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Abstract: In this paper, we study some conditions about invertible and Fredholm truncated Toeplitz operators which
have unique symbols. For f ∈ L∞ , if Af is a Fredholm operator, then f |E ̸= 0 for any E ⊂ T with |E| > 0 . Moreover
ind (Af ) = 0. In particular, if Af is invertible in L(K2

u) , then f is invertible in L∞ . Besides, we give some results
about the kernel spaces of truncated Toeplitz operators. For f ∈ L∞ , we obtain the necessary and sufficient condition
that the defect operator I −A∗

fAf of truncated Toeplitz operator Af meeting some conditions is compact on the model

space K2
u .
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1. Introduction
A fundamental problem in the theory of linear operators is that the existence and uniqueness of the solution to
the equation

Tx = a, (1.1)

where T is a linear operator acting on a space H which contains x and a as elements. When H is a complex
Hilbert space, the operator T is a linear operator acting on some domain D(T ) in H and having a range in
H . It is obvious that the solution of (1.1) is unique if and only if the equation Tx = 0 has only the trivial
solution x = 0. Further, if T has a closed range, then there exists a solution of (1.1) if and only if ⟨y, a⟩ = 0,

where a is any solution of T ∗y = 0 and T ∗ denotes the adjoint of T . Moreover, if T is a Fredholm operator,
then the solvability of Equation (1.1) for a given a is equivalent to determining whether a is orthogonal to the
finite dimensional subspace ker T ∗ . Lastly, the space of the solutions of Equation (1.1) is finite dimensional.
These results suggest the importance of investigating the Fredholm operators.

For a Hilbert space H , let L(H) be the set of all bounded linear operators and LC(H) be the set of
all compact operators. We use ker T and ran T to denote the kernel space and range of T , respectively. The
dimension of the set E is denoted by dim (E). We use clos [E] to denote the closure of the set E .

Definition 1.1 If H is a Hilbert space, then the quotient algebra L(H)/LC(H) is a Banach algebra called the
Calkin algebra. The natural homomorphism from L(H) onto L(H)/LC(H) is denoted by π . Then T ∈ L(H) is
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a Fredholm operator if π(T ) is an invertible element of L(H)/LC(H) . The spectrum of π(T ) in L(H)/LC(H)

for T in L(H) is called the essential spectrum of T and is denoted by σe(T ) . The index of T is defined as
dim (T ) = dim ker T − dim ker T ∗, written as ind (T ) .

The set of all Fredholm operators is invariant under compact perturbations. Namely, some properties of
a Fredholm operator T can be possessed by the properties of T + K for every K in LC(H) . The following
theorem contains the usual definition of Fredholm operators.

Theorem 1.2 (Atkinson) If H is a Hilbert space, then T ∈ L(H) is a Fredholm operator if and only if the
range of T is closed and the dimensions of ker T and ker T ∗ are both finite.

In this paper, we study the Fredholm operators on the Hardy spaces. Let D denote the open unit disk
in the complex plane C and T denote the unit circle. Denoted by L2 = L2(T, dm) the Hilbert space of square
integrable functions on T with respect to the Lebesgue measure, normalized so that the measure of the entire
circle is 1 . Let L∞ be the space of the essentially bounded functions on the unit circle. The Hardy space H2

denotes the Hilbert space of all holomorphic functions in D having square-summable Taylor coefficients at the
origin, and it will be identified with the space of boundary functions, the subspace of L2 consisting of functions
whose Fourier coefficients with negative indices vanish. Let H∞ denote the space of all bounded holomorphic
functions in D and C(T) denote the space of all continuous functions on T .

Every function in H2 , other than the constant function 0 , can be factorized into the product of an
inner function and an outer function. An inner function is a function u ∈ H∞ such that |u(eiθ)| = 1 almost
everywhere with respect to the Lebesgue measure. The function F ∈ H2 is an outer function if F is a cyclic
vector of the unilateral shift S . That is,

∨∞
0 {SkF} = H2. For more properties about Hardy spaces, we can

refer to [17].
By Beurling’s theorem [1], it is well known that the invariant subspace of the unilateral shift operator

Sf = zf on H2 has the form uH2 , where u is an inner function. It is easy to check that K2
u = H2 ⊖ uH2 is

the invariant subspace of the backward shift operator S∗ on H2 , which is called the model space. Let P denote
the orthogonal projection from L2 onto H2 and Pu denote the orthogonal projection from L2 onto K2

u . For
ψ ∈ L∞ , the Toeplitz operator Tψ induced by the symbol ψ is defined on H2 by

Tψg = P (ψg), g ∈ H2.

Obviously, T ∗
ψ = Tψ . Toeplitz operators acting on H2 have very simple and natural matrix representation via

infinite Toeplitz matrices that have constant entries on the diagonals parallel to the main one. For ψ ∈ L∞ ,
Hankel operator Hψ induced by the symbol ψ is defined on H2 by

Hψg = (I − P )(ψg), g ∈ H2.

It is easy to check that H∗
ψh = P (ψh) for h ∈ L2 ⊖ H2 . The compressions of Toeplitz operators on K2

u are
called truncated Toeplitz operators, which are defined by

Aψf = Pu(ψf), f ∈ K2
u.

The function ψ is called the symbol of Aψ . Clearly, A∗
ψ = Aψ .
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Truncated Toeplitz operators represent a far reaching generalization of classical Toeplitz matrices. Al-
though particular case had appeared before in the literature, the general theory has been initiated in the seminal
paper [20]. Since then, truncated Toeplitz operators have constituted an active area of research. We mention
only a few relevant papers [2, 11, 18] and so on. On the operator theory level, Nagy shows that Az is a model
for a certain class of contraction operators [19]. Every contraction operator T on the Hilbert space H having
defect indices (1, 1) and such that lim

n→∞
T ∗n = 0 (SOT) is unitarily equivalent to Az for some inner function

u , where SOT denotes the strong operator topology. Thus, the research on truncated Toeplitz operators is of
representative significance.

