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Abstract: Let G be a compact abelian metric group with Haar measure A and G its dual with Haar measure L.

Assume that 1 < p; < 00, p} = pipjl, (:1=1,2,3) and 6 > 0. Let L@i0 (G), (:=1,2,3) be small Lebesgue spaces.

A bounded sequence m (€&,7) defined on G x G is said to be a bilinear multiplier on G of type [(p}; (ph; (ps], if the

bilinear operator B,, associated with the symbol m

Bu (f,9)(x) =Y > f(s)g(t)m(s,t)(s+t,2)

seGted

defines a bounded bilinear operator from L®1? (G) x L*2? (@) into L*5? (G). We denote by BMj [(p}; (ph; (ps] the
space of all bilinear multipliers of type [(p1; (ps; (p3],. In this paper, we discuss some basic properties of the space

BMo [(p'; (ph; (p3] and give examples of bilinear multipliers.
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1. Introduction
Let Q be locally compact Hausdorff space and let (€2, B, 1) be finite Borel measure space. The grand Lebesgue
space LP) (Q), (1 < p < o0) is defined by the norm

1
pP—¢€

191y = _sup s][mp‘fdu ,
Q

<e<p—1

Q

where by { we denote %) [ (see [10]). A generalization of the grand Lebesgue spaces are the spaces o (),
Q
6 > 0, defined by the norm (see [3])

£l = sup_ 7 fm“du — swp 7 fl

0<e<p—1 0<e<p—1
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when 6 = 0 the space LP)? (Q) reduces to Lebesgue space LP (Q) and when 6 = 1 the space LP)! () reduces
to grand Lebesgue space LP) (Q), (see [6]). For 0 <e <p—1,

LP (Q) ¢ LPY (Q) ¢ LP~¢ (Q)

hold. Tt is known that the subspace C2° () is not dense in LP)? (Q), where C%° (Q) is the space of infinitely
differentiable complex valued functions defined on  with compact support. Its closure consists of functions
f € LP () such that (see [6])

. _0
e | 7], . = 0.

For some properties and applications of LP) (Q), we refer to [4, 5, 7-9].

Let p/ = %, 1 < p < co. First, consider an auxiliary space namely L®? (Q), 6 > 0, defined by

00 (Pjﬁ)/
_ (p e)
lolgro= Wf 3, it e f\gk )= d (a) ,

where the functions gx, k& € N, being in My, the set of all real valued measurable functions, finite a.e. in ).

After this definition, the generalized small Lebesgue spaces have been defined by

L0 (2) = {g € Mo llgl g < 0

where

I9ll,y0 = sup 191l 6 -
0<y<lg|
b e L0 ()

For § =0, it is [ fll, 0= Il (see [1, 3, 5].

Let G be a locally compact abelian metric group with Haar measure A and let G be dual group with

Haar measure p. The translation and modulation operators are given by
Tacf (t) = f(t - x)v M{f (t) = <t7£>f(t) y 6x € G7 f € G (11)

For a function f € L' (G), the function f defined on G by

/f 2y dA(z), v € C (1.2)

is called the Fourier transform of f, (see [13]). The behaviors of the translation and modulation operators

under the Fourier transform are

(Mfsof)A :Tfsoan (T*tof)A :Mtof7 (13)

where s € G, tg € G, (see [13]).
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2. Main results

Let G be a locally compact abelian metric group and G its dual with Haar measures A and 1, respectively.

Before giving the definition of bilinear multiplier on G' of type [(p]; (py; (p5]y, We remember that if A (G) is
finite, then G is compact. Thus, the G dual of G (Pontryagin dual) is a discrete group, and the dual measure

on this group is the counting measure. Also since G is compact abelian metric group, then G is countable (see

[13]).

Definition 2.1 Let G be a compact abelian metric group with Haar measure \ and G its dual with Haar

measure t. Assume that 1 < p; < oo, p; = p?'_il, (1=1,2,3) and 6 > 0. We also assume that m (s,t) is a

bounded sequence on G x G. Consider the bilinear operator By, associated with the symbol m

B (f,9) (@) =YY f(s)a(t)ym(s,t) (s +t,2),

seGtel

defined for functions f, g€ C*(G). m is said to be a bilinear multiplier on G of type [(p; (y; (3]y, if there
exists C' > 0 such that
[ Bm (f Q)H(pg,e <C ||f||(p/1,9 ||9||(p'2,9 (2.1)

forall f, ge C™(G). That means By, extends to a bounded bilinear operator from L®1? (G) x L2 (@)
into L¥50 (G). We denote by BMy [(p}; (ph; (0] the space of all bilinear multipliers of type [(p'; (ph; (Ph], and

Il = 1Bmll- (2.2)

(P}3(Ph3 (ph]
Lemma 2.2 (Hélder-type inequality for generalized small Lebesgue spaces)

Let % = ﬁ+ i and r' < p +1.If fe LW (@) and g € L#29 (@), then fg € LU (@).

Furthermore,

£l g < C ||f||(p/1,9 ||9||(p'2,9

for some C > 0.

Proof Take any f e C™(G) c L¥1¢ (@) and g € C® (@) € L¥2? (G). Let i = i + i and r.r’ <p +1.

