D−

and (u, s) ∈ ([t0,∞)T × [u,∞)T) ∩ D−;

10. If (s, t) ∈ D− and δ− (s, t) = t0, then s = t.

Definition 3.12 (Periodicity in shifts) Let T be a time scale with the shift operators δ± associated with
the initial point t0 ∈ T∗, then T is said to be periodic in shifts δ±, if there exists a p ∈ (t0,∞)T∗ such that
(p, t) ∈ D∓ for all t ∈ T∗. P is called the period of T if

P = inf {p ∈ (t0,∞)T∗ : (p, t) ∈ D∓ for all t ∈ T∗} > t0.

Observe that an additive periodic time scale must be unbounded. However, unlike additively periodic
time scales a time scale, periodic in shifts, may be bounded.

Example 3.13 The following time scales are not additive periodic but periodic in shifts δ± .
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1. T1=
{
±n2 : n ∈ Z

}
, δ±(P, t) =


(√

t±
√
P
)2

if t > 0

±P if t = 0

−
(√

−t±
√
P
)2

if t < 0

, P = 1 , t0 = 0,

2. T2=qZ , δ±(P, t) = P±1t , P = q , t0 = 1,

3. T3=∪n∈Z [22n, 22n+1] , δ±(P, t) = P±1t , P = 4 , t0 = 1,

4. T4=
{

qn

1+qn : q > 1 is constant and n ∈ Z
}
∪ {0, 1} ,

δ±(P, t) =
q

 ln( t
1−t )±ln( P

1−P )
ln q



1 + q

(
ln( t

1−t )±ln( P
1−P )

ln q

) , P =
q

1 + q
.

Notice that the time scale T4 in Example 3.13 is bounded above and below and

T∗
4 =

{
qn

1 + qn
: q > 1 is constant and n ∈ Z

}
.

Corollary 3.14 Let T be a time scale that is periodic in shifts δ± with the period P . Then we have

δ±(P, σ(t)) = σ(δ±(P, t)) for all t ∈ T∗. (3.17)

Definition 3.15 (Periodic function in shifts δ± ) Let T be a time scale P -periodic in shifts. We say that
a real valued function f defined on T∗ is periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± and f
(
δT± (t)

)
= f (t) for all t ∈ T∗, (3.18)

where δT± (t) = δ± (T, t) . T is called period of f, if it is the smallest number satisfying (3.18).

Definition 3.16 (∆-periodic function in shifts δ± ) Let T be a time scale P -periodic in shifts. A real
valued function f defined on T∗ is ∆-periodic function in shifts if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± for all t ∈ T∗ (3.19)

the shifts δT± are ∆-differentiable with rd-continuous derivatives (3.20)

and
f
(
δT± (t)

)
δ∆T
± (t) = f (t) (3.21)

for all t ∈ T∗, where δT± (t) = δ± (T, t) . The smallest number T satisfying (3.19-3.21) is called period of f .
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Example 3.17 Let g (t) be a T -periodic function in shifts defined on qZ. Then the function

f (t) =
g (t)

t

is ∆-periodic function in shifts with period T.

Theorem 3.18 Let T be a time scale that is periodic in shifts δ± with period P ∈ (t0,∞)T∗ and f a ∆-periodic
function in shifts δ± with period T ∈ [P,∞)T∗ . Suppose that f ∈ Crd(T), then

t∫
t0

f(s)∆s =

δT±(t)∫
δT±(t0)

f(s)∆s.

As an implementation of Theorem 3.18 (see [3, Theorem 2]), the following result is proved in [11]

Lemma 3.19 ([11]) Let T be a time scale P -periodic in shifts and the shift operators δT± are ∆-differentiable
on t ∈ T∗ where T ∈ [P,∞)T∗ . Suppose that p ∈ R is a ∆-periodic function in shifts δ± with period
T ∈ [P,∞)T∗ . Then

ep
(
δT± (t) , δT± (t0)

)
= ep (t, t0)

for all t, t0 ∈ T∗.

3.2.2. Periodic solution
In this part, we suppose that T is a P -periodic time scale in shifts δ± , which is not necessarily unbounded
from above. We concentrate on the following delay dynamic equation

x∆ (t) = a (t)x (t) + f (t, x (δ− (s, t))) , t ∈ T, (3.22)

where a and f are rd -continuous functions. Clearly, the equation (3.22) is derived from (3.1) by setting
ϑ (t) = δ− (s, t) . The use of backward shift operator as the delay enables us to pursue our analysis without
assuming that the delay function is periodic in shifts δ±. We refer to [2, 4, 11] for a similar approach. Since we
focus on the existence of a periodic solution of (3.22), it is natural to make the following assumptions

C4 a is ∆ -periodic in shifts, i.e. a
(
δT± (t)

)
δ∆T
± (t) = a (t) for all t ∈ T∗,

C5 f is ∆ -periodic in shifts on its first argument, that is f
(
δT± (t) , .