In [9], the author proves that if f is in L∞ such that Tf is a Fredholm operator, then f is invertible in
L∞ . Moreover, if f ∈ H∞ , then Tf is invertible in L(H2) if and only if f is invertible in H∞ . In this case,

σ(Tf ) = clos [G(f)(D)],

where G(f) is the Gelfand transform of f . If f belongs to C(T) , then Tf is a Fredholm operator if and only
if f does not vanish. In this case, ind (Tf ) is equal to the negative winding number of the curve traced out by
f with respect to the origin. In addition, if f is in H∞ +C(T) , then Tf is a Fredholm operator if and only if
f is invertible in H∞ +C(T) . The Fredholm properties of Toeplitz operators have many characterizations, see
[9], but there are very few results for Fredholmness of truncated Toeplitz operators.

For f ∈ H∞ , Af is defined on K2
u for some inner function u . It is well-known [6] that

σ(Af ) =

{
λ ∈ C : inf

z∈D
(|u(z)|+ |f(z)− λ|) = 0

}
= f(σ(Az)).

For f ∈ H∞ + C(T) , in [3], we know that

σe(Af ) =

{
λ ∈ C : lim

z∈D
inf

|z|→1
(|u(z)|+ |f̃(z)− λ|) = 0

}
= f(σe(Az)),

where f̃ denotes the Possion integral of f . We can refer to [6] for more results that Af is invertible in
L(K2

u) for f ∈ H∞ . In [7], the authors show that asymmetric truncated Toeplitz operators are equivalent
after extension to Toeplitz operators with triangular symbols of a certain form and give some description about
the kernel of asymmetric truncated Toeplitz operators with analytic. In [8], using truncated Toeplitz operators
equivalence after extension to Toeplitz operators with 2×2 matrix symbols, the authors establish Fredholmness
and invertibility criteria for truncated Toeplitz operators with u -separated symbols.

From the view of symbols of truncated Toeplitz operators, it is more difficult to find criteria for invertibility
of truncated Toeplitz operators with nonanalytic symbols. In our paper, we characterize the Fredholm truncated
Toeplitz operators by the properties of the symbol functions. In addition, from their own properties of model
spaces and truncated Toeplitz operators, some description of kernel spaces of truncated Toeplitz operators are
given.

The paper is organized as follows: In Section 2, we recall some necessary definitions and properties about
model spaces and truncated Toeplitz operators. In Section 3, we give some results about the kernel spaces of
truncated Toeplitz operators. In Section 4, under the condition that truncated Toeplitz operators have unique
symbols, we study the sufficient condition or necessary condition about invertible truncated Toeplitz operators
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Af for f ∈ L∞ . In addition, we also get the necessary and sufficient conditions about the quasinilpotent
truncated Toeplitz operators and positive truncated Toeplitz operators. In Section 5, for u(0) = 0 and
f ∈ (K2

u+K2
u)∩L∞ , the necessary condition is obtained for Af to be Fredholm. In Section 6, for f ∈ L∞ , we

provide the necessary and sufficient condition that the defect operator I−A∗
fAf of truncated Toeplitz operator

Af meeting some conditions is compact on the model space K2
u .

2. Preliminaries
In this section, we introduce some basic properties of truncated Toeplitz operators. The reproducing kernel of

K2
u at λ ∈ D is the function Ku

λ (z) =
1−u(λ)u(z)

1−λz . As is well known that K2
u carries a natural conjugation C ,

antiunitary, involution operator, defined by Cf = zfu, for f ∈ K2
u . We have that

K̃u
λ (z) = (CKu

λ )(z) =
u(z)− u(λ)

z − λ
,

which is the conjugation reproducing kernel of K2
u at λ ∈ D . That is, f̃(λ) = (Cf)(λ) = ⟨K̃u

λ , f⟩ for f ∈ K2
u .

A bounded linear operator A on K2
u is called C -symmetric if CAC = A∗. Garcia and Putinar introduce some

properties of C -symmetry in [12] and they show that all truncated Toeplitz operators are C -symmetric. About
more complex symmetric operators can be found in [13].

Bounded truncated Toeplitz operators may be have some unbounded symbols. Sarason gave an example
in [20]. Moreover, the symbols of truncated Toeplitz operators are not unique. For f ∈ L2 , Sarason in [20]
proved that Af = 0 if and only if f ∈ uH2 + uH2 . If u(0) = 0 , then Af has a unique symbol in K2

u +K2
u . In

our paper, we mainly consider truncated Toeplitz operators defined on infinite dimensional model spaces which
have unique symbols.

The set of all bounded truncated Toeplitz operators is denoted by Tu . For a ∈ D , let φa be the M öbius
transform φa(z) =

z−a
1−az . The Crofoot transform is the unitary operator J : K2

u → K2
φa◦u defined by

Jf =

√
1− |a|2
1− au

f.

It is proved in [20] that JTuJ
∗ = Tφa◦u. If u(0) = α ̸= 0 , then (φα ◦u)(0) = 0 and Tu is unitarily equivalent to

Tφα◦u . Hence we may assume that u(0) = 0 when we consider the properties of truncated Toeplitz operators.

3. The kernel spaces of truncated Toeplitz operators

The kernel spaces of truncated Toeplitz operators are crucial in studying Fredholmness, but the kernel spaces
of truncated Toeplitz operators are complicated. In this section, we introduce some results about kernel spaces
of truncated Toeplitz operators.

Proposition 3.1 Let u be a nonconstant inner function and K2
u be the model space. If v1 and v2 are inner

functions and f = v1v2 , then

ker Af = v2
(
uv1H

2 ⊕K2
v1

)
∩K2

u.
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Proof Denoted by E = v2
(
uv1H

2 ⊕K2
v1

)
∩K2

u . For any g ∈ ker Af , we have that 0 = Afg = Pu(v1v2g).

This implies that v1v2g ∈ uH2 + zH2. There exist h, φ ∈ H2 such that v1v2g = uh+ zφ. That is,

v2g = v1uh+ v1zφ.