Since 1 = %—i— %, we have r + 1/ = r.r/. Then using the assumption r.r’ < p’ +1, we write 7 +71r' < p’ +1 and
sor+1 —1<p. Forafixed 0<e<r—1,wehave r +¢ <1 +r—1<p. Therefore, since 1 (G) < co,we
obtain L¥ (G) C L"*(G). Moreover, we know that L"*¢(G) ¢ L% (G), (see [3]). Then we have the

inclusion L? (@) € L™ *¢ (G) c Lt"? (@). That means, there exists C; > 0 such that
19l o < Crll gl - (2.3)
If we apply the Holder inequality to the right side of (2.3), there exists C > 0 such that

19l < Coll £l gl - (2.4)
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On the other hand, since L#1? (G) ¢ LP1 (G) and L®#20 (G) c LP2 (@), (see [3]), we have
11l < Cs 10 (25)

and
lgll, < Cillgll 0 (2.6)

for some C5, Cy > 0. Combining the inequalities (2.3)—(2.6), we obtain
||f9H(w,e <C Hf”(p'l,e HQH(p;,ea (2.7)

where C = C1C3C3C,. Now define the bilinear mapping F ((f,g)) = fg, from (C* x C®)(G) to L"#(Q).
By (2.7), it is continuous. Since (C° x C*) (@) is dense in LP1¢ (G) x L2? (@), then there exists a unique
continuous bilinear extension of F denoted F~ from L®#? (G) x L®2 (G) to L"? (G). Furthermore, the

norm of F™ is equal to the norm of F. Therefore, for all f € LF1f (G) and g € L@2? (G), the inequality
19l o = 1E (s 9D o0 < Ol M r 0 1190 g0

is achieved. O

Example 2.3 Let f € L (GQ) and g € L1109 (G). Since p) =9 and p) = 10, then % = pi, + pi éJr 1—10,
1 2
and so p' = %. Also, let r =3 and 1’ = % Then %—F% = 1. Hence, we have r.r' = 3.% = g < %g+1 =p'+1.

Therefore, from the Lemma 2.2, we obtain that fg € L(3:° (G) and
||f9||(g,a <C Hf“(g,e ||9||(1o,0

for some C > 0.

Theorem 2.4 Let 1 < p; < 0o, p, = pf’il , (1=1,2,3) and 0 > 0. Then m € BMy[(p}; (ph; (p5] if and only
if there exists C' > 0 such that

YD F @i h(s+tym(s,0)] < C Ul 01900 1Pl 6
seGted

for all f e LW (@), g € L0 (GQ) and h € [LP2],,)0 + where [LP2] 5 is the closure of C*(G) in
Lra)0(G).

Proof Assume that m € BM, [(p}; (ph; (ps]. Let f, g € C°(G) C L'(G) and h € C™(G)N LP)Y (G) .
Since u(G) < oo, we have h € L' (G). Thus, we write

SOS T F ) g h(s+Hm(s.)| =

seGted
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— Y Fa /h<y><s+t,—y>dA<y> m (s,1)

seGted fe

—|[hw) B (1.9) /|h ) [Bo (7.9) ()] A ) (28)

G

where )\ is Haar measure on G and B,, (f,9) (y) = Bm (f,9) (—y). From the assumption m € BMjy [(p; (ph; (ph],
we have B, (f,g) € L@ (G). Since G is group, we obtain B, (f,g) € L@ (G). By using the Holder in-

equality for generalized small Lebesgue spaces (see [3]) and the inequality (2.8), we write

Y F(s) (51) /|h ) [Bon (£.9) ()] ar (0)

seGted

< B (9, Whlyy0 = 1B (£l ] (2.9)

(p,0
Also since m € BMy [(p}; (p5; (ps], there exists C' > 0 such that
1B (£.9) .0 < C 1l 0 190 0 (2.10)

Combining (2.9) and (2.10), we find

YD F@ah(s+tym(s,0)] < Clflp,ollellgo

seGted

[ellg),0-

For the proof of converse, assume that there exists a constant C' > 0 such that
Z Z f(s (s+t)m (s, 6)| < CNfll o l9ll 0 1l 0
seG ted
forall f, g€ C®(G) and, h € C™(G)N L)Y (G). From this inequality and (2.8), we write
W) B (7.9) @A 0| < C 10 Il 1 - (2.11)
G

Define a function ¢ from C™ (G) N LP*)? (G) to C such that

((h) = / h(y) Bon (£.9) () dA (9)

G

This function ¢ is well defined and linear. Moreover, it is bounded by (2.11). Since C* (G) N Lr3)? (G) =

[LP],.)¢ » ¢ extends to a bounded function from [LP#] ,, to C. Then £ € ([Lpg]m),e) = L) (G) ~
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L®s"0 (@) and by (2.11), we have

L (h)]

<1lPll,y).0

1B (s Dl g0 = 1€l =

1l 0

< C Il 190y -

Hence, we obtain m € BMy [(p); (p5; (ph] - O

Theorem 2.5 Let m € BMy[(p}; (ph; (05]. Then
@) Tiayt0)m € BMy [(ph; (ph; (5] for each (so,t0) € G x G and

| Ttso.t0)m| = lImll;

[(p15(ph3 (], (P}3(Phs(P], *

b) M2 M} m € BMy [(p}; (ph; (p5] for each (so,t0) € G x G and
2 271 _
HMtOMSUmH[(p’l;(pé;(pé]e o ”mH[(p'l;(pé;(pé]e ’

where M} m (s,t) = (s, s0) m (s,t) and M2 m (s,t) = (t,to) m(s,t).

