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Abstract: Studying the semileptonic decays of charmed particles is prominent in testing the standard model of particle physics. Motivated by 
recent experimental progress in weak decays of the charm baryon sector, we study the form factors of Λ! → Λℓ"𝜈 transition on two flavor 
lattices. We compute two- and three-point functions, extract the dimensionless projected correlators, and combine them to form the Weinberg 
form factors. In the zero transferred momentum limit 𝑓1, 𝑓2 and 𝑔1 form factors are found to be in agreement with other models, furthermore 
𝑓3 and 𝑔3 form factors are comparable to model determinations. The 𝑔2 form factor, on the other hand, is found to be mildly larger. We also 
evaluate the helicity form factors, which is consistent with the previous lattice studies. 
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1.  Introduction 

Recently significant experimental progress has been made regarding the weak decays of heavy baryons. LHCb Collaboration has 
observed the doubly charmed Ξ!!"" particle in the Λ!"	𝐾#	𝜋"	𝜋" channel [1], Belle Collaboration has measured the branching 
ratio Λ!" → 𝑝	𝐾#	𝜋" [2] and BESIII has studied the branching fraction of Λ!" both in the hadronic [3] and semileptonic modes 
[4, 5, 6]. Thanks to the developments in experimental facilities, many decay channels of charmed baryons have been observed, 
and more precise measurements are expected. 

The Λ! baryon is composed of the 𝑢, 𝑑, and 𝑐 valence quarks, its quantum numbers are 𝐽$ = 1
2

"
, and it has a flavor 

antisymmetric wavefunction. It is a member of the anti-4-plet (4+) in 𝑆𝑈(4)% group formalism. The Λ! baryon is first observed 
in the 1980s at CERN [7]. The Λ hyperon, on the other hand, is composed of 𝑢, 𝑑, and 𝑠 valence quarks and is well known since 
the 1960s [8]. Λ has the spin-parity quantum numbers 𝐽$ = 1

2

"
 and a flavor antisymmetric wavefunction. Λ and Λ! are members 

of the exact 𝑆𝑈(4)% anti-4-plet. 
Studying the semileptonic decays of charmed particles is prominent in testing the standard model of particle physics. Most 

of the work focuses on semileptonic decays of charm mesons, yet investigating the decays of charm baryons present additional 
information. One can gain complementary information about Cabibbo–Kobayashi–Maskawa (CKM) matrix elements and CP 
violations; moreover, semileptonic charm baryon decays can be used to test the lepton flavor universality [9]. Any deviation from 
the Standard Model predictions might indicate a hint for the physics beyond the standard model. 

Motivated by the theoretical and experimental achievements, we give a timely study of the spin-1
2
→ spin− 1

2
 semileptonic 

transition of Λ! → Λ, which gives access to six form factors, and there is a quark flavor change from charm to strange. In 
theoretical studies, these six transition form factors play a crucial role in semileptonic decays, which are also used as input for 
predicting the channels of doubly charmed baryons [10]. This work is reminiscent of Refs. [11, 12] where hyperon semileptonic 
form factors have been studied. The simulations have been carried out on 163 × 32 CP-PACS lattices. We use a ratio of two- and 
three-point correlation functions and extract the dimensionless projected correlators. The vector and axial-vector form factors 
are constructed using these correlators. The semileptonic Λ! → Λ decay has been previously studied in quark models [13, 14, 15, 
16, 17], QCD sum rules [18, 19, 20], bag model [21] and lattice QCD [22]. 

This paper is organized as follows: Theoretical formalism of the semileptonic decay, details of the lattice setup, and the 
definition of form factors are given in Section 2. We present our results, compare them to other works and give a discussion in 
Section 3. Section 4 summarizes our findings. 

2.  Theoretical formalism  

Lattice QCD is a discretized version of QCD. It is an ab initio method that begins directly from the QCD Lagrangian. Calculating 
QCD numerically on a lattice was introduced nearly forty years ago and has developed into a powerful tool since. Lattice QCD 
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is based on the path-integral representation of quantum field theory, which directly simulates the original theory. Furthermore, 
form factors can be determined using baryon matrix elements that can be written in terms of QCD path integrals, enabling the 
lattice gauge theory methods to be used. 