By K2
v1 = v1zH2 ∩H2, we obtain that v1zφ ∈ K2

v1 and φ ∈ K2
v1 . Since v1uH2 ⊆ v1H

2, we have that

v1uH
2 ⊥ K2

v1 .

Thus g ∈ E and ker Af ⊆ E.

For any ψ ∈ E , there exist φ ∈ H2 and η ∈ K2
v1 such that ψ = v2(v1uφ+ v1zη). It follows that

Afψ = Pu (v1v2v2(v1uφ+ v1zη)) = Pu(uφ+ zη) = 0.

Thus ψ ∈ ker Af and E ⊆ ker Af . The proof is completed.
2

For h ∈ H∞ , we already know the kernel space of Ah , see in [22]. In the following, for f ∈ L∞ but
f /∈ H∞ , we give some descriptions about the kernel space of Af . We need the following preliminaries.

For x, y ∈ H∞ , we use GCD(x, y) to denote the greatest common divisor of Ix and Iy , where Ix

denotes the inner part of x , which is defined up to a constant. The following lemmas come from [14].

Lemma 3.2 If f, g ∈ L∞ , then either ker H∗
fHg = ker Hg or ker H∗

gHf = ker Hf .

Lemma 3.3 If f is in L∞ , then ker Hf ̸= {0} if and only if f is of the form θb , where θ is some inner
function and b ∈ H∞ such that GCD(θ, b) is a constant.

For f ∈ L∞ , by Pu = P − uPu = Pu(I − P )u , we have that

Af = PufPu = Pu(I − P )ufPu(I − P )u = H∗
uHufH

∗
uHu. (3.1)

In terms of (3.1), the kernel spaces of truncated Toeplitz operators are closely related to the kernel spaces of
Hankel operators. By Pu|H2 = H∗

uHu, we get that

ker Af = ker H∗
uHuf ∩K2

u.

By Lemma 3.2, we obtain that either
ker H∗

uHuf = ker Huf ,

or
ker H∗

ufHu = ker Hu = uH2.

Suppose that ker H∗
ufHu ⊋ ker Hu. We have that

ker Af = ker H∗
uHuf ∩K2

u = ker Huf ∩K2
u.

Then, by Lemma 3.3, we will get some descriptions about the kernel space of truncated Toeplitz operators. In
the following, we give the necessary and sufficient condition such that ker H∗

ufHu ⊋ ker Hu.

2184



YANG et al./Turk J Math

Lemma 3.4 Let u be a nonconstant inner function and K2
u be the model space. If f is in L∞ , then

ker Tf ∩K2
u = {0} if and only if ker H∗

ufHu = ker Hu = uH2 .

Proof Suppose that ker H∗
ufHu = ker Hu = uH2. We have that

H∗
ufHug ̸= 0, (3.2)

for any g ∈ K2
u . Since model spaces have an antiunitary operator C , there exists a function ψ ∈ K2

u such that

g = Cψ = uzψ.

Then
H∗
ufHug = H∗

uf (I − P )(uuzψ) = H∗
ufzψ = P (ufzψ) = Tfg. (3.3)

By (3.2), we get that Tfg ̸= 0 for any g ∈ K2
u . Thus

ker Tf ∩K
2
u = {0}. (3.4)

Next we prove the necessity. It is obvious that uH2 ⊆ ker H∗
ufHu. For any h /∈ uH2 but h ∈ H2 , there

exist η ̸= 0 ∈ K2
u and φ ∈ H2 such that h = η + uφ. Then

H∗
ufHuh = H∗

ufHu(η + uφ) = H∗
ufHuη.

By (3.3) and (3.4), we conclude that H∗
ufHuη ̸= 0. It follows that h /∈ ker H∗

ufHu. Thus ker H∗
ufHu ⊆ uH2.

The proof is completed.
2

Remark 3.5 From Lemma 3.4, we have that ker Tf ∩K2
u ̸= {0} if and only if ker H∗

ufHu ⊃ ker Hu = uH2.

Lemma 3.6 If u and θ are nonconstant inner functions with GCD(u, θ) = v ̸= c and u = vu1 , then

K2
u ∩ θH2 ⊆ vK2

u1
,

where v and u1 are inner functions and c is a constant.

Proof For f ∈ K2
u∩θH2 , there exists h ∈ H2 such that f = θh . By u = vu1 , we have that K2

u = K2
v⊕vK2

u1
.

There exist g ∈ K2
v and g1 ∈ K2

u1
such that

f = θh = g + vg1. (3.5)

By GCD(u, θ) = v , we get that θ = vθ1, where θ1 is an inner function. Then, by (3.5), vθ1h−vg1 = g ∈ vH2.

By vH2 ⊥ K2
v , we obtain that g = 0 and f = vg1 ∈ vK2

u1
. The proof is completed.

2

Remark 3.7 If GCD(u, θ) = θ and u = θu1 , then K2
u ∩ θH2 = θK2

u1
. Furthermore, θK2

u1
is an invariant

subspace of Az defined on K2
u .
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Proposition 3.8 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. Suppose

that f = f1 + f2 ∈ (K2
u +K2

u)
⋂
L∞, where f1 and f2 belong to K2

u with f1(0) = 0 and f2 ̸= 0 . If

ker Tf ∩K
2
u ̸= {0},

then there exist an inner function x and η ∈ H∞ with GCD(x, η) = c and GCD(x, u) = v ̸= c such that
f = xuη and f2 ∈ K2

x . Moreover,

{0} ̸= ker Af = ker Huf ∩K2
u = xH2 ∩K2

u ⊆ vK2
u1
,

and
ker Huf ∩K

2
u = {0},

where v and u1 are inner functions with u = vu1 and c is some constant.

Proof By ker Tf ∩K2
u ̸= {0} , there exists g ̸= 0 ∈ K2

u such that Tfg = 0 . That is, fg ∈ zH2. There exists

y ̸= 0 ∈ H2 such that fg = zy. Since model spaces have an antiunitary operator C , there exists ψ ̸= 0 ∈ K2
u

such that g = Cψ = uzψ. Then
fg = fuzψ = zy.

