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Abstract: In this paper, tangent bundle TM of the hypersurface M in R™™! has been studied. For hypersurface M
given by immersion f: M — R™! considering the fact that F = df : TM — R?*"*"2 is also immersion, TM is treated
as a submanifold of R2"*2. Firstly, an induced metric which is called rescaled induced metric has been defined on TM,
and the Levi-Civita connection has been calculated for this metric. Next, curvature tensors of tangent bundle T'M have
been obtained. Finally, the orthonormal frame at the point (p,u) € TM has been defined and some curvature properties

of such a tangent bundle by means of orthonormal frame for a given point have been investigated.
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1. Introduction

Theory of tangent bundle has attracted the attention of scientists working in math and physics and has received
great importance in these areas. In recent years, there have been many publications examining the differential
geometric properties of the tangent bundle using different approaches, methods, and notations. In 1958,
Sasaki defined a new metric on the tangent bundle [12] and this metric became the focus of interest for many
mathematicians working on the theory of tangent bundle. Moreover, after Dombrowski has established the
relationship between the geometry of the tangent bundle with Sasaki metric and the base manifold [6], interest
in tangent bundle theory has grown even more. Due to the relationship between almost complex structure J
and the tangent bundle T'M of a Riemannian manifold M , one naturally expects very good features associated
with this almost complex structure vis-a-vis the complex geometry. However, the Sasaki metric on T'M causes
hindrance on the almost complex structure and does not allow it even to be a complex structure unless the base
manifold is flat. This problem in the Sasaki metric has led researchers to search for other metrics on the tangent
bundle for example Cheeger-Gromoll metric, Oproiu metric (cf. [1, 3, 7-11]). Since the projection = : TM — M
is a Riemannian submersion, all metrics defined on T'M are appropriate with this smooth projection. This is
why these metrics are called natural metrics. However, in [4] Deshmukh et al. demonstrated that induced metric
on T'M is not generally a natural metric. In addition, they proved that the smooth map is an immersion and
therefore considered tangent bundle TM of a hypersurface M as an immersed submanifold. In [5], Deshmukh
and Al-Shaikh defined induced metric on T'M to search its geometry using the fact that T'M is a submanifold
of the Euclidean space R?"*2. Moreover, the authors found that there is a reduction in the codimension of

TM , so they examined the differential geometric properties of TM in terms of being hypersurface of R?*+1.
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In 2018, Al-Shaikh constituted an orthonormal frame on M3 which is submanifold of R* considering a special
case of [5] and examined the properties of tangent bundle through this frame [2]. Because tangent bundle of
a manifold is not compact, it cannot admit a Riemannian metric of strictly positive sectional curvature, it is
important to find a metric on the tangent bundle 7'M which has nonnegative sectional curvature.

The aim of this study is to introduce an induced metric on tangent bundle, which is called a rescaled
induced metric, and to investigate some curvature properties of such a tangent bundle.

For this purpose, firstly, the covariant derivatives of the horizontal and vertical vector fields in the
direction of each other are calculated, then the curvature tensors (0,4) and (1,3) types are obtained. Later on,
the orthonormal frame at the point (p,u) € TM is defined and the mean curvature and sectional curvatures of

tangent bundle T'M were obtained by means of the orthonormal frame for a given point.

2. Tangent bundle of a hypersurface

Consider the orientable hypersurface M given by immersion f : M — R"*! and tangent bundle TM of the
hypersurface M with immersion F : TM — R?"™2 (See. Theorem 3.2 in [4]). We denote the induced metrics

on M, TM by g,g and the Euclidean metric on R"*! as well as that on R2"+2 by (, ) and the Riemannian

connections on M, TM, R*"t!, R?"+2 by V.V, D, D , respectively. Let N and S be the unit normal vector
field and the shape operator of the hypersurface M. Then we have the following:

Lemma 2.1 If an oriantable hypersurface of R™t! is M and its tangent bundle as submanifold of R?"*2 s

TM, then the metric g on TM, which we call rescaled induced metric, for P = (p,u) € TM satisfies:
() 9p (XBYE) = a{gp (X, Yp) + 0p (Sp (Xp) ,u) gp (Sp (Y) )}
(i) Gp (XB,YE) =0
(iii) gp (Xp,YR) = gp (X5, Yp)
where a : M — R is a positive function.

Theorem 2.2 Let M be an oriantable hypersurface of the Euclidean space R™! and TM be its tangent bundle
as submanifold of R?" 2. Then

(i) ViV = (Va¥)" + (47 (X, V)" = 2 (R(X,Y)u)"

(i) VxnY" = (VxY)" +4(5(X),Y) N
(iii) VY™ =g (S(Y),X)N?