The semileptonic decay Λ! → Λ can be written by combining the vector and the axial-vector currents. The transition matrix 
element of the process is written in the following form:  

 
 〈Λ!(𝑝′)|𝑉&(𝑥) − 𝐴&(𝑥)|Λ(𝑝)〉 = 𝑢+Λ!(𝑝′)(𝑂&

'(𝑞) − 𝑂&((𝑞)𝑢Λ(𝑝), (1) 

where 𝑉&(𝑥) and 𝐴&(𝑥) are the vector and the axial-vector currents, respectively, and 𝑞& = 𝑝′& − 𝑝& is the transferred 
momentum between the incoming and outgoing baryon. The matrix element in Equation (1) is parameterized via six form factors 
which, in the Euclidean space, are given as,  

 
 𝑂&'(𝑞) = 𝛾&𝑓1(𝑞2) + 𝜎&	*𝑞*

%2(,2)
.Λ!".Λ

+ 𝑖	𝑞&
%3(,2)

.Λ!".Λ
, (2) 

 𝑂&((𝑞) = 𝛾&𝛾5𝑔1(𝑞2) + 𝜎&	*𝑞*𝛾5
/2(,2)

.Λ!".Λ
+ 𝑖	𝑞&𝛾5

/3(,2)
.Λ!".Λ

, (3) 

where the form factors are, the vector 𝑓1, the weak magnetism 𝑓2, the induced scalar 𝑓3, the axial-vector 𝑔1, the weak electricity 
𝑔2 and the induced pseudo-scalar 𝑔3. Here 𝑚Λ!  and 𝑚Λ denote the mass of Λ! and Λ baryons respectively and 𝜎&	* =

1
20
[𝛾& , 𝛾*]. 

𝑓1, 𝑓2, 𝑔1 and 𝑔3 form factors are called the first-class form factors. Rest of the form factors are called the second-class form factors 
according to Weinberg’s classification [23] where the second class form factors transform with the opposite sign under G-parity. 

From a phenomenological point of view, form factors are related to the internal structure of the particle at zero transferred 
momentum. In the flavor symmetric limit, 𝑓1 and 𝑓2 are related to the electromagnetic form factors while 𝑔2 and 𝑓3 vanish, so 
that these form factors are proportional to flavor symmetry breaking at leading order. Using the form factors at zero transferred 
momentum, one can predict differential decay rates which allow extracting the Cabibbo–Kobayashi–Maskawa matrix element 
|𝑉|2 [22]. 

In order to extract the form factors, we use the correlation functions,  
 
 〈𝐶Λ	Λ(𝑡; 𝑝, Γ4)〉 = ∑1 𝑒021	Γ4

34	〈vac|𝑇(𝜒Λ
3(𝑥)𝜒Λ

4(0))|vac〉, (4) 

 〈𝐶Λ!	Λ!(𝑡; 𝑝, Γ4)〉 = ∑1 𝑒021	Γ4
34	〈vac|𝑇(𝜒Λ!

3 (𝑥)𝜒Λ!
4 (0))|vac〉, (5) 

 〈𝐶Λ!𝒥"Λ(𝑡2, 𝑡1, 𝑝′, 𝑝, Γ)〉 = −𝑖 ∑11,12 𝑒
#0212 	𝑒0,11 	Γ3	4〈vac|𝑇(𝜒Λ!

3 (𝑥2)𝒥&(𝑥1)𝜒Λ
4(0))|vac〉, (6) 

where Equations (4) and (5) denote the two-point correlation functions of Λ and Λ! baryons, respectively. Equation (6) is the 
three-point correlation function, where in this notation a Λ baryon is created at time zero, then the external field (𝑉 − 𝐴) is 
inserted at time 𝑡1 and 𝑡2 is the time when the Λ! baryon is annihilated. Gamma matrices are defined as Γ4 = M1 0

0 0N and Γ0 =
1
2
M𝜎0 0
0 0N. The interpolating fields are chosen as  

 
 𝜒Λ =

1
√6
𝜖089[2(𝑢0:	𝐶𝛾5	𝑑8)	𝑠9 + (𝑢0:	𝐶𝛾5	𝑠8)	𝑑9 − (𝑑0:	𝐶𝛾5	𝑠8)	𝑢9], (7) 