That is, ufψ = y ∈ H2. Moreover, Hufψ = (I − P )(ufψ) = 0. This implies that

ker Huf ∩K2
u ̸= {0}. (3.6)

By Remark 3.5, we have that ker H∗
ufHu ⊃ ker Hu. Then, by Lemma 3.2,

ker H∗
uHuf = ker Huf . (3.7)

In terms of (3.1), (3.6) and (3.7), we get that

ker Af = ker H∗
uHuf ∩K2

u = ker Huf ∩K2
u ̸= {0}.

By (3.6), we conclude that
ker Huf ̸= {0}.

By Lemma 3.3, there exists an inner function x and η ∈ H∞ with GCD(x, η) = c such that ker Huf = xH2

and uf = xη, where c is a constant. Thus,
f = xuη, (3.8)

and
ker Af = ker Huf ∩K2

u = xH2 ∩K2
u ̸= {0}. (3.9)

By Lemma 3.6, we obtain that ker Af = xH2 ∩K2
u ⊆ vK2

u1
. By (3.8), we have that

xf = uη. (3.10)

In terms of f = f1 + f2 , we get that xf1 + xf2 = uη. That is, xf2 = uη − xf1 ∈ H2. Since u(0) = 0 and
f1(0) = 0 , we obtain that

xzf2 = zuη − zxf1 ∈ H2.
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This implies that f2 ∈ K2
x. By f2 ̸= 0 ∈ K2

u , we have that K2
u ∩K2

x ̸= {0} and GCD(x, u) = v, where v is a
nonconstant inner function.

Since ker Af = C(ker Af ), we get that ker Af ̸= {0}. Then, by (3.1) and (3.9),

ker Af = ker H∗
uHuf ∩K

2
u = C(xH2 ∩K2

u).

For any xh ̸= 0 ∈ xH2 ∩K2
u , we conclude that C(xh) = uzxh. Then, by (3.10),

Huf (uzxh) = (I − P )(fzxh) = (I − P )(uzhη) = uzhη ̸= 0. (3.11)

In terms of ker Huf ⊆ ker H∗
uHuf , we get that

ker Huf ∩K
2
u ⊆ ker H∗

uHuf ∩K
2
u = C(xH2 ∩K2

u).

Thus, by (3.11), ker Huf ∩K2
u = {0}. The proof is completed. 2

Remark 3.9 1. In fact, for f ∈ (K2
u+K

2
u)

⋂
L∞ , ker Tf , ker Huf and ker Af have the following relationship:

ker Tf ∩K
2
u ̸= {0} ⇒ ker Huf ∩K2

u ̸= {0} ⇒ ker Af ̸= {0},

and
ker Af = {0} ⇒ ker Huf ∩K2

u = {0} ⇒ ker Tf ∩K
2
u = {0}.

2. In [4], it is well known that f = gh where g, h ∈ H∞ if and only if
∫
T log |f |dm > −∞. Under

conditions of Proposition 3.8, we have that f = xuη . That is, log |f | ∈ L1 .

By (3.1), truncated Toeplitz operators are associated with Hankel operators. The truncated Toeplitz
operators are compressions of Toeplitz operators. From this, the kernel spaces of them must have some
relationships. We use |E| to denote the Lebesgue measure of measurable set E .

Proposition 3.10 Let E be a measurable subset of T with 0 < |E| < 2π . For f ∈ L∞ with f ̸= 0 and
f |E = 0 , if v ∈ L∞ is invertible in L∞ , then the following hold.

(1) ker Tvf = ker Tvf = {0} . In particular, ker Tf = ker Tf = {0} ;

(2) ker Hvf = ker Hvf = {0} . In particular, ker Hf = ker Hf = {0} ;

(3) ker H∗
vf = ker H∗

vf
= {0} . In particular, ker H∗

f = ker H∗
f
= {0} ;

(4) Let u be a nonconstant inner function and K2
u be the model space. If ker Af ̸= {0}, then

ker Af = {g ∈ K2
u : Hufg ∈ uzH2}.

Proof (1) For any φ ∈ ker Tvf ⊆ H2 , we have that 0 = Tvfφ = P (vfφ). Then vfφ ∈ zH2, and there exists
h ∈ H2 such that vfφ = zh. By f |E = 0 , we get that

v(eiθ)f(eiθ)φ(eiθ) = eiθh(eiθ) = 0,
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for any eiθ ∈ E . Thus h = 0 on E with |E| > 0 . By F. and M. Riesz theorem, we have that h = 0 and vfφ = 0.

Since v is invertible in L∞ , we obtain that fφ = 0. By f ̸= 0 and φ ∈ H2 , we conclude that φ = 0 and
ker Tvf = {0}. We can get that ker Tvf = {0} by the same way.

The proofs of (2) and (3) are similar to (1).
(4) For any g ̸= 0 ∈ ker Af , we have that Afg = Pu(fg) = 0. Suppose that fg ∈ uH2. There exists

h ∈ H2 such that fg = uh. Then ufg = h ∈ H2. This implies that Hufg = (I − P )(ufg) = 0. Since u is
invertible in L∞ , we get that ker Huf = {0}. This is a contradiction. Thus fg /∈ uH2. Since

0 = Afg = Pu(fg) = P (fg)− uP (ufg),

for g ∈ ker Af , there exists x ̸= 0 ∈ H2 such that fg−uP (ufg) = zx. This implies that ufg−P (ufg) = uzx.

That is, Hufg ∈ uzH2. Thus ker Af = {g ∈ K2
u : Hufg ∈ uzH2}. The proof is completed.

2

The Coburn theorem states that ker Tf = {0} or ker T ∗
f = {0} . In the following, we give the sufficient

condition such that ker Af = {0} .

Proposition 3.11 Let u be a nonconstant inner function and K2
u be the model space. If f belongs to L∞ and

f ≥ 0 but f ̸= 0 , then ker Af = {0}.