Proof a) Let f, g€ C®(G). Let ussay s —sp =u and t —to = v. Then

BT(SO to)m f} Z Z f T(So,to)m( ) <$ + t’ x>
seGte@
=D > Fu+s0)d(v+to)m(u,v) ((s0 + to) + (u+v), )
ueGveG
=Y Y T f (W) Totyg (v) m (u,v) (50 + to, o) (u+ v, ). (2.12)
ueGve@

Then by using (1.3) and (2.12), we have

BT(SO tg) M f7 Z Z T—Sof T—to ( ) ( 7U) <80 —|—t0,.%‘> <3 + t,$>
ueGved
= <80+t0,l‘> By, (M—SofaM—tog) (.13) (213)

Using the assumption m € BMy[(p}; (ph; (p5] and the equality (2.13), we have

|Brieympm (£.9)| = 150+ t0, ) Brs (Mo fy Mt9)

(p3,0

=B (M—s. f, M—t,9) (1, 0
< CIM_so fll 0 1M =091l s 0
=C Hf”(p/l,e Hg||(p/2,0

for some C' > 0. Thus, T, 'm € BMy[(p}; (p5; (p5]. Then by (2.2),

HT(SO’tO)mH[(p’l;(pé;(z’é]e - HBT“O’%)"”H'
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This implies
HT(WO””H[(pa;(p;;<pé]9 - HBT(SUJ(J)T”H

— sup HBm (M*S(Jf’M*tog)”(pé,
||M*S()f||(pll70 ||M7t0-gH(p/2,

= 1Bl = ]

HM—aafH(p/ IS HM_togH(p’ 0= 1}

! . /N / .
(p17(p27(p3]9

b) Let f, g € C* (G). By definition of modulation operators (1.1), we have

Basg mz,m ( =SS F(9)g () MEMLE (m(s.1) s+ t,2)
seGteG
=35 (s,50) f(5) {t,t0) g (£) m (5,1) (s + L, )
sEGtEG
=2 D My f(s) Mg (8)m (s,t) (s + t,2) . (2.14)
seGteG

Then by using (1.3) and (2.14)

BMfoMslo ZZ T—Sof T—tog) (t)m(s,t) <S+t,$> = Bn, (T—Sof7T—tog) (.Z‘)

seGted

Since m € BMy[(p}; (ph; (5],

HBMEOMgUm (fﬂ)‘ (0 =

3

1B (T—so.fs T-t09) | (5.0 < 1Bl I T50 fll g0 1 T=20l

37

= 1Bl 11 £l (.0

191l 10 (2.15)

and so M? M} m € BMjy [(p}; (ph; (p]. Finally, by (2.15) we achieve that

1B (T £ Tt 0
= sup
17 i o 1Tl

[(p15(p53 (8],

HT—SOf”(p'l,e <1 ||T—tog||(p’2,9 < 1}

- ”m”[(p’l;(p’z;(pg]e :

O
Let A be an automorphism of G. The Ao A is a nontrival Haar measure on G. For any Borel set U C G,
the modules of A is defined by |A| = A (AU) such that d\ (Ax) = |A|dA (x). Moreover, the adjoint A*of A

is an automorphism of G. The adjoint operator A* is defined by (Az,s) = (x, A*s) for z € G and s € G.

Furthermore, the o A* is a nontrival Haar measure on G such that du (A*s) = |A*|du (s). It is known that
Al = [A*], (A) ™" = (A7) and 4|7 =AY, (see [2]).

Definition 2.6 Let A be an automorphism of G. The dilation operator Df{ on L0 (@) is defined by
/ 1
DY f(z) = |A]7 f (Az).
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Lemma 2.7 Let A be an automorphism of G and f € L® (G). Then DZ/ feL®?(@). Moreover,

’ 1 .
[p5s], o =147 Ul < Wl o 141 <1

DP’ H — s if Al > 1.
|pas],, , =170 if 141>
Proof Let A be an automorphism of G and f € L6 (G). If we say Az = u and use the equality
|A]7" = |A7Y|, then
1
, (p—e)’
’ . . 0 / (p—e)
HDﬁfH = inf . inf £ f‘Dﬁfk (x) dX ()
(p',0 D‘Z{f:k;Di'fk Pt <e<p-— .
1
> 0 1 (p—e)’ =y
= i i = » -1
= inf > i e ][ ’|A| Fi () dX (A~ ')
=3 fr | k=1 e
k=1
1
00 (p—e)’
= nf e A AT -
=t 4>t A AT (1A ) anw)
f=>fr | k= fe
k=1
1
00 (p—e)’
: . __0 1—1 . — (p—e)’
= —€ P ( )
mf 3 it e AT @) dAw)
=g | c
1
00 (p—e)’
. . L1 - (p—e)’
= ( €) P —€
a3 ATt e | 1AW (216)
=g i :

Assume that |A] <1 and 0 < e <p—1. Since inf |A\<Pi€>_% = 14"
0<e<p—1

inequality and (2.16), we have

= |A|i , then by the last

=

’ ° 1 1 ( )/ (P*la)/
DP, ‘ inf inf |A|GDF  inf e 7 P2 1\
A I S I L TGl § T te
7k:1 k - G
1
0 (p—e)’
1 0 RY i
= |A[»"  inf Zoégif o ][|f’“ ()" ax (w) = A 1 Fll 6 -
f=> fr =1 fe

Thus, DF f € L#9(G).
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Let |A| > 1,and let 0 <e <p—1. Since  inf |A] 5o = 1, by (2.16), we have
O0<e<p—1

oo (P—ls)'
) 11 —_e (p—e)’
[, = {3t g (i
(p’,0 f:ka. k=10<€<p_1 0<e<p—1
k=1
1
o (p—e)’
= inf ¢ inf ][|fk ()| dA (w) = £l 0
f:io:fk P O<s<p 1
k=1
Thus, DY, f € L@ (G). 0

Theorem 2.8 Let A be an automorphism of G and m € BMy [(py; (ph; (p] . If =21 + L — é, then