 𝜒Λ! =
1
√6
𝜖089[2(𝑢0:	𝐶𝛾5	𝑑8)	𝑐9 + (𝑢0:	𝐶𝛾5	𝑐8)	𝑑9 − (𝑑0:	𝐶𝛾5	𝑐8)	𝑢9], (8) 

where 𝑢,𝑑,𝑠 and 𝑐 denote the individual quark flavors. 𝐶 = 𝛾4𝛾2 is the charge conjugation matrix and 𝑖,𝑗,𝑘 are the color indicies. 
In order to eliminate the time-dependent exponential terms, one needs to define a proper ratio using the two- and three-

point functions,  

  
𝑅(𝑡2, 𝑡1, 𝑝′, 𝑝, Γ, 𝜇) =

〈"Λ;𝒥<Λ($2,$1,&′,&,Γ)〉
〈"Λ;Λ;($2;&′;Γ4)〉

× [〈"
ΛΛ($2*$1;&;Γ4)〉〈"Λ;Λ;($1;&′;Γ4)〉〈"Λ;Λ;($2;&′;Γ4)〉
〈"Λ;Λ;($2*$1;&′;Γ4)〉〈"ΛΛ($1;&;Γ4)〉〈"ΛΛ($2;&;Γ4)〉

]
1
2.

  (9) 

In order to reduce the noise related to the wall-source/sink method [24], which is employed for quark smearings, the ratio in 
Equation (9) is chosen among the other alternatives [25]. This type of ratio is also preferred in the semileptonic decays of 
hyperons [11, 12]. In the large Euclidean-time limit time dependence of the correlators cancel, and the ratio is reduced to  

 𝑅(𝑡2, 𝑡1; 𝑝′, 𝑝; Γ; 𝜇)
=2#=1≫?T⎯⎯⎯⎯VΠ(𝑝′, 𝑝; Γ; 𝜇). (10) 
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We follow the notation given in [11]. To this end, we first define the dimensionless projected correlators. For the vector part, 
dimensionless projected correlators are defined as  

 𝜆0'(𝑞2) = Y 2@Λ
@Λ".Λ

	Π(𝑝, 0, Γ4, 4), (11) 

 𝜆A'(𝑞2) =
B2@Λ(@Λ".Λ)

2#
	𝐼𝑚(Π(𝑝, 0, Γ4, 𝑖)), (12) 

 𝜆:'(𝑞2) =
C#$%B2@Λ(@Λ".Λ)

2$
	Π(𝑝, 0, Γ9 , 𝑖), (13) 

where 𝑖,𝑗,𝑘 goes from 1 to 3. Here Γ4 and 𝜇 = 4 are the temporal part of the projection matrix and the Lorentz index of the 
external current, respectively. 

For the axial part of the current, one defines similar dimensionless projected correlators,  
 

 𝜆0((𝑞2) =
B2@Λ(@Λ".Λ)

2#
	Π(𝑝⃗, 0, Γ0 , 4), (14) 

 𝜆D((𝑞2) = Y 2@Λ
(@Λ".Λ)

	𝐼𝑚(Π(𝑝⃗, 0, Γ0 , 𝑖)), (15) 

 𝜆:((𝑞2) =
(@Λ".Λ)(.Λ".Λ!)

2#2$
	Π(𝑝, 0, Γ8 , 𝑖 ≠ 𝑗). (16) 

Note that in Equations (12) and (15) the imaginary part of the ratio is used. For Equations (11) to (15) an average over specific 
combinations of 𝜇 and Γ can be taken. Equation (16) is not computable for some 𝑞2 values, so we use a dipole approximation to 
interpolate and access the 𝑞2 values that we are interested in. 

We use the two flavor configurations generated by the CP-PACS collaboration [26]. These configurations are generated with 
the 𝑂(𝑎)-improved Wilson (clover) quark action and a renormalization group improved (Iwasaki) gauge action. We use the 
clover action for computing the valence quark propagators as well. The hopping parameters of 𝑢 and 𝑑 quarks are selected equal 
to that of light sea quarks 𝜅E?F

G,H = 𝜅IJ?G,H = 0.1410 which corresponds to 𝑚K ≈ 550 MeV [27]. Details of the configurations are 
given in Table. 