Proof For g ∈ ker Af , we have that Afg = 0. Then

0 = ⟨Afg, g⟩ = ⟨fg, g⟩ =
∫ 2π

0

f |g|2dm. (3.12)

By f ≥ 0 , (3.12) can be written as 0 =
∫ 2π

0
f |g|2dm =

∫ 2π

0
|f 1

2 g|2dm = ∥f 1
2 g∥2. This implies that f 1

2 g = 0.

By f ̸= 0 and g ∈ H2 , we get that g = 0 and ker Af = {0}.
2

4. Invertible truncated Toeplitz operators
The invertible operators are special Fredholm operators. In this section, we introduce the invertibility of
truncated Toeplitz operators. Basic definitions and properties of invertible operators can refer to [5, 9].

For the Banach algebra B and a ∈ B , we use σ(a) and r(a) to denote the spectrum and spectral radius
of a , respectively. In particular, for f ∈ L∞ , the spectrum σ(Mf ) of the multiplication operator Mf is closely
related to the the essential range R(f) of f . The following lemma comes from Corollary 4.24 in [9].

Lemma 4.1 If f ∈ L∞ , then σ(Mf ) = R(f) .

For operator algebra L(H) , the invertibility of T ∈ L(H) has the following property (see [9] Proposition 4.8).

Lemma 4.2 If T is in L(H) , then T is invertible in L(H) if and only if T is bounded below in H and has a
dense range.

In the following, we give the necessary condition for invertibility of Af .
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Proposition 4.3 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. For

f ∈ (K2
u +K2

u)
⋂
L∞ , if Af is invertible in L(K2

u) , then f is invertible in L∞ .

Proof By Lemma 4.1, we only need to show that Mf is invertible in L(L2) . Since Af is invertible in L(K2
u) ,

there exists ε > 0 such that ∥Afg∥ ≥ ε∥g∥, for g ∈ K2
u . Then, for each n ∈ Z and g ∈ K2

u ,

∥Mfz
ng∥ = ∥fzng∥ = ∥fg∥ ≥ ∥Pu(fg)∥ = ∥Afg∥ ≥ ε∥g∥ = ε∥zng∥.

Since the set {znh : n ∈ Z, h ∈ K2
u} is dense in L2 , it follows that Mf is bounded below in L2 . Similarly,

since Af = A∗
f is invertible in L(K2

u) , we have that Mf is bounded below in L2 . Then Mf is one-to-one.
Moreover,

clos [ran Mf ] = (ker Mf )
⊥ = L2.

Thus, by Lemma 4.2, Mf is invertible in L(L2) . The proof is completed.
2

Remark 4.4 From Proposition 4.3, if the symbol f is not invertible in L∞ , then Af must not be invertible in
L(K2

u) . Moreover, if f |E = 0 , then Af is not invertible in L(K2
u) , where E is a measurable subset of T with

0 < |E| < 2π .

By Proposition 4.3, when the truncated Toeplitz operator is invertible in L(K2
u) , we have that the symbol

is invertible in L∞ . In the following, we explain that the condition may be not necessary and sufficient. If f
belongs to C(T) and f is invertible in C(T) , we have that Af is a Fredholm operator. The following lemma
comes from [11].

Lemma 4.5 Let u be an inner function. For f, g ∈ C(T) , if Af and Ag are truncated Toeplitz operators on
K2
u , then AfAg −Afg is compact.

Proposition 4.6 Let u be a nonconstant inner function and K2
u be the model space. For f ∈ C(T) , if f is

invertible in C(T) , then Af is a Fredholm operator.

Proof Since f is invertible in C(T) , there exists g ∈ C(T) such that fg = 1 . Then Afg = I. By Lemma
4.5, we have that I −AfAg = Afg −AfAg and I −AgAf = Afg −AgAf are compact. Thus Af is a Fredholm
operator. 2

Corollary 4.7 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. If f is an

outer function in K2
u

⋂
H∞ , then the following are equivalent.

(1) Af is invertible in L(K2
u) ;

(2) f is invertible in L∞ ;
(3) f is invertible in H∞ ;
(4) Tf is invertible in L(H2) .
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Proof For f ∈ H∞ , (3) is equivalent to (4). (See [9] Proposition 7.21). If f is an outer function, (3) is
equivalent to (2). (See [9] Proposition 6.20). By Proposition 4.3, we only need to show that (2) ⇒ (1) . Suppose
that f is invertible in L∞ . There exists φ ∈ L∞ such that φf = 1 . Since f is an outer function, we have that
φ is analytic. Thus φ ∈ H∞ . Then AfAφ = AφAf = Afφ = I. This implies that Af is invertible in L(K2

u) .
2

Remark 4.8 The function f is invertible in H∞ if and only if Tf is invertible in L(H2) . Hence, for f ∈ H∞ ,
that Tf is invertible in L(H2) implies that Af is invertible in L(K2

u) . Moreover, σ(Af ) ⊆ σ(Tf ). Conversely,
for f ∈ H∞ , if Af is invertible in L(K2

u) , we may not get that Tf is invertible in L(H2) . For example:

Example 4.9 If f ̸= c is in H∞ and u = z−a
1−az for a ∈ D , where c is a constant. Since

σ(Af ) = f(σ(Az)) = f(a) and σ(Tf ) = clos [f(D)],

we have that
f(a) = σ(Af ) ⊂ σ(Tf ) = clos [f(D)].

This implies that Tf may be not invertible in L(H2) when Af is invertible in L(K2
u) .

Corollary 4.10 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. If f is in

(K2
u +K2

u)
⋂
L∞ , then R(f) = σ(Mf ) ⊂ σ(Af ) .

Proof Since Af − λ = Af−λ for λ ∈ C , by Proposition 4.3, we get that σ(Mf ) ⊂ σ(Af ). By Lemma 4.1, the
proof is completed. 2

Corollary 4.11 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. For

f ∈ (K2
u +K2

u)
⋂
L∞ , if Af is quasinilpotent, then Af = 0 .