D%.m € BMy [(p}; (ph; (ph], where DY.m (s,t) = |A*|% m (A*s, A*t). Furthermore,

Dq* H < ’ / / .
H " [(pl5(phs(ps], — Hm”[(pl?(%?(%]e

Proof Take any f € L0 (G) and ¢ € L@20 (G). We know by Lemma 2.7 that D% f € L0 (G) and
DP%g € L®2:0 (@), If we put A*s = u and A*t = v, then du (u) = |A*|dp(s) and du (v) = |A*|du(t). From

the assumption % = i + i — i, we have
fom (£:9) (@) =323 ()3 (1) Do (s,1) (s +t,x)

seGtel

=AY F (A ) g (At )|A*|%m(u,v)<(A—1)*(u+v),a:>
ueGve@

|A*|—2zzf A* 1 A* 1 )|A*|i+iiim(u’1})<U+U,A_1$>
ueGveG

= |A%| o SN DR f (w) DR g (v)m (u,v) (ut v, A ) (2.17)
ueGveG

On the other hand, if we say that Ay = s, then we have

(0%1) /D”lf (u, —y) dA (y)
/ AT £ (s) (w=A75) 2 (4715) = [1APT™" 1 (5) (w =A™ 0) A ()
G
= |47 / F () (A" Mu, =s) AN (s) = | A" 775 f (A" M) = DR, (u).
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Similarly, we achieve (Di/z g) "= D" _.g. Then from (2.17), we obtain

m(fag)( ) |A* ;3 Z ZD o — 1f *—lg(u)m(u,U) <’LL+’U,A_1(E>

ueGve@
_ 1 ’ ’ ’ ’ ’
— |A|"% B, (Df;; f, nggg) (A~'z) = D", B, (Dgl f, DQ@) (z). (2.18)

Since m € BMy [(p}; (ph; (ph], from Lemma 2.7 and (2.18), we have

HBf)qA*m(fmg) = HD (D;Zlf,Difg) < HB (Dplf,Dizg)
Pa» p3, (p3,9
< mal[pie], [
1Bl || D' f o 1249
= ||m||[(p/1;(p/2;(pg]g Hf”(p'l,e ||9||(p/2)9 . (2.19)

Thus, we obtain D%, m € BMj [(p}; (py; (4] Moreover, by (2.19),

< |m Io(o! (] .
[(Pl5(phs(ps], — I H[(pl’(pz’(%}@

O

Theorem 2.9 Let A be an automorphism of G and m € BMy [(p}; (p5; (p5] such that m (A*s, A*t) = m (s,t),
where £ = L 4+ 2 — 1 Then
q Py 2

pP3
1 1 1
— =
p1 p2 D3
Proof Assume that f € L#v? (G) and g € L2 (@). Since L = pi, + é - i, then by (2.18)
Bps  (f.9) (@) = DY B (DY £, D% ) (x), 2 € G. (2.20)

On the other hand, we write
D", B,, (Df’i; f, D% g) (z) =

=|Al " Z Z (Dp1f> (Dizg) S (v)m (u,v) (u+v, A" z)

ueGved

=|Al 3 Z ZDA* f DR g (u)m (u,v) (u+v, A" z)

ueGved

A ST AT (AT ) AT

ueGved

g (A1) m (u,v) (A" (u+0),2). (2.21)
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We make the substitution A*~'u = s, A*“lv = ¢ in (2.21). Using u(A* ) |A*|u( ) |A] =

(A5 = (A_l)* , (see [2]) and the assumption m (A*s, A*t) = m (s,t), we have

DY\ By (DY 1, Ditg) () =

= |A 7T DAY f(s) Ts, ATt) (s + 1, 1)
se@ teG
st
= [A[7 27 By (f,9) (2).

Hence by (2.20) and (2.22), we have

+

H¢
3
m\""

0@ =1 ) B (0.

Since m € BMy [(p}; (ph; (p4] , by Theorem 2.8, we have D%.m € BMy [(p}; (ph; (ph] and

Dq* H < VAW, / .
H m (0o ws], — ”m”[(pl,(pz;(ps}a

Then, by (2.23) and Theorem 2.8,

1B (9o = 141" ) 5 (1,9

(p379

Tl ollg
[CRCATCAR 1.0 19lps0

~(F+E-%)
<14 T Bl 110 19l -
Since this inequality holds for any |A|, one needs - + & = 1.

141 Po P3

Theorem 2.10 Let m € BMy [(p}; (ph; (5] -

a) If ® € (! (G‘ X G) , then ® xm € BMy [(p}; (ph; (p5] and

||fI>*m||[(p/1;(p’2;( 5o <[] Hm||[ i(pi(p5], °
where ® x m is convolution of ® and m.
b) If ®e L' (GxG), then ®m € BMy [(p}; (pb; (p] and
(] [y I L Y 1| s

where @ m is the multiplication of the Fourier transform of ® and the function m.

¢) Let oy = r+ o, psphy <p' +1 and m(s,t) = a. Then m € BMy|[(p}; (ph; (Ph] -

1A%,

(2.22)

(2.23)
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Proof a) Take any f, g € C*(G) . Then

B<I>*m fa sz @*m)(s,t)(s—i—t,x)

seGted

=3 D> DD featym(s—ut—v)(s+tx) | ®(u,v)

ueGve@ \seGte@

=3 Brym(f,9) (@)@ (u,0). (2.24)

ueGved

Since m € BMj [(p}; (p5; (p3], by Theorem 2.5, we have T(,, ,ym € BMy [(p}; (ph; (p3]. Using the equality (2.24),

we write

1B (£:9) 0 < 32 D219 (00 [Tl 03, 1019

ueGved
= 1l s, 12l 1701900 < - (2.25)
Hence, ® xm € BMy [(p}; (ph; (p5], and by (2.25)

| <) < 1], ]