 
Table 1. The details of the gauge configurations that have been used in this work [26]. 𝑁# is the spatial and 𝑁$ is the temporal size of the lattice, 
𝑎 is the lattice spacing, 𝐿 is the spatial extent in physical units, 𝛽 is the inverse gauge coupling, 𝑐#% is the clover coefficient and 𝜅#&' is the 
hopping parameter of the sea quarks. 
 
𝑁# ×𝑁$  𝑎 (fm)  𝐿 (fm)  𝛽  𝑐#% 𝜅#&'  # of conf.  

16( × 32  0.1555 (17)  2.5  1.95  1.530  0.1410  245  
 
The hopping parameter is chosen as 𝜅I = 0.1393 for the strange valance quarks, which reproduces the kaon mass [26]. Charm 

quark hopping parameter is tuned to 𝜅! = 0.1045 using the experimental 1S spin-averaged charmonium mass. 
The three-point correlation functions are calculated with a separation of 10 lattice units in the temporal direction between 

the source and the sink, corresponding to 𝑡 ∼ 1.5 fms. This separation is also preferred in studies of the axial charge [28] and 
weak matrix elements [29] of the nucleon, and semileptonic decays of hyperons [11]. Since increasing the source-sink separation 
causes noise in the signal and decreasing the range increases the excited-state contamination, determining the source-sink 
separation correctly plays an essential role. 

To increase the statistics, we employ positive and negative momenta in all spatial directions and make simultaneous fits over 
all the data. We also use multiple source-sink pairs, shifting them 10 lattice units along the temporal direction. 

For the vector part of the current, we use the point-split lattice vector current,  
 
 𝑗& =

1
2
[𝑞(𝑥 + 𝜇)𝑈&

L(1+ 𝛾&)𝑞(𝑥) − 𝑞(𝑥)𝑈&(1− 𝛾&)𝑞(𝑥 + 𝜇)], (17) 

which is conserved by the Wilson fermions. On the other hand, the axial part of the current needs to be renormalized, for which 
we follow the procedure given in [11] and use  

 
 𝑍(!I̅(𝑚! , 𝑚I) = b𝑍(!I̅(𝑚I, 𝑚I)	𝑍(!I̅(𝑚! , 𝑚!), (18) 

where the renormalization constants for the 𝑠 and 𝑐 quarks are calculated perturbatively [26]. We use wall-source/sink method 
[24] which is a gauge-dependent object; therefore, we fix the gauge to Coulomb gauge. 

We use a modified version of the Chroma software [30] in our computations. The statistical errors are estimated using the 
single-elimination jackknife method. 



BAHTİYAR/Turk J Phys 

 188 

3.  Results and discussion 

We begin our work with computing the masses of Λ and Λ! baryons using the two-point correlation functions given in Equations 
(4) and (5). The two-point correlation function includes all possible states, including the excited states. We perform standard 
effective mass analysis using the forms given below 
 

 𝑚J%%(𝑡 +
1
2
) = 𝑙𝑛 N(=)

N(="1)
, (19) 

 𝐶(𝑡) = 𝑍4𝑒#.= . (20) 

 
When the ground state is dominant, signal we obtain from Equations (19) forms a plateau. To this end, we seek a plateau in 

Figure 1 to estimate suitable fit ranges for one-exponential fits. We perform fits using the function given in Equation (20) to 
extract the ground state masses from the correlation functions. 

 
Figure  1. Effective mass plots of Λ and Λ! particles. Shaded parts represent the fit region and one sigma errors. 

 

Masses are found as 𝑚Λ! = 2.529(7) MeV and 𝑚Λ = 1.381(7) MeV, which are higher than their experimental values since 
the light quark masses are unphysically heavy. Since all given errors are statistical errors in this work, a discussion on possible 
systematic errors is in order. Systematic errors due to unphysically heavy light-quarks could be reduced by repeating the 
calculations at lighter quark masses and performing an extrapolation to the chiral limit (𝑚K = 0), which is planned for future 
work. Conversely, the form factor results are not too much responsive to the changes in baryon masses [25]. Effects of the light 
quark mass on the electromagnetic form factors of charmed baryons have been found to be around 10% [31]. Lattice studies on 
semileptonic decays also report that this effect is negligible [32]. 