(iv) VxY" =0
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Proof If Kozul’s formula is used

25 <%thh,zh) = XM (Y Z") + Yy (zh XN

_Zhb” (Xh,Yh) _ 5 (Xh, [Yh7zh})

+9 (V" [2" X)) +9 (2", [x"¥"])

from Lemma 2.1 and the fact [X",Y"] = [X, Y" = (R(X,Y)u)", we get

25 (Vxyh2') = (X0l (V:2)+ (S (V)09 (S (2) 0]
[ XM 02) 4 9(8(2) ) XV (S (V) u)
“1 g (S(Y),u) X g (S (Z),u)
+(Y"a) [9(Z2,X)+9(S(2),u) g(S(X),u)]
(

g
+a [ th(Z,X)—I—g(S(X),u)th S(Z),u) ]
i +g(S(Z)7u)th(S'(X),u)

—(Z"a) [9 (X, Y) + g (S (X),u) g (S (Y),u)]

[ ZMg(X,Y) +g(S(Y),u) Z"g(S(X),u) |
+g(S(X),u)Zhg(S(Y),u)

—a

=g (o z) + g (Y2 X)") + 5 (2 X7

From the fact that X"g(Y,u) = g(VxY,u), X"g(Y,e;) = g(VxY,e;) and the shape operator gives S, :
T,M — T,M a linear map for each p € M, choosing a basis {e1, s, ...,e,} of T,M that diagonalizes S, with
Sp (€;) = Aie;, we get

X'g(V,S() = X' (Y5 (Y gp(weei))
S Mgy (, ) Xg (¥, 1)
Z Aigp (u’ ei) g (Vva ei)

9(VxY,5(u)).

Considering these results and

Xtg(Y",2°) =g (VxY)", Z°) + g (Y",(VxZ)")
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we get

9(5(VzY),u) |
—g (X, [Y, Z]) =g (S (X),u) g (S([Y, Z]),u)
+9 (Y, [Z2, X)) + 9 (S(Y),u) g (5([Z, X]),u)
+9(Z,[X,Y]) +9(5(2),u) g (S([X,Y]), u)

and thus we have

§ (X @), z")
2g (%Xh,yh, Zh> = é +9 ((Y (a) X)", Zh)
-3 (9(x.v)0dr)", 2")
+25 (V)" 2")
where (g (X,Y) odf*) is locally expressed as

g(X,Y)odf* = g;; f¥ = g;;0" f.

In this way, we obtain
25 (%Xh,yh, Zh)

— 95 ((VXW + (;a ( Xj;g}fo(j}f( ))h’zh>

27 ((VXY + Ay (X, Y))h,Zh>

and herefrom we get the horizontal part of vector field %Xh Yhoas (VxY)"+ (Af (X, Y))". Now we will search

the vertical part of vector field % nY". From the equation
XM GV, 27) = (VY. 2 + G (V" (Vx2)")
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and Kozul’s formula, we get

27 (%thh, Z“) = 3 (Z X, Y]" - (R(X,Y) u)“)
—Z"{a{g(X,Y)+g(S(X),u)g(S(Y),u)}}

~

—g (X" (Vy2)") =g (Y, (Vx2)")

-9 (R(X,Y)u)",2").
Hence, vertical part of vector field %thh is found as f% (R(X,Y)u)"”. Finally, combining expressions
g (%Xth,Zh> and ¢ (%X;LY}L,Z”> , we obtain (i) as follows

V¥ = (YY) 4 (Af (X, V)" — % (R(X,Y)u)".

To prove (ii), we use the immersion F : TM — R?"*2 to write the Gauss equation DxY = VxY + h (X,Y)
for TM (eq. 3 in [4]), in the form

DapxmdF (V") = dF (%XhY”> +h (XM YY)
We get from Lemma 3.2 in [4]
Digrxyray ldf (V)] = dF (%X,LY”) +h (XYY,
Note that the metric on R?"*2 being Sasaki metric, using the corresponding equation in [8], we obtain
[df(VxY) +g(S(X),Y)N]" = dF (%thv> +h (X" YY)
Since NV is tangent to T'M , equating the tangential and normal components, we get

dF (%th”> = dF((VxY)") +g(S(X),Y)N", (2.1)

~

(X" YY) = 0

that gives
VYV = (Vx V)’ + g (S (X),Y)N"

which proves (ii).