(RS AR RS

b) Let ® € L' (G x G). Take any f, g € C* (G). Then we have

By, (f,9) ZZf )P m (s, t) (s +t,x)
seGteG
// wo) [ 303 F(9)(6) M2, ML (5,8) (5 + 1, 2) | d (w) dA (0)
seGteG
— [ [2) Bae s, (19 @) A (@) dr (o), (2.26)
G G

where M2, and M!, are modulation operators. Since m € BMjy [(p}; (py; (ph], by Theorem 2.5, we have
M2, M m e BMjy[(p}; (Ph; (ps]. Then by the equality (2.26), we obtain

1Bom (F-)lyo < [ [ 190 1208l 1, W0 190500 () 20 0)

G G
= 1 sz, 111 1710 190 (2.27)

Thus, ®"m € BMy [(p}; (ph; (p5]. By (2.27), we achieve that

| SLINER

(P (phs(P), (P13 (P (ph), -
c) Take any f e L"1? (@) and g € L®2 (G). Then by Lemma 2.2, we have

1970



KULAK and GURKANLI/Turk J Math

1Bun (f: 90 = lal || DD~ f ()9 (8) (s,2) (¢, 2)

seéteé (pgﬁ
=lal|[| Y- F () (soa) | [ D9 ()t ) = lal 19l .0 - (2.28)
se@ teG (p4,0

Then by Lemma 2.2 and (2.28), we obtain

1B (f; 9l g0 < Clal l1f 1 0 19l o0 -

Thus, m € BMy [(p; (ph; (] - -

Corollary 2.11 Let 5 = o+ o , pa.py <p' + 1. If ® € L' (G x G), then & € BMy [(py; (ph; (03]
1 2

Proof Let ﬁ = pi,+ pi , p3.ps < p' + 1. If we take m(s,t) = 1 in Theorem 2.10 (c), we have m €
1 2

BMy [(py; (Ph; (] Since ® € L' (G x G), by Theorem 2.10 (b), we obtain ®" = ®"m € BMjy [(p}; (ph; (ph].

O
The following Propositions 2.12 and 2.13 are proved as in [7, 11, 12].

Proposition 2.12 Let A be an automorphism of G and let m € BMy [(py; (ph; (ph]. If ¥ € ¢! (G, |A*|_% d,u)

1_ 1, 1 1
such that = +p,2 o then

my (s,t) = Y m(A%s, A"t) W (u) € BMy [(p}; (ph; (0]
ucA*G

Moreover,

”m‘I’H[(p&;(pé;(pé]g < ”\P”gl (é,IA*Ifédu) Hm”[(p’l;(p’z;(pé]g ’

Proposition 2.13 Let m € BMy [(py; (ph; (p4]. If Uy, Uz are bounded measurable sets in G, then

1
h(s,t) = ——— m (s +u,t +v) € BMy [(p}; (Ph; (Ph] -
(s%) w(Ur x Uz) u;ﬂg(i ( ) o [(P1; (P2; (p3]

Proposition 2.14 Let ; = pi,—i— pi, , p3.ps < p'+ 1 and let A, B be automorphisms of G. If A € M (G)
1 2

and m (s,t) = A (A*s + B*t), then m € BMy [(p}; (py; (ph]. Moreover,

Il <A

((CHEAAR
for some C > 0.
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Proof Let f, g, € C**(G). Since

(x — Ay) = Z f(s —y) + )
se@
and
(x—Ay)=> gt —y) + 1),
te@
then

Bo (f,9) (@) =Y > f(s)g(t)m(s,t) (s +1,2)

seGted

=S Y iaw /<A*s+B*t,fy>dA(y) s+ t,2)
G

seGted

seGtel

— S Fe)a / (5 A (=) {t. A (—9)) dA (9) § (s,) {8, )
G

Do) (s A(=y) +a) p § D G(1) (tA(—y) +a) ¢ dA(y)

o \seé te@

:/f(foy)g(x*Ay)dA(y%
G

By (2.29) and Lemma 2.2, we have

1B (f, )||<p;9_/0||f( AP, o 19 (= Ay 0 A1 ()

—C/Ilfll o M9llpg.0 dIA @) = CULI, , 19l g0 -

Since A € M (G), then by (2.30) m € BMy [(p}; (ph; (p5]. Thus, we have

[lmlly < CIAll-

(p11 p27(p3]

(2.29)

(2.30)

O

It is known that the unit operator I is an automorphism of G. It is easy to see the conjugate I* of I is a

unit operator from G into itself. It is continuous, one-to-one and onto. Thus, I'* becomes an automorphism of

G. Similarly one can easily show that —I and its conjugate — I* are authomorphisms of G and G respectively.

Since A (A*s + B*t) = A (s T t), in Proposition 2.14, one can get m(s,t) = A (s Ft). As an application of this

result we can give the following example.
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Example 2.15 If A € M (G) and m (s,t) = A (s Tt), then A\ € My[(p}; (ph; (ph] and

A

<ClAll, € >0

[CHCHCAR

forﬁJri:ﬁ and phps <p +1.

Theorem 2.16 Let ;r% = ﬁJr i  p3.py <p +1. Ifm(s,t) =T (s)®(s,t) Uy (t) such that ® € L' (G x G)
and U1, Uy € L' (Q), then m € BMy [(py; (Ph; (ph] -

Proof Let f, g€ C®(G) and h € C® (G)NLP*)? (G). If we use the assumption m (s,t) = Uy (s) ® (s,t) Uy (1),

we get

YD f&) @) h(s+t)m(s,0)| =

seGted

~ Y F@a /h<y><s+t,—y>dx<y> m (s, 1)

seGteC G

| [h){ X F @008 ()60 T2 (1) s+ t.-9) § AW

e} seGted

| [h ] T ) (6 (g5 )" (O (su0) 5+ 1. -0)  DAW)

seGte

G
< [ 1) By (1 5 015 02 )] A ). (231)
G

Now let f = S fr. Then we have f* ¥, = S fi * U;. On the other hand, since L®1~9)" (@) is Banach
k=1 k=1

convolution module over L' (G), we find

00 (Plii)/
. . e oy
£+ Wllgo= mf 33wt (At @) A )
f*U1=73" frux¥1 | k=1 e
k=1
. . 0
- inf {Zo<;2£—16 " |f’“*\111||(p1—s)’}
fxU1=3" frpox¥qy (k=1
k=1
e 6
< inf {Z inf 7 7== || fiell /|‘I’1||}
= & _ p1—¢) 1
=3 = 0<e<p—1
k=1
. — . e
=l it {Z(Kgggle ||fk||<mg>f}=|f||(,,/l,9 Wl (2.32)
k=1

f=>fr
k=1
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Similarly, we write