The finite size of the lattice also causes systematic errors. One needs to simulate at several lattices with different volumes to 
evaluate the finite-volume effects. The configuration sets that have been used in this work have 𝑚K	𝐿 ∼ 7, above the rule of 
thumb bound of 4, for which the finite-volume effects are considered to be negligible [24]. Another systematic error comes from 
the discretization of the lattice. In practice, one should simulate at different lattice spacings and perform an extrapolation to 𝑎 →
0. However, these calculations are currently beyond our computational resources. 

We continue our work with calculating the dimensionless correlators given in Equations (11) to (16). We plot the correlators 
as a function of current insertion time for each transferred three-momentum square in Figures 2 and 3 and search for plateaus 
to exclude the excited state contamination. Ground state signals are found in the middle region between the source and sink 
points. We obtain clean signals both in the vector and axial-vector channels. 

Figure  2. Effective mass plots of Λ and Λ! particles. Shaded parts represent the fit region and one sigma errors. 
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Figure  3. Axial-vector component of the dimensionless correlators (𝜆)) as a function of current insertion time 𝑡1. Shaded parts represent the 
fit region and one sigma errors. 
 

In semileptonic decays, zero three-momentum transfer is also an important parameter, which usually is called as 𝑞O(P2  in 
four momenta. It is clearly seen from Figures 2 and 3 that 𝑞⃗2 = 0 is accessible for 𝜆0' and 𝜆D(. To access 𝑞⃗2 = 0 for the remaining 
dimensionless correlators, we employ a dipole extrapolation that we used in our previous work [25]. 

Specific combinations of three-point functions are written to access the vector and axial-vector components of the current 
[33]. One extracts each form factor via  

 

 𝑓1(𝑞2) =
OΛ!"OΛ

2OΛ!
f𝜆0' −

@Λ#OΛ!
@Λ"OΛ

𝜆A' −
OΛ

2"OΛ!
2 #2@ΛOΛ!

(OΛ"OΛ!)(@Λ"OΛ)
𝜆:'g, (21) 

 𝑓2(𝑞2) =
OΛ!"OΛ

2OΛ!
M−𝜆0' +

@Λ#OΛ!
@Λ"OΛ

𝜆A' +
OΛ"OΛ!
@Λ"OΛ

𝜆:'N, (22) 

 𝑓3(𝑞2) =
OΛ!"OΛ

2OΛ!
M−𝜆0' +

@Λ"OΛ!
@Λ"OΛ

𝜆A' +
OΛ#OΛ!
@Λ"OΛ

𝜆:'N, (23) 

for the vector form factors, and  

 𝑔1(𝑞2) =
OΛ!"OΛ

2OΛ!
f𝜆D( −

OΛ#OΛ!
OΛ!"OΛ

h𝜆0( +
@Λ#OΛ!
OΛ!

𝜆:(ig, (24) 

 𝑔2(𝑞2) =
OΛ!"OΛ

2OΛ!
f𝜆D( − 𝜆0( −

@Λ#OΛ!
OΛ!

𝜆:(g, (25) 

 𝑔3(𝑞2) =
OΛ!"OΛ

2OΛ!
f𝜆D( − 𝜆0( −

@Λ"OΛ!
OΛ!

𝜆:(g, (26) 

for the axial-vector form factors. 
Weinberg form factors of the Λ! → Λ semileptonic decay are studied in light-front constituent [34, 35] covariant [36] and 

relativistic [17] quark models, in MIT bag model [21] and QCD sum rules [19]. Our results for the Weinberg form factors along 
with a comparison to the other models are given in Table 2. Any sign difference due to a choice of convention for 𝑓2 and 𝑓3 form 
factors are omitted in Table 2. 

 
Table  2. Form factor results for the semileptonic Λ! → Λ transition at 𝑞2 = 0 along with a comparison to the nonlattice methods. 