)
δ∆T
± (t) = f (t, .) for all t ∈ T∗.

We shall point out that we utilize the backward shift operator δ− as a delay term in (3.22) by setting
ϑ (t) = δ− (s, t) , where ϑ is the delay function used in (3.1). Consequently, we pursue our analysis without an
additional periodicity assumption, namely periodicity of the delay function.

Next, we define the set MT as the set of functions which are T -periodic in shifts δ±. Then, MT is a
Banach space when it is endowed by the norm

∥x∥ = max
t∈[t0,δT+(t0)]

|x (t)| .

In the sequel, we give the following lemma which is crucial for proving the existence of a periodic solution of
(3.22).
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Lemma 3.20 Assume C4 and C5. If x ∈ MT , then x (t) is a solution of (3.22) if and only if

x (t) =

δT+(t)∫
t

ep̂ (t, σ (τ))

e⊖p̂

(
δT+ (t) , t

)
− 1

([a (τ)− p̂ (τ)]x (τ) + f (τ, x (δ− (s, τ))))∆τ,

where p̂ ∈ R and p̂ is ∆-periodic in shifts with period T .

Proof Let x ∈ MT be a solution of (3.22). The necessity part of the proof is straightforward. For the
sufficiency part, we multiply both sides of (3.22) with e⊖p̂ (t, t0) and get

[x (t) e⊖p̂ (t, t0)]
∆
=

e⊖p̂ (t, t0)

1 + µ (t) p̂ (t)
([a (t)− p̂ (t)]x (t) + f (t, x (δ− (s, t)))) .

Integrating the above equality from t to δT+ (t) , we arrive at

x (t)
[
ep̂

(
t0, δ

T
+ (t)

)
− ep̂ (t0, t)

]
=

δT+(t)∫
t

ep̂ (t0, σ (τ)) ([a (τ)− p̂ (τ)]x (τ) + f (τ, x (δ− (s, τ))))∆τ. (3.23)

We reach the desired equality

x (t) =

δT+(t)∫
t

ep̂ (t, σ (τ))

e⊖p̂

(
δT+ (t) , t

)
− 1

([a (τ)− p̂ (τ)]x (τ) + f (τ, x (δ− (s, τ))))∆τ,

by multiplying both sides of (3.23) with ep̂ (t, t0) . 2

In preparation for the next result, we introduce the mapping Ĥ by

(
Ĥφ

)
(t) =

δT+(t)∫
t

ep̂ (t, σ (τ))

e⊖p̂

(
δT+ (t) , t

)
− 1

([a (τ)− p̂ (τ)]φ (τ) + f (τ, φ (δ− (s, τ))))∆τ. (3.24)

Lemma 3.21 Let Ĥ is as in (3.24). If C4 and C5 hold, then Ĥ : MT → MT .
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Proof Suppose that φ ∈ MT , and the conditions C4 and C5 are satisfied. Then, we consider

(
Ĥφ

) (
δT± (t)

)
=

δT+(δ
T
±(t))∫

δT±(t)

ep̂
(
δT+ (t) , σ (τ)

)
e⊖p̂

(
δT+

(
δT+ (t)

)
, δT+ (t)

)
− 1

([a (τ)− p̂ (τ)]φ (τ)

+f (τ, φ (δ− (s, τ))))∆τ

=

δT+(t)∫
t

ep̂
(
δT+

(
δT± (t)

)
, σ

(
δT± (τ)

))
e⊖p̂

(
δT+

(
δT± (t)

)
, δT± (t)

)
− 1

([
a
(
δT± (τ)

)
− p̂

(
δT± (τ)

)]
φ
(
δT± (τ)

)
+f

(
δT± (τ) , φ

(
δ−

(
s, δT± (τ)

))))
δ∆T
± (τ)∆τ

=

δT+(t)∫
t

ep̂ (t, σ (τ))

e⊖p̂

(
δT+ (t) , t

)
− 1

([a (τ)− p̂ (τ)]φ (τ) + f (τ, φ (δ− (s, τ))))∆τ,

where we used Lemma 3.19, Corollary 3.14 and Definition 3.9. This proves the assertion. 2

We omit the proof of the next result since it is trivial.