For (iii), we use the fact that [Y", X"] = (VyX)" (cf. [8], proposition 5.1) and (ii) to get
(VyX)"+g(S (), X) N = Vi ¥ = (VyX)",
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so we obtain
VY = g(S(Y),X)N?

which proves (iii).

To proof (iv), we use the Kozul’s formula and Proposition 5.1 in [8] together with Lemma 2.1, so we

obtain
29 (%«J/”,Z’l) = —Z"g (X", YY)
G [ 2) 4G (v [0 X))
=0
and
25 (%XUY% Z”) = X'g(Y,Z) +Y"g(Z,X) ~ Z°g(X,Y)
=0
which proves (iv). O

Lemma 2.3 Let X,Y € x(M) be two vector fields on the hypersurface M in R"™™'. Then the second

fundamental form Z of the submanifold T M satisfies
(i) h(X?,Y") =0,
(i) h (X" YY) =0,

(iii) h (X", Y") =g (S (X),Y)N".

Proof The truth of equation (ii) is clear from Eq. 2.1. For (i), we have from equations 5XY = %XYJr% (X,Y),

DxN = ~8 (X)+ V%N for the submanifold TM that DxY" = Vx¥+h (X*,Y") which together with the

fact that metric on the tangent bundle TR™+! is a Sasaki metric, that is, 5XUY” =0, we get Z(X”, Y?)=0.
For (iii), we have local orthonormal unit normal vector fields N = ﬁN h N* for the submanifold TM as
described in Lemmas 3.3 and 3.4 of [4], where N* is vertical on the tangent bundle TR™*!. Therefore, we get

h(X"Yh) = (E (x",v") Kf) +3 (ﬁ (X", v") ,N*)

~

g (va (x") ,Yh> N+3 <§N* (x") ,Yh) N*

~ ~

Considering equations BXY = %XY +h (X,Y), 5XN = fSK] (X) + Vé}]?f together with Lemma 3.2 of [4]
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and Proposition 7.2 in [8] for Sasaki metric on TR"! we find

~

~ (g h h
g(Sﬁ(X),Y>N

1 ~ ~
= —y (DXhNh,Yh> N

1
+=.a.g(DxN,Y)N"
a

= g(S(X),Y)N", (2.2)

Since NV is tangent to T'M and the unit normal vector field N* is vertical on the tangent bundle TR"*! and

from Lemma 3.2 of [4] and Proposition 7.2 in [8], it is taken

9 (ﬁ (X", v") ,N*)

- 5 <BdF(Xh)dF (Yh) ,N*>
= 5 ((DarodF (V)" + (Xa (S (V) ) N".N")

+9 (9(S(Y),u) (Dapx)N)", N¥)

= —g(S(Y),wg((S(X))",N*)=0

where we used (S (X))" € x (T'M) and that N* is normal vector field to the submanifold 7M. Combining the

above equation with equation 2.2, we get

~

h(X"Y") =g(S(X),Y)N"

O

Lemma 2.4 [5] The covariant derivatives in the direction of X" and X° for X € x (M) of the vertical and

horizontal lifts of the unit normal vector field N for an orientable hypersurface M in R™are given by

(i) DxsN¥ =0,

(i) Dx+N" =0,
(iii) DxnN* = = (S(X))",
(iv) DynN" = — (S (X))".
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Lemma 2.5 [5] For the tangent bundle TM of an orientable hypersurface M of the Euclidean space R™1,

we have
(i) h(X?,NY) =0,

(i) VyoN? =0,

(i) h (X" N?) =0,

(iv) VxnN" = —(S(X))", X e&x(M).

3. Curvature tensors of tangent bundle of hypersurfaces in a euclidean Space

In this section, we obtain expressions for the curvature tensors with type (1,3) and (0,4) of the tangent bundle
TM of the hypersurface M in a Euclidean space R™t! as a submanifold with unit normal N, as well as study
the properties of the vector field NV. The tangent bundle T'M is now a submanifold of the Euclidean space
R2"+2 | Then using the Gauss equation expressing curvature tensor field for submanifold 7'M in the Euclidean

space R?"*2 together with Lemma 2.1, we have the following theorems:

Theorem 3.1 Let (M,g) be a hypersurface in R"*1 and (TM, 5) be its tangent bundle. Then ﬁ the
Riemannian curvature tensor field with type (1,3) of the tangent bundle equipped with the rescaled induced

metric g is as follows:

- [ RIX,Y)Z+ (VxAp) (Y, 2)— (Vy A (X, 2) "
i Bz = L ey )

AR(X, A (Y, 2)) + R (Y, Ay (X, 2))
n CLS(X). R, 2)w) N ,
:
+§g(S(Y)7R(X,Z)u)N
-‘rg(S(Z),R(X,Y)u)N
R(X,Y)Z—g(VyS)X,Z)N )"
I v +9((VxS)Y,Z)N
(i) R(X", Y2 = (5. 2)8 (%) :
19(S(X).2)S (V)
N (VxS)Y,Z)N h
Gi) RO ynzi— ] Sgs(v).2)8(x0) b

—9(S(Y),Af (X, 2)) N

~

(iv) R(X",Y?)Z° =0,

(v) R(X",Y")Z" =0,
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(vi) R(X",Y")Z" =0, X,Y,Z € x(M).

Proof If we use formula of the curvature tensor together with Theorem 2.2, we get for (i)
Bixh yvhyoh S h ho 1 v
R(X",Y")Z" = VXh{(VYZ) + (Af (Y, 2)) —§(R(Y7Z)u) }
~ 1 v
Ty { (V52" 4 4y (1. 2))" - S (R X200

_V[X,Y]L(R(X,Y)u)"zh

_ { R(X,Y)Z + (VxAp) (Y, Z) — (Vy Af) (X, Z) }h
+Af (X, Ay (Y. Z)) — Ap (Y, Ap (X, 2))

5 (VyR) (X, Z)u— 5 (VxR) (Y, Z)u
—SR(X,A; (Y, 2)) + sR(Y, A; (X, Z))

+ %g( (X),R(Y,Z)u) N
(S(Z),R(XvY)U)N
For (ii), we get
R(X"YMZ° = YV {(Vy2)' +g(S(Y),Z)N'}

~Vyr {(VxZ)" + (S (X),Z) N}

“Vix,yh - (R(X, Y)u)vZ”

= (VxVy2)" +9(S(X),VyZ)N

+(Vxg(S(Y ) Z)N")*

+9(S(X),9(S(Y),Z)N*)N
~(VyVx2)" —g(S(Y),VxZ)N
—(Vyg(S(X),Z)N"
—9(S(Y),9(5(X),Z
—(Vixv2)" —g(S(X,Y]),Z)N"

)'U
)NV)N"
where if we consider that

(Vyg) (5(X),2)

Vyg(S(X),2)—g(VyS(X),Z)—g(S(X),VyZ)
ng(S(X)7Z)_ ((VYS)X7Z)
—9(S(VyX),Z)—g(5(X),VyZ)

and from lemma 2.5, we obtain

RO vz { RO T g(9v8) X 2)N 44 (Tx9) 1 DN }

—9(5(Y),2)S(X) +9(5(X),2)5(
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For (iii), we can write

~

R(X", Y*)Z" Vi {g(S(Y),Z)N"} = Vig vy 2"

Yy {(VXZ)h + (Af (X, 2))" - % (R(X,Z) u)“}

— (Vxg(S(Y),Z))N"+g(S(Y),Z) Vxn N
—g(S(Y),VxZ) N = g(S(Y),As (X, 2)) N"
—g(S(VxY),Z)N"

where since

VxS (Y)=(VxS)Y +S(VxY)
and from Lemma 2.5 we get

~

R(X"Y")Z" = (Vxg(S(Y),Z))N"~g(S(Y),VxZ)N®
—g(VxS(Y),Z)N"+g((VxS)Y,Z)N"
—g(S(Y),2)(S(X))" —g(S(V),As (X,Z))N"

also because
Vxg(S(Y),2)=(Vxg)(S(Y).2)+9(VxS(Y),2)+9(S(Y),VxZ)

and Vxg =0, it is found that
Vxg(5(Y),2)—g(VxS(Y),2) —g(S(Y),VxZ)=0.