Proof If Af is quasinilpotent, then σ(Af ) = {0} . By Corollary 4.10, it is easy to get that Af = 0.

2

Corollary 4.12 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. If

f ∈ (K2
u +K2

u)
⋂
L∞ , then Af is a self-adjoint operator if and only if f is a real-valued function.

Proof By Corollary 4.10, the proof is obvious. 2

Corollary 4.13 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. If f is in

(K2
u +K2

u)
⋂
L∞ , then ∥Af∥ = ∥f∥∞ .

Proof By Corollary 4.10, we obtain that r(Af ) = sup{|λ| : λ ∈ σ(Af )} ≥ sup{|λ| : λ ∈ R(f)} = ∥f∥∞.
Since ∥Af∥ ≥ r(Af ) , we have that ∥f∥∞ ≥ ∥Af∥ ≥ r(Af ) ≥ ∥f∥∞. Thus ∥Af∥ = ∥f∥∞.

2

Corollary 4.14 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. If

f ∈ (K2
u +K2

u)
⋂
L∞ , then Af is positive if and only if f is nonnegative.
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Proof If Af is positive, then the spectrum of Af is nonnegative. By Corollary 4.10, we have that the essential
range of f is nonnegative. Then f is nonnegative.

If f is nonnegative, then

⟨Afg, g⟩ = ⟨fg, g⟩ = ⟨f1/2g, f1/2g⟩ = ∥f1/2g∥2 ≥ 0,

for g ∈ K2
u . Thus Af is positive. 2

We discuss the necessary condition that Af is invertible in L(K2
u) . In the following, we give a sufficient

condition that Af is invertible in L(K2
u) .

Proposition 4.15 If f is invertible in L∞ and its essential range is contained in the open right half-plane,
then Af is invertible in L(K2

u) .

Proof Since f is invertible in L∞ , we have that 0 is not in R(f) . If essential range of f is contained in the
open right half-plane, then there exists δ > 0 such that

δR(f) = {δz : z ∈ R(f)} ⊆ {w ∈ C : |w − 1| < 1}.

We conclude that |δz − 1| < 1. By simple calculation, we get that αR(f)− β = R(αf − β). Then

∥δf − 1∥∞ = sup{|λ| : λ ∈ R(δf − 1)} = sup{|δz − 1| : z ∈ R(f)} < 1.

Thus ∥I −Aδf∥ < 1, and Aδf = δAf is invertible in L(K2
u) . The proof is completed.

2

5. Fredholm truncated Toeplitz operators
In this section, for f ∈ L∞ , we study the necessary condition that Af is a Fredholm operator. If M is a closed
linear subspace of the Hilbert space H , for h ∈ H , the distance between h and M is defined as

d(h, M) = inf{∥h−m∥, m ∈M}.

The following definition and theorem comes from Definition IV.1.3 and Theorem IV.1.6 in [15], respectively.

Definition 5.1 Let A be a linear operator with domain in normed linear space X (not necessarily dense in X )
and range in normed linear space Y , and ker A is closed. The minimum modulus of A is defined by, written
as γ(A) ,

γ(A) = inf

{
∥Ax∥

d(x, ker A) , x ∈ D(A)

}
,

where 0/0 is defined to be ∞ , and D(A) denotes the domain of A .

Theorem 5.2 Let X and Y be complete spaces and A be closed operator. Then A has a closed range if and
only if γ(A) > 0.

Remark 5.3 If T is a bounded linear operator on the Hilbert space, then T is closed. Thus, Theorem 5.2 can
apply to bounded linear operators.
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The following lemma can be found in [21].

Lemma 5.4 If T is in L(H) and ker T = {0}, then the range of T is closed if and only if T is bounded below
in H .

Theorem 5.5 Let u be a nonconstant inner function with u(0) = 0 and K2
u be the model space. For

f ∈ (K2
u +K2

u) ∩ L∞ , if Af is a Fredholm operator, then f |E ̸= 0 for any E ⊂ T with |E| > 0 . Moreover,

ind (Af ) = 0.

Proof First consider the case where kerAf = {0} . By CAfC = A∗
f , we obtain that kerA∗

f = C(kerAf ) = {0}.
Since Af is a Fredholm operator, we have that Af has a closed range. Then

ran Af = clos [ran Af ] = (ker A∗
f )

⊥ = K2
u.

Thus Af is invertible in L(K2
u) . Then, by Proposition 4.3, f is invertible in L∞ . Therefore f |E ̸= 0 for any

E ⊂ T with |E| > 0 .
Now consider the case where ker Af ̸= {0} . Suppose that there exists a measurable subset E0 ⊂ T with

|E0| > 0 such that f |E0 = 0 . By Proposition 3.10, we have that

ker Huf = ker Huf = {0}. (5.1)

In addition,
Afg = Pu(fg) = Pu(I − P )(ufg) = H∗

uHufg,

and H∗
uzg = P (uzg) = Cg for g ∈ K2

u . By zH2 = uzH2 ⊕ zK2
u and ker H∗

u = uzH2, we get that

∥H∗
uzg∥ = ∥P (uzg)∥ = ∥Cg∥ = ∥g∥ = ∥zg∥,

for g ∈ K2
u . Thus H∗

u is a partial isometry. Then

∥Hufg∥ ≥ ∥H∗
uHufg∥ = ∥Afg∥, (5.2)

for g ∈ K2
u . By (5.1), we obtain that

d(g, ker Huf ) = ∥g∥. (5.3)

For g ∈ K2
u but g /∈ ker Af , there exists a constant α with |α| = 1 such that αg ⊥ ker Af . Then, by

the Pythagorean theorem,
∥αg − φ∥2 = ∥αg∥2 + ∥φ∥2 = ∥g∥2 + ∥φ∥2,

for φ ∈ ker Af . Thus

d(αg, ker Af ) = inf {∥αg − φ∥, φ ∈ ker Af}

= inf
{√

∥g∥2 + ∥φ∥2, φ ∈ ker Af
}

≥ inf {∥g∥, φ ∈ ker Af}

= ∥g∥.
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Then
1

d(αg, ker Af )
≤ 1

∥g∥
. (5.4)

By (5.2), (5.3) and (5.4), we have that

∥Hufαg∥
∥αg∥

≥ ∥Afαg∥
d(αg, ker Af )

,

for g ∈ K2
u but g /∈ ker Af . Let

β = inf

{
∥Hufαg∥
∥αg∥

, g ∈ K2
u and g /∈ ker Af

}
.