Lemma 3.22 Assume C2 and also suppose that the condition

C6
δT+(t)∫
t

∣∣∣∣ ep̂(t,σ(τ))

e⊖p̂(δT+(t),t)−1

∣∣∣∣ (|a (τ)− p (τ)|+ g (τ))∆τ ≤ β < 1 for all t ∈ T∗

holds. Then the mapping Ĥ given in (3.24) is a contraction.

Due to Lemma 3.21 and Lemma 3.22, we present the following theorem which provides the sufficient
conditions for the existence of a unique periodic solution in shifts δ± for the delay dynamic equation (3.22) by
contraction mapping principle.

Theorem 3.23 Suppose that the conditions C2, C4-C6 are satisfied. Then, the delay dynamic equation (3.22)
has a unique periodic solution in shifts δ±.

4. Applications
We present the following examples on a large class of time scales to illustrate the application potential of our
results on several mathematical models.

Example 4.1 Consider the following delay dynamic equation

x∆ (t) = −a (t)x (t) + c (t) tanh (x (t− τ (t))) + I (t) , t ∈ T, (4.1)

which is utilized to model the dynamics of a single artificial effective neuron with time varying processing delay
on time scales. If we set T = R, then the equation turns to the original model

x′ (t) = −a (t)x (t) + c (t) tanh (x (t− τ (t))) + I (t) , t ∈ R (4.2)
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given in [15]. In this example, we concentrate on (4.2) in order to highlight controllability of our conditions. If
we compare (4.2) with (3.1), then we observe that

f (t, x (ϑ (t))) = c (t) tanh (x (t− τ (t))) + I (t) ,

where c and I are continuous and bounded. As the first task, one may easily verify the condition C2. For any
x, y ∈ Bk we get

|f (t, x)− f (t, y)| = |c (t) tanhx− c (t) tanh y|

= |c (t)| |tanhx− tanh y|

≤ |c (t)| ∥x− y∥ .

On the other hand, we amend the condition C1 for the delay differential equation (4.2) as follows:

C1*
t∫

0

e−
∫ t
u
p(s)ds (|p (u)− a (u)|+ |c (u)|) du ≤ α∗

1 < 1.

Now, we set p (t) = 1
1+t2 , and consequentially ep (t, 0) = e

∫ t
0
p(s)ds = earctan t is bounded. Next, we assume

that the functions a and c satisfy the following inequality

|a (t)|+ |c (t)| ≤ 1

10

1

1 + t2
for all t ∈ [0,∞) .

Then, we verify the condition C1* as follows

t∫
0

e
−
∫ t
u

1
1+s2

ds
(∣∣∣∣ 1

1 + u2
− a (u)

∣∣∣∣+ |c (u)|
)
du ≤ 11

10

t∫
0

e
−
∫ t
u

1
1+s2

ds 1

1 + u2
du

=
11

10

(
e
−
∫ t
u

1
1+s2

ds
∣∣∣u=t

u=0

)
=

11

10

(
1− earctan t

)
≤ 11

10

(
1− e−π/2

)
= α∗

1.

It is obvious that x = 0 is not a solution of the equation (4.2) since the stimulus input I cannot be zero; that is
f (t, 0) = I (t) . Thus, we deduce that the delay differential equation (4.2) has an equi-bounded solution x ∈ Bk

due to the Theorem 3.3, for any k satisfying the inequality

leπ/2 + α∗
1k + α∗

2 ≤ k,

where |ξ (t)| ≤ l for all t ∈ [τ (0) , 0] , and

t∫
0

e
−
∫ t
u

1
1+s2

ds
I (u) du ≤ α∗

2.
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Example 4.2 We focus on the following delay dynamic equation

x∆ (t) = λx (t) + F (x (ϑ (t))) , t ∈ T, (4.3)

which might be used to model dynamics of a population. If we set T = N0, and assume ϑ (t) = t− τ, then (4.3)
is equal to the Clark’s equation (see [10])

∆xn = (γ − 1)xn + F (xn−τ ) , (4.4)

where 0 ≤ γ ≤ 1 and F : [0,∞) → [0,∞) is continuous. In (4.4), it is assumed that a proportion γxn of
adults survives the next generation and the new borns admit a constant maturation delay. We suppose that
F (0) = 0, and F is a Lipschitz function with constant ϖ so that the conditions C2 and C3 hold. Moreover,
we set pn = − 1

2+n for n = 0, 1, . . . which satisfies the condition (3.10) due to the Remark 3.8. If we adapt the
condition C1 for the equation (4.4) , then we write its discrete counterpart as

n−1∑
j=0

 n−1∏
r=j+1

(
1− 1

2 + r

)(∣∣∣∣γ − 1 +
1

2 + j

∣∣∣∣+ϖ

)
≤ α < 1. (4.5)

Therefore, we observe that the zero solution of Clark’s equation given in (4.4) is asymptotically stable as a result
of the Theorem 3.7 whenever (4.5) holds.