Thus, we find (iii) as

Bty 2 { 9((VxS)Y, Z)N —g(S(¥),

For (iv), we can obtain easily that

~

R(X"Y")Z" = —Vy.{(Vx2)"+g(S(X),Z)N"}
= 0.
For (v) and (vi), we can similarly see that
R(X*,Y")Z" = Vx.{g(S(Y).Z)N"} = Vy. {g(S(X),Z)N"}

= 0

and

~

R(X",Y")Z" = 0.
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Theorem 3.2 Let (M,g) be a hypersurface in R"™1 and (TM, 5) be its tangent bundle. Then R the

Riemannian curvature tensor field with type (0,4) of the tangent bundle equipped with the rescaled induced

metric g is as follows:

R(X.Y)Z + (VxAy) (Y.2)
— (Vv Ap) (X, 2)

(i) R(XMY" 2" W) =ag +A; (X, Ap (Y, 2)) W
Ay (Y, Ap (X, 2))
R(X,Y)Z
+(Vx4y) (Y, 2)
ta.g(S(W)w).g [ § —(Vvap)(X,2)
+Af (X’ Af (Y7 Z)
—Ay (Y Ay (X, Z)
(VYR) (sz)u
N D . v) _ 1 —(v R)(KZ)U
(i) R(X"Y8ZNW) =50 “pixa vz (W]

(iii) R (X", Yz Wh) =0,

(iv) R(X" Y20 W) =g ({ —g(
+9(

(v) R(Xv,Y? 2% Wh) =0,
(vi) R(X*,Y"5 2", W") =0,

(vii) R (X" V" Zh Nv) =0,

(viii) R (X*, Y20 N*) = g((VxS)Y — (VyS) X, Z),

XY, Z,W € x (M

).

Proof Now, to prove the above equations, we will use the fact R (X", Y"; Z" W") =g (R(Xh, ymzh, Wh>
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and together with Theorem 3.1. Thus, for (i), we get

R(X,Y)Z+ (VxAp) (Y, 2) "
—Ay (Y, Ay (X, Z))
)

R(X,Y)Z—F(Vfo (Y,Z)
~ ayg ({ —(Vy4y) (X, 2) } W)
' +A5 (X, Ap (Y, 2)) ’
)

Similarly, for (ii), it is obtained that

£
RX"Yh 728 WYy = G +§

1

(VyR) (X, Z)u— (VxR)(Y,Z)u
= 39 ({ “R(X,A; (Y, 2)) + R(Y, Af (X, Z)) }W>

For (iii),(iv),(v), and (vi), it is easy to see respectively the following equations

R(X,Y)Z—-g((VyS)X,Z)N )"
;%(Xh,Yh;Z”,Wh) - E({ +9((VXS)K§2;(V }J/Vh)
S

—g(S(Y),2) )
+9(S(X),Z)S(Y)
= 0,
R(X,Y)Z !
- -g((VyS) X, Z) N
R(X"YMzv,wY) = g +9((VxS)Y,Z)N WY
—g(S(Y),Z)S(X)
+9(S(X),Z)S(Y)
_ R(X,)Y)Z -g(S(Y),Z)S(X)
= 9({ +9(S(X),2)S(Y) }W)

E (X?)’YU; Zv,Wh) =0

- )

~

R(XV, YY", Z°,W") = 0.
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Finally, for equations (vii) and (viii), we can obtain that

D h h h v gR(
R(X"Y" 2" N") = g +IR(

and

R(X,Y)Z !
(((VYS) ;

Z
R(X"Y"z",N") = g (VxS)Y,Z
S
S

)N
)N b NY

*g(S( ) ) (X)
+9(5(X),Z)S(Y)

= 9((VxS)Y —(Vy9) X, Z)

4. Orthonormal frame on the tangent bundle

In this section, considering the orthonormal basis {e1,ez,...,e,} on the hypersurface M at p, orthonormal
frame on the tangent bundle TM at (p,u) will be introduced. Here, it is assumed that parameter curves on

M are principal curvature lines.

Lemma 4.1 Let (M,g) be a hypersurface in R"*! and (TM7 5) be its tangent bundle as submanifold of
R2"*2 and {e1,e2,...,en} be an orthonormal basis for M at p, such that e; = ﬁ Thus, for a given point
(p,u) € TM, with u # 0, the set {f1, fa, ..., fan} formed from horizontal and vertical lifts of {e1,ez,...,en} is
an orthonormal basis for TM. Here, fi = \%e? with A = a (1 + K2 |u|2) , fi = ﬁef for i =2,...,n and

fian=¢€] for j=1,...n

Proof We have

G s = (e xet) = 5 el
= Sefglere) +g(S(er) W (S(er),w)
= S (1+ntpu?)
= 1
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~ ~ (1 1 1~
g (f27f2) = g (\/663’ \/663> = Eg (6376’21)

1

= —a{glezez) +9(S(e2),u)g(S(e2), u)}
=1
so we get
~ SN SR S W S S
g (fnvfn) - g ( aen’ \/aen> - &g (en7en)
= Ea{g (enaen)+g(s (en)au)g(s (en)au)}
=1
E(fﬂr‘rl? fn+1) = 5(611)7 61’) =1
§(f2naf2n) = 5(62762) =1
Moreover, we can easily show that the inner product of any pair of the set {f1, fa, ..., fan} is zero. O