195 Wall g0 < 1191l g0 W2l - (2.33)

Thus, we have f*¥; € L¥? (@) and g+ ¥y € LP20 (G). Moreover, by Corollary 2.11, & € BMj [(p}; (ph; (ph] .

Then we achieve By, (f * ¥y, g% ¥a) € L®3:9 (@) . By using the Holder inequality for generalized small Lebesgue
spaces and the inequalities (2.31)—(2.33), we have

sz S+t) (8’t> = ”ths)ﬁHBé (f*\Illag*\I/2)H(pé,0
seGteG
< Bl 1 Ball 1 @ill 0 g % Pall
<0l 6 [l Ball 121l 11y 0 122114 Hg\l(p/z,e~
Then
DD @i h(s+tym(s,0)] < C Nl 0190 g0 1Pl 65
seGted
where C' = |’B¢,’| 1], ||¥2]|; . Hence, by Theorem 2.4, we obtain m € BMjy [(p’; (p5; (0] O

Example 2.17 If K € L' (G) then m (s,t) = K (s —t) defines a bilinear multiplier in BMy[(p); (Py; (ph] and

||m||[(p’1;(p/2;(pé]0 <C|K];, C>0

for - :%14— Lz . p3py <p +1.

Indeed for f, g € C*(G) C L' (G), one has

Bu (f,9) (@) =YY f(s)a(t)m(s,t) (s +t,2)

seGted

~ [ LS F 00K @ st s+ ) A )

G seGte@
~ [ X F0i0K ) (5o o+ i) drw)
G seGte@
~ [1@-nger K. (2:34)
G
Then from (2.34) and by Lemma 2.2,

1Bm (f; Dl g0 < /Ilf Y0 llg @+ )y 0 1K (YA (y),
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for some C > 0. Since || T_,f (fy)||(p,179 = ||f(y)||(p,1’6 and ||T_,g (y)H(Péﬂ =g (y)H(p'2,9 by Theorem 2.5, then

1 Bm (f; )l g0 < C/ T2 f (=9l 0 1T=29 ()l g 0 1 ()] dA (y)
G

= [, 1ol
S, 1ol
G

= (11l 0

K W)ldA () = Cllllpy 019l 0 1511y (2.35)

where €} = C'||K||, and f (y) = f(—y). Thus, m € BM,[(p}; (ph; (py]. Finally, by using (2.35), we obtain

| B, (fag)”(p's,

Nl o < 1. gl < C|K],.
o9l e 080 = !

HmH[(p’l;(pé;(p’s]e = sup {

Definition 2.18 Let 1 < p; < 00, p} = pf)il , (1=1,2,3) and 0 > 0. We denote by My[(p; (Ph: (p%] the space

of measurable functions M : G — C such that m (s,t) = M (s —t) € BMy[(p; (ph; (], that is to say

B (f,9) () =D f(s)g(t) M (s—1t) (s +t,2)
seGteG
extends to bounded bilinear map from LP10 (G)x L#20 (GQ) to L0 (Q). We denote ”M”[(p/l‘(pé'(pé} = || Ba]l-
"2 0
Proposition 2.19 Let M € (! (G’) Then, for all f € L¥? (G) and g € L2 (@)

/fa:— g (@ +y) MY (y) dy,

where MY is the inverse Fourier transform of the function M .

Proof Let f, g€ C*®(G). Then

By (f,9) (@) =YY f(s)g(t) M (s—1t) (s +t,z)
seGteG
=Y > f(9)4) (/Mv(y)<s—t,—y><8+t,w>d>\(y))
seGte G
/M ( S fs)(sa—y )(Zg t:r+y)d>\(y)
eG teG
/f v—y)g(@+y) MY (y)dA(y).
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Example 2.20 Let G be a locally compact abelian metric group and let Og be the unit of G. Take the bilinear

Hardy—Littlewood maximal function on G;

M (f.9) (z) = sup———

evrmen il TR PRI

B(0g,r)

for all f,g € Li,.(G), where B(0g,r) is open ball in G. The Hardy-Littlewood maximal function is bounded
from L@0(GQ) x L#20 (@) to LPs:9 (Q) whenever i = i—i— i and p3.ps <p +1.
Take the function

M (y) = mXB(OGm) (y) -

Since M € L' (@), by Proposition 2.19, M defines a bilinear multiplier in My[(p}; (ph; (p4] and

B (f, g H(p/ p <C ||f||(pf1,9 ||9||(p2 'R (2.36)
where
Bu (1.9)@) = 500y | @Dl (237)
! B(OG,
for all » > 0, by (2.37) we get
M(fg)@) =swrpi—s [ If@-ngl+ i)
g —r>18>\( B (0g,m) Yy)g Y Y
B(0g,r)
= supBuy (|f],1g]) (2.38)
r>0

which, together with (2.36) implies

M (f, 9l g0 < ClIf s,

Therefore, M (f,g) is bounded from L®*1¢ (G) x LW2? (GQ) to L¥s:? (G).