Example 4.3 Let T =2Z ∪{0} with the shift operators δ±(s, t) = s±1t, t ∈ T∗=2Z, and consider the following
q -difference equation

Dqx (t) =
−1 + sin

(
ln t
ln 2π

)
4t

x (t) +
1

32t
x (δ− (s, t)) , t ∈ 2Z. (4.6)

If we compare (4.6) with (3.22), then we get

a (t) =
−1 + sin

(
ln t
ln 2π

)
4t

and f (t, x) =
1

32t
x.

It is trivial to show that a is ∆ 4-periodic in shifts, and also f (δ± (4, t) , x) δ∆± (4, t) = f (t, x) . Therefore, the
conditions C4 and C5 hold. Besides, the condition C2 can be verified with g (t) = 1

32t . We shall recall that,
when T =2Z ∪ {0} , we have the following representations

ep (2
m, 2m0) =

∏
k∈[m0,m)

[
1 + 2kp

(
2k
)]

, (4.7)

and
2n∫

2m

p (s) d2s =

n−1∑
k=m

2kp
(
2k
)

(4.8)

for exponential function and definite integral, respectively. Next, we set p̂ (t) = − 7
8t which is ∆ 4-periodic in

shifts, and it remains to prove that the condition C6 is satisfied in order to employ Theorem 3.23. In our case,

2004
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C6 can be rewritten as follows

n+1∑
s=n

2s

∣∣∣∣∣ ep̂
(
2n, 2s+1

)
(ep̂ (2n+2, 2n))

−1 − 1

∣∣∣∣∣
(∣∣∣∣−1 + sin (sπ)

2s+2
+

7

2s+3

∣∣∣∣+ 1

2s+5

)
≤ β < 1 for all t ∈ 2Z (4.9)

due to (4.8). We obtain ep̂
(
2n, 2s+1

)
= 8−n+s+1 and

(
ep̂

(
2n+2, 2n

))−1−1 = 63 by utilizing (4.7) . Thus, (4.9)
turns to

8−n+1

63

n+1∑
s=n

2s8s
(∣∣∣∣−1 + sin (sπ)

2s+2
+

7

2s+3

∣∣∣∣+ 1

2s+5

)
≤ 8−n+1

63

n+1∑
s=n

2s8s
(

7

2s+3
+

1

2s+5

)

=
8−n+1

63

15

32

n+1∑
s=n

8s < 1

and it is satisfied. Consequentially, all conditions of Theorem 3.23 hold, and the delayed q -difference equation
(4.6) has a unique 4-periodic solution in shifts.

5. Conclusion
This manuscript handles the delay dynamic equation (3.1) and provides an elaborative analysis regarding
boundedness, stability, and periodicity of its solutions. The function ϑ : [t0,∞)T → [ϑ (t0) ,∞)T is used as an
abstract delay function, and ϑ is specifically chosen as backward shift operator, i.e. ϑ (t) = δ− (s, t) , in the
part on which the existence of periodic solutions is studied. By appealing fixed point theory, some conditions are
obtained which guarantees the existence of an equi-bounded solution and the asymptotic stability of zero solution
for (3.1). Additionally, the new periodicity concept on time scales is utilized to discuss the existence of periodic
solutions in shifts for the delay dynamic equation (3.22). In our analysis, we proposed a particular variation of
parameters formula by using an auxiliary function to invert a mapping for the utilization of contraction mapping
principle. This method does not only relax some conditions on the equation but also provides an alternative
approach for the qualitative analysis of dynamic equation on time scales. Although our results coincide with
some existing results in particular cases T = R and T = Z, this study is not only a unification but also a
significant extension for the existing literature since it allows to construct delay dynamic equation (3.1) on

more general domains, such as T =qZ and T = Pa,b =

∞⋃
k=0

[k (a+ b) , k (a+ b) + a] , which are also important

in modelling real life processes.
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