We conclude that

β ≥ inf

{
∥Afg∥

d(g, ker Af )
, g ∈ K2

u and g /∈ ker Af
}
. (5.5)

Since Af is a Fredholm operator, we get that the range of Af is closed, and the dimensions of ker Af and
ker A∗

f are finite. Then, by Theorem 5.2,

γ(Af ) = inf

{
∥Afg∥

d(g, ker Af )
, g ∈ K2

u

}
> 0.

If g ∈ ker Af , then
∥Afg∥

d(g, ker Af )
=

0

0
= ∞.

Thus

inf

{
∥Afg∥

d(g, ker Af )
, g ∈ K2

u and g /∈ ker Af
}
> 0. (5.6)

Moreover, by (5.5),

β = inf

{
∥Hufαg∥
∥αg∥

, g ∈ K2
u and g /∈ ker Af

}
> 0. (5.7)

For g ∈ ker Af , since the dimension of ker Af is finite, we have that Huf |ker Af
has a closed range.

Thus, by Theorem 5.2,

β1 = inf

{
∥Hufαg∥
∥αg∥

, g ∈ ker Af
}
> 0. (5.8)

By (5.7) and (5.8), we get that

inf

{
∥Hufαg∥
∥αg∥

, g ∈ K2
u

}
= min{β, β1} > 0.

Then, by Theorem 5.2, Huf |K2
u

has a closed range. By ker Huf = {0} and Lemma 5.4, we obtain that Huf |K2
u

is bounded below in K2
u . There exists ϵ > 0 such that

∥Hufg∥ ≥ ϵ∥g∥, (5.9)
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for g ∈ K2
u . Then

∥Mfz
ng∥ = ∥fg∥ = ∥ufg∥ ≥ ∥(I − P )(ufg)∥ = ∥Hufg∥ ≥ c∥g∥ = c∥zng∥, (5.10)

for n ∈ Z and g ∈ K2
u . Since the set ∆ = {znh : n ∈ Z, g ∈ K2

u} is dense in L2 , we have that Mf is bounded
below in L2 .

Since Af is a Fredholm operator, there exist T1, T2 ∈ L(K2
u) and compact operators K1, K2 such that

AfT1 = I +K1 and T2Af = I +K2. By CAfC = A∗
f and C2 = I , we get that A∗

fCT1C = I + CK1C and
CT2CA

∗
f = I+CK2C. Since the set of all compact operators is an ideal, we get that A∗

f is a Fredholm operator.
Then ran A∗

f is closed and the dimension of ker A∗
f is finite. By (5.1) and

A∗
fg = Pu(fg) = Pu(I − P )(ufg) = H∗

uHufg,

for g ∈ K2
u , we conclude that M∗

f is bounded below in L2 by the similar way. Then Mf is invertible in L(L2) .
By Lemma 4.1, we have that f is invertible in L∞ . This contradicts our assumption about f . Thus f |E ̸= 0

for E ⊂ T with |E| > 0 . In terms of ker A∗
f = C(ker Af ), we have that ind (Af ) = 0. The proof is completed.

2

6. Compact defect operators of truncated Toeplitz operators

For a bounded linear operator T on the Hilbert space H , we call DT = I−T ∗T and DT∗ = I−TT ∗ the defect
operators, RT = DTH and RT∗ = DT∗H the defect spaces, and dim RT and dim RT∗ the defect indices. For
f ∈ H∞ , the necessary and sufficient condition is obtained for I − A∗

fAf to be compact or of finite-rank in

[22]. For f ∈ (K2
u +K2

u) ∩ L∞ , by Theorem 5.5, we obtain a sufficient condition for I −A∗
fAf to be compact.

In following, for f ∈ L∞ , using the known result about a finite sum of products of Toeplitz operators to be
compact, see [16], we will simplify I − A∗

fAf as a finite sum of products of Toeplitz operators and give the

necessary and sufficient condition that I −A∗
fAf is compact on the model space K2

u .

For f ∈ L2 , we use f+ and f− to denote P (f) and (I − P )(f) , respectively. In the following, for
f, g ∈ L∞, we will frequently use the relationship:

Tfg − TfTg = H∗
f
Hg. (6.1)

A finite sum of finite products of Toeplitz operators can be written as a finite sum of products of two Toeplitz
operators. The key idea used in [16]:

TfTgTh = Tf (Tg+ + Tg−)Th = Tfg+Th + TfTg−h, (6.2)

for f, g, h ∈ L∞. Moreover,

TfTgThTφ = Tf (Tg+ + Tg−)ThTφ = Tfg+ThTφ + TfTg−hTφ,

for f, g, h, φ ∈ L∞. Similar to (6.2), the product of four Toeplitz operators can be written as a sum of two
Toeplitz operators with (perhaps unbounded) symbols, and the decomposition is not unique.
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Lemma 6.1 Let u be a nonconstant inner function and K2
u be the model space. If f is in L∞ such that

f−, f+, (uf)+, (uf)−, (uf−(uf)−)− and (uf−(uf)−)+ are in L∞ , then I − A∗
fAf = T1−ff+ + T, where T

is the finite sum of the products of two Toeplitz operators.