Proposition 2.21 Let K € ¢! (G’) . Then the following equalities are satisfied;

a) BT y1+us K (f? ) y1 y2BK (M—y1f7 yzg) Y1, Y2 € é;
b) BMyK (f7g) = BK (T*y.ﬂTyg)u ) S G

Proof a) Let f, g € C*(G) and let y1, yo € G. If we make the substitutions s — y; = u and ¢+ yo = v,
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then we have

BTy1+y2 Z Z f y1+yzK (5 - t) <S +t, $>

seG el

=3 > F®aOK(s—t—y1—y2) (s +t,2)
seGted

= D T f (WTg (0) K (u—v) (utv,2) (41— y2,2)
ueGved

—y2,m) > > Moy, ) (w) (My,9) " (v) K (u =) (u+v,2)
ueGved

= My, —y, Bk (M*y1f7 yzg)( ).

b) Let f, g€ C® (@) and let y € G. Then

Bu,ic (£.9) () =D F(s)g(t) MyK (s —t) (s + t, )
seG teG
=Y > f(9a@) (s—t.y) K(s—t)(s+t,)
seGted
=Y D> s (&) -y gt K (s—1t) (s +1t,x)
seGted

=35 T M F(s) Moy (8) K (s — 1) (s + t,2)

seGted

=2 D (T f) () (Tyg) " (8) K (s = 1) (s + t,0) = B (T f, Ty9) (x)

seGted

where we have used the formulas in (1.3). O
Theorem 2.22 Let K € My[(p); (ph; (p4].
a) If & e (" (G) then ® x K € Mo|(p}; (ph; (p5] and

1+ K] < M@l 151

[(p15(ph3 (8], (P13 (Phi(ph), -

b) If ® € L' (GQ), then PK € Mg[(p’l; (ph; (p5] and

|,

< (P K /. /. / .
(o0 2(p3]9_|\ I A o)

Proof a) Take any f, g € C* (G), by Proposition 2.21, we get
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Baur (£,9) (@) =Y D f()a(t) (@ %K) (s —t) (s + t,)

seG teG

-y (ZZﬂs)g(t)K(s—t—u) <s+t,x>> @ (u)
ue@G \seGteG

—ZBT“K f,9) ZBT“MKfa g) (z) @ (u)
uel uel

=Y My o,Bi (M_of, Mog) () ® (u).
ueé

Since K € My[(p}; (ph; (4], by (2.39), we have

1Bawrc (£,9)l g0 < ZHMU 0. Br (M_uf, Mo,g) (:v)@(u)H(pgﬁ

el
< Z |(I) | ||K|| (P1 (P33 ( 3] HM—uf” (P10 |g||(p/2’0
ue@
= HKH[(p’l;(Pé;(pé]g 1@l [0 191l g 0 < 00
Hence, ®x K € Mjy[(p}; (py; (ps] and
12 K504, = 12 e 1 M5 050), -
b) Let f, g € C* (G). Then by Propositon 2.21
B (f.9) sz HEK (s~ 1) (s +t,)
seGteG
- [o0 (sz DMK (s_t)<s+t,x>) dA (u)
a seG teG

/ & (u) Bar_.xc (f.9) () dA (u) = / & (u) B (T f, T-ug) () dA (1) .
G

G

Since K € My[(p}; (ph; (], by (2.40), we obtain

HB&K (fag)H(pg,a < /‘(I)(U” ”K”[(p/l;(pé;(pg}e HTufH( / ugH(p’2,0 dA (u)
G

I ), 10 170 Il 0 < .
Finally, ®K € My[(p}; (ph; (p] and by (2.41)

oK | IR
H [(p15(ph3 (], 120l 1 ”[(P1 (053 (5],

(2.39)

(2.40)

(2.41)
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O
Proposition 2.23 Let ® € L' (G) and M € My|(p}; (ph; (p5]. Then m(s,t) = M (s —t)® (s +1) €
BMp [(ph; (P; (P5] and
Hm”[(pu (P43 (), < el HM”[(p’l;(p’z;(pg]e :
Proof Let f, g€ C*(G). Then for all x € G, we have
By (f.9)(x) =Y % f(8)g(t) M (s —t) & (s +1) (s +1t,2)
seGted
:/¢> W) [ S5 F ()3 (0) M (s — 1) (s + oz — ) | dA(w)
a seG te@
/<I> )Bur (f,9) (x —w)dA(u) = @ % By (f,9) (). (2.42)
G
If we use the proof technique in (2.32), by the hypothesis and (2.42), we get
1B (fs D g0 = 12 % B (F,9) 0 < I1Baa (F59) |y 0 (14
<120 1M1 051, 1.0 1910 <
Hence, m € BMj [(p}; (py; (p5] and
Hm||[ i(phs(py], < lI1®fl; HM”[(!J& (P53 (), -
O

Proposition 2.24 Let K € (! (é) be nonzero function and let K € Mg[(p}; (ph; (p5]. If A is an automorphism

of G and if % = i + i — i, then there exists C' > 0 such that

JKY @) < cat k] 4 <1

G

(P13(phs (P, °
and

K @i @] < CLAT IR gy, 1412 1
G

Proof Let A be any automorphism of G. Define a function f: G — C by f(z) = (v, Az) for fixed ~ € G.
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By Proposition 2.19, we write

Br (f.f) (@)= [ f@—y) fz+y) K (y)dy

(1, Az —y) (v, Az +y)) KY (y) dy

I
A— o™ o~

Using (2.43) and making the substitution Az = u, we have

1

1Bic (£. D), = ( [ 1Bic (1. @) dx @ >)
- / K (y) dy ( / (7, Az) {7, Az)[P* dA <x>)
G

G
- / K (y) dy ( / [y P (s )5 4]~ dA <u>)
G G

Since |(vy,u)| =1, we achieve

IBic (D), = 1A A@F | [ KV ) ay.