Theorem 4.2 Let (M,g) be a hypersurface in R"*1 and (TM, E) be its tangent bundle as submanifold of

R2"*2 . Then, the mean curvature denoted by FI of TM 1is

~ 1 1 1
H= 5> {)\h(el,el) +o [h (e2,e2) +~~+h(€m€n)]}Nh-

Proof For the orthonormal basis {e1,es,...,e,} of the hypersurface M, we have the orthonormal basis of

TM at the point (p,u) as

{fluf?v”wan}:{\/lXQ =3 =

Hence, the mean curvature of T'M is calculated as

~ 1 2n
H - ?n{i h(fi,fn}
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Theorem 4.3 Let (M,g) be a hypersurface in R"*1 and (TM, 5) be its tangent bundle as submanifold of

R27*2 . Then, sectional curvatures denoted by K of TM are

Ky = 1{ Rijin +9 (Vi (Ay),; = Vi (Af) e1) }
' a | +9(Af (e, (Ay);;) — Af (e, (A ) e1) J°
(’l = 2’ 77’L)

~ 1 RijjiJrg(Vz‘ (Ap)j; — Vi (Ag)y; e z)

Kij = - ,

a +g (Af (eiv(Af)jj) _Af (ejv(Af)i]) 7€i>

(27] = 27"'7”7 Z7é.77 Z<J)

Ky = 0, (k=n+1,---,2n)

Kj = 0, (G=2-.n k=ntl- 2n)

Ku = 0, (ki=n+1,-2n k#I, k<l

Proof Using orthonormal frame {f1, fa,..., fon} of TM at the point (p,u), the sectional curvature K can

be given by the following formulas
Kli = K(fhf’t) R(flafi»fi?fl)a
(1= ) 1)

[?ij = If}(,f’uf]) (fivfjafj;fi)a
( c, N, Z#]a Z<])

Klk = I?(flvfk):]/\é(flvfk7fk7fl)a
(k=n+1,---,2n)

(Fir ) = R (Fj» Fi Fin £5)
j=2,---,n, k=n+1---,2n)

i
|
— NZ

Ky = fN((fmfl):;f(fk,fz,fz,fk%
(kl=n+1,-- 20, k£l k<lI).

Firstly, from {f1, fo, ..., fon} = {%e hoLeh ., ﬁefw ey, ey, ..., eﬁ} the orthonormal basis of T'M at the point

a
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(p,u) and Theorem 3.2, we get

=
==
|
nvRe
—~
~
—
e
==
~
=

Ky o=

(
= (Ve, Ay) (e1,€:)
+Af (elvAf (61, z;)

R
R(e1,€e;)e; + (Ve, Af) (€4, €5)
—Ag (e, Ay (e1,€4))

R(e1,e;)e;
1 + (Ve, Ay) (ei, €4)
+39(S(e1),u).g = (Ve Ap) (e1,€5) . S(w)
+Ay (e1, Ay (eir€4))
—Ag (e, Ay (e1,€i))

Herefrom, if we take expression with coordinates for brevity, we have

%1, _ 1 { Ruiin+ 9 (V1 (Ag);; — Vi(Ap),, . €1) }
' AL t9 (Af (61’ (Af)n‘) — Ay (e,-, (Af)u) ’61)

If we consider S(u) = S(e1. |u|) = |u| S(e1) = |u| k1e1 and A =a (1 + K3 |u|2) , we get

o 1 Riin+yg (V (Af) -V (Af) )
f a{ +g (A5 (e1,(Ap);;) — Af (eq, (A ) e1) }

Similarly, it is calculated as

Kij = K( 7vfj) (flaf]’fj7f’t)
~ 1 1
= R(— h _—_oh
(f Eivil f)
1 o el oh
= 72 17 ]a ]7 z)
Rijsi + g Vi (Af); = VA, i)
= Af (627(Af)]J)
Af (ej, Af ij , €4
And other sectional curvatures are obtained as zero. O
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Conclusion 4.4 In this article, rescaled induced metric has been defined on TM which is considered a

submanifold of R*"*2 and by means of this metric, orthonormal frame on TM at the point P = (p,u) has been

established. In this way, many differential geometric results in the theory of submanifolds can be obtained other

than

(1]

[11]

[12]

2024

the results given in this paper.
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