Proof By Pu = P − uPu , we have that

Af = PufPu = Pu(I − P )ufPu(I − P )u = H∗
uHufH

∗
uHu. (6.3)

By (6.1), we obtain that

H∗
uHufH

∗
uHu = (Tf − TuTuf )(I − TuTu)

= (Tf − TuTuf )− (Tf − TuTuf )TuTu

= H∗
uHuf − (TfTuTu − TuTufTuTu)

= H∗
uHuf − (TfuTu − Tu(Tf+ + Tf−)Tu)

= H∗
uHuf − (TfuTu − TuTf+Tu − TuTf−Tu)

= H∗
uHuf − (TfuTu − Tuf+Tu − TuTuf−)

= H∗
uHuf − (Tuf−Tu − TuTuf−)

= H∗
uHuf − (Tuf−Tu − Tf− + Tf− − TuTuf−)

= H∗
uHuf − (−H∗

uf−
Hu +H∗

uHuf−)

= H∗
uHuf+ +H∗

uf−
Hu.

(6.4)

In terms of (6.3), we get that

I −A∗
fAf = Pu −H∗

uHufH
∗
uHufH

∗
uHu

= I − TuTu −H∗
uHuf (H

∗
uHuf+ +H∗

uf−
Hu)

= I − TuTu −H∗
uHufH

∗
uHuf+ −H∗

uHufH
∗
uf−

Hu.

(6.5)

By (6.1) and the idea before Lemma 6.1, H∗
uHufH

∗
uHuf+ and H∗

uHufH
∗
uf−

Hu can be written as a finite sum

of products of two Toeplitz operators. By calculating, we conclude that

H∗
uHufH

∗
uHuf+ = Tff+ − TuTuff+ − Tu(f)−Tuf+ + TuTuf+(f)−

, (6.6)

and

H∗
uHufH

∗
uf−

Hu = TfTf− − Tu(uf)+Tf− − TuT(uf)−f− − Tf(uf−)+
Tu

− TfTu(uf−)− + Tu(uf)+(uf−)+
Tu + Tu(uf)+Tu(uf−)−

+ Tu(uf−(uf)−)+
Tu + TuTu(uf−(uf)−)−

.

(6.7)

By (6.5), we have that

I −A∗
fAf = T1−ff+ + T, (6.8)
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where
T = TuTuff+ − TuTu + Tu(f)−Tuf+ − TuTuf+(f)−

− TfTf− + Tu(uf)+Tf−

+ TuT(uf)−f− + Tf(uf−)+
Tu + TfTu(uf−)− − Tu(uf)+(uf−)+

Tu

− Tu(uf)+Tu(uf−)− − Tu(uf−(uf)−)+
Tu − TuTu(uf−(uf)−)−

.

(6.9)

2

The following theorem can be found in [10].

Theorem 6.2 For fi, gi, h in L∞ , i = 1, 2, ···, n , if
n∑
i=1

TfiTgi−Th has finite rank k , then there are analytic

polynomials Ai(z) and Bi(z) , not all of which are zero, with max{deg Ai(z)} = k and max{deg Bi(z)} = k

such that
n∑
i=1

Aifi ∈ H2 or
n∑
i=1

Bigi ∈ H2.

In the following, we give the necessary condition that the defect operator I − A∗
fAf has finite rank on

the model space K2
u .

Theorem 6.3 Let u be a nonconstant inner function and K2
u be the model space. For f ∈ L∞ with

f−, f+, (uf)+, (uf)−, (uf−(uf)−)−, and (uf−(uf)−)+ in L∞ , if I − A∗
fAf has finite rank k , then there

are analytic polynomials Ai(z) , i = 1, , · · ·, 7, and Bj(z) , j = 1, , · · ·, 8, with max{deg Ai(z)} = k and
max{deg Bj(z)} = k such that

f
(
A3 +A5(uf−)+

)
+ u

(
A1 +A2(f)− +A4(uf)+ +A6(uf)+(uf−)+ +A7(uf−(uf)−)+

)
∈ H∞,

or

f−
(
B5 +B6(uf)−

)
+ u

(
B1ff+ +B2 +B3f+ +B4f+(f)− +B7(uf−)− +B8(uf−(uf)−)−

)
∈ H∞.

Proof By uf = uf+ + uf−, we get that

(uf)+ = P (uf+ + uf−) = uf+ + (uf−)+,

and
(uf)− = (I − P )(uf+ + uf−) = (uf−)−.

Since f is in L∞ such that f−, f+, (uf)+, (uf)− are in L∞ , we have that (uf−)+ and (uf−)− are in L∞ .
Since I−A∗

fAf has finite rank, by (6.8) and Theorem 6.2, there are analytic polynomials Ai(z) , i = 1, , · · ·, 7,

and Bj(z) , j = 1, , · · ·, 8, not all of which are zero, with max{deg Ai(z)} = k and max{deg Bj(z)} = k such
that

A1u+A2u(f)− +A3f +A4u(uf)+

+ A5f(uf−)+ +A6u(uf)+(uf−)+ +A7u(uf−(uf)−)+ ∈ H∞,
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or

B1uff+ +B2u+B3uf+ +B4uf+(f)− +B5f−

+ B6(uf)−f− +B7u(uf−)− +B8u(uf−(uf)−)− ∈ H∞.

By simplifying, the proof is completed.
2

The following theorem can refer to [16].

Theorem 6.4 A finite sum T of finite products of Toeplitz operators is a compact perturbation of a Toeplitz
operator if and only if

lim
|z|→1

∥T − T ∗
φz
TTφz∥ = 0,

where φz(w) =
z−w
1−zw .

In the following, we give the necessary and sufficient condition that the defect operator I − A∗
fAf is

compact on the model space K2
u .

Theorem 6.5 Let u be a nonconstant inner function and K2
u be the model space. If f is in L∞ such that

f−, f+, (uf)+, (uf)−, (uf−(uf)−)− and (uf−(uf)−)+ are in L∞ , then I −A∗
fAf is compact if and only if

lim
|z|→1

∥T − T ∗
φz
TTφz∥ = 0,

where φz(w) =
z−w
1−zw and T is equal to (6.9).

Proof By (6.8), we have that I −A∗
fAf is compact if and only if T1−ff+ + T is compact, where T is a finite

sum of the products of two Toeplitz operators. By Theorem 6.4, the proof is completed.
2
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