G

On the other hand, we can write

f(z) = (y,Az) = |A] *% |A|"1 (y, Az) = |A| *2 Dy (z).

Let |A| > 1. By Lemma 2.7, we obtain

1

1 1 ’
0 = 1417 D] =147 s

(p1,0 (P10

_ 1
— 1A 7l

Since LP1te (GQ) € LW? (@), (see [3]), there exists C; > 0 such that el w0 < C1 ||7||p +c- Then

11l 0 = 1AL 7 IIWH(pr )< CulAlH Y1l 42

1

pl+e
— A ( / (7, @) [P dA <m>>
G

= Oy A A (G)TF < o

1980
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(2.43)

(2.44)
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Similarly, there exists Co > 0 such that
,% 1
[fllpy.0 < C2|A] 72 A(G) "2 < oo (2.46)

Using the assumption K € My[(p}; (ph; (ps] and the inequalities (2.45) and (2.46), we obtain
o

1B (£ Ao < 1 s, 10

-1 A+
Ph )\(G) pl+e | phte ||K||[(p,1;(p’2;(pé]9 . (247)

<0y Al H

Since LWs? (G) c LPs (@), there exists Cs > 0 such that
(2.48)

1B (f, Dy, < C3llBr (f, g0

Then by (2.47) and (2.48), we have
(2.49)

e P it e
Bk (f; f)Hpé S CiCaCs Al ™ 72 A(G)rate rate ||K||[(p/1;(p/2;(pg]9 :

By (2.44) and (2.49), we achieve

o.\"“

A

A(G)7 "/ 1B (£, Dl <
G

et
A(G)rate et HKH[(p’l;(pé;(pé]g'

3
m\"‘

< C1CxC5 |A|_E

This implies
4 1 1 _1
JEY @] < CLAPE T 1Kl g 001, = € 1A 1K g 501,
G

[ SV S
where C' = C1C2C5M (G) Pite whte #h
Now let |A| < 1. By Lemma 2.7, we have
pn H
AT (1,0

J

_ 1 ’
UMW=HMPu&ﬂ
(p},0

L
7

= |47 A IV py.0 = Il 50

Then, since LP1*e (G) ¢ L¥1? (G), we achieve
<y H,YHP&JFE

10 = 1l 0
_1
= O (G)757 < oo, (2.50)

for some C; > 0. Similarly, we have
1
110 < C2A(G) 724 < oo, (2.51)
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for some Cy > 0. Again using the assumption K € My[(p}; (ph; (py] and the inequalities (2.50) and (2.51), we

obtain

1B (7, Dll o < K oo, 10 1 o

ST
< IO T T K ), (2.52)
Thus, by (2.48) and (2.52), we have
P et e
[1Brc (fs f)lly, < C1C2C3A(G)7ite 7a* ||K||[(p'1;(p/2;(p'3]9 . (2.53)
Using (2.44) and (2.53), we achieve
NG AT | [KY @y = 1B (£.5)] <
G
SR
< C1CoC3A (G)Prte pate ||K||[(p’1;(p’2;(pé]e '
Then
v .
JEY @] < CLAE 1K 000,
G
S
where C' = C1C2C5A (G)ate rets vy O

Proposition 2.25 Let K € (* (é) be nonzero function and let K € My[(p'; (b (p5]. If A is an automorphism
of G satisfying |A| > 1, then

1 1 1
-2t
D3 V41 D2
Proof Assume that 2 < 1 4+ L By Proposition 2.21,
P3 Pi Po

B2k (5.9 0 = | Brveog i P9,

< ||K||[(P/1?(P,2§(pé]9 HM“f”(p’lﬁ ”g”(p'zﬁ

- HK”[(p’l;(p’z;(Pé]e Hf||(p/179 ||g||(p/2,9 ’

so T_,K € My[(p}; (py; (ph] for all uw € G. On the other hand,
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1T K (051005, = 1Bl
”f”(pgeIIgll oo =0 e =
[M—uBc (Mf, Mos) ||, 4
= sup 20 A Mufll e g Mo gl 1}
{ 1M g0 Mo wr0 <1 [ Mogg 0 <

= 1Bxl = 1K ] -

Thus, by Proposition 2.24, there exists C' > 0 such that

[ @B W arw)] < €A I gy 0,

€]
= CIAH IR g 0], (2.54)
Since T, K € (! (é) , from (2.54), we write
K ()] = [T (0)| = | ((T-uK)")" (06)| = / (T-uK) (4) (0 ) dA ()
G
= | [ TuK) @A) < LA IR ), (2.55)

G

for all u € G'. Since pi, < pi, + pi/, then —% < 0. Thus, the right side of (2.55) approaches zero for |A| — oo.
3 1 2

This implies K = 0. But this is a contradiction with the assumption K # 0. Then the assumption pi, <ty
3

Py Py

is not true. Therefore, we conclude 1% > :z% + z% O
3 1 2

Corollary 2.26 Let L, pi, + }%. If A is an automorphism of G satisfying |A| > 1, then Mg[(py; (pY; (p4]
p3 1 2

={0}.

Proof Take any K € My[(p}; (ph; (ps]. Let ¥ € L' (G) such that 0 # ¥ € ¢! (G) By Theorem 2.22, we

have U"K € My[(p; (ph; (p]. On the other hand, since K € My[(p}; (ph; (ps], K is bounded function. Then

we have UK € (! (G) Since UK € ¢! (é) N Mg[(p'l; (ph; (p5] and 1% < pi, + pi,, by Proposition 2.25, we
3 1 2

have " K = 0. Moreover, since ¥~ is a nonzero function, we obtain K = 0. This completes the proof. O
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