 𝑓*(0)  𝑓+(0)  𝑓((0)  𝑔*(0)  𝑔+(0)  𝑔((0)  
This Work  0.687	(138)  0.486	(117)  0.164	(80)  0.539	(101)  −0.388	(100)  −0.359	(283) 
Bag M [21]  0.35  0.09  0.25  0.61  −0.04  −0.11 
RQM [17]  1.14  0.072  0.252  0.517  −0.697  −0.471 
QSR [19]  0.665  0.285  —  0.665  −0.285  —  
LFCQM [34]  0.468  0.222  —  0.407  −0.035  —  
LFCQM [35]  0.67	(1)  0.76	(2)  —  0.59	(1)  −1.59	(5) × 10,( — 
CQM [36]  0.511  0.289  0.014  0.466  −0.025  −0.400 
LFQM [10]  0.706  0.362  0.286  0.624  −0.113  −0.598 

 
Our results for the 𝑓1 and 𝑔1 form factors agree within errors with most of the model calculations. For the induced scalar 𝑓3 

and the induced pseudo-scalar 𝑔3 form factors, results are still comparable, even though the literature is limited. Our results are 
larger for the 𝑓2 form factor but still agree with the light-front constituent quark model, covariant quark model, and QCD sum 
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rules. On the contrary, the 𝑔2 form factor is larger than most of the model determinations, while within the QCD sum rules 
prediction range. 

The second class form factors are expected to be zero in the 𝑆𝑈(3)% symmetric limit, but since this symmetry is broken in 
nature, small but a nonzero 𝑔2 value is expected for hyperon decays [37]. On the other hand, our work is focused on the charm 
sector, where quark flavor changes from charm to strange. It is well-known that 𝑆𝑈(4)% symmetry is badly broken, thus, we 
expect to find nonzero second class form factors, which cannot be ignored in observable predictions [38, 39]. Moreover, since 
the present work has some limitations e.g., no extrapolation to the chiral limit, small volume 163 × 32 size lattices, the systematic 
effects might be significant. 

Next step is to determine the helicity-based definition of the form factors to compare our results with another lattice study of 
Ref. [22]. Helicity form factors are related to the Weinberg form factors as follows [40]:  

 𝑓"(𝑞2) = 𝑓1(𝑞2) +
,2

.Λ!(.Λ!".Λ)
𝑓2(𝑞2), (27) 

 𝑓Q(𝑞2) = 𝑓1(𝑞2) +
.Λ!".Λ

.Λ!
𝑓2(𝑞2), (28) 

 𝑓0(𝑞2) = 𝑓1(𝑞2) +
,2

.Λ!(.Λ!#.Λ)
𝑓3(𝑞2), (29) 

 𝑔"(𝑞2) = 𝑔1(𝑞2) −
,2

.Λ!(.Λ!#.Λ)
𝑔2(𝑞2), (30) 

 𝑔Q(𝑞2) = 𝑔1(𝑞2) −
.Λ!#.Λ

.Λ!
𝑔2(𝑞2), (31) 

 𝑔0(𝑞2) = 𝑔1(𝑞2) −
,2

.Λ!(.Λ!".Λ)
𝑔3(𝑞2). (32) 

The equations maintain the endpoint relations for the helicity form factors [41]. We extract the helicity form factors from 
our Weinberg form factors and extrapolate to zero momentum via  

 
 𝑓/𝑔(𝑞2) = %//(0)

1#&2

'2

, (33) 

where 𝑓/𝑔(0) and 𝑚 are the free fit parameters. Here 𝑓/𝑔(0) represents the form factor result at zero transferred momentum. 
This type of function is also used in QCD sum rules analyses [42] to describe the form factor behavior and preferred for the weak 
form factors of 𝑐 quark decays [43]. As a check, we employed different types of fit functions containing higher-order momentum 
terms, as used in Refs. [35, 10, 19]. We find our zero momentum results deviate by 5%− 10% only. We plot the helicity-based 
form factors in Figures 4 and 5. Our results are mildly larger than the other lattice calculation of Ref. [22]. This is most probably 
due to the different systematics of the lattice setups. Besides, results of Ref. [22] are obtained at the chiral limit with the z-
expansion fit procedure. We could not apply this procedure to our data since our results are not extrapolated to the chiral limit. 
Nevertheless, the qualitative properties of the form factors are similar to those obtained in Ref. [22]. 

Finally, the decay width and other physical quantities can be calculated using the form factors extracted in this work. 
However, we note that the systematic effects must be controlled better and accounted for before making any phenomenologically 
relevant predictions. 
 

 
Figure  4. Vector form factors in the helicity-based definition. Blue dots are the extracted numerical results; red shaded bands are the fits to 
the function given in Equation (35). Red dots are the values obtained from fits. 
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Figure  5. Same as Figure 4 but for axial form factors 

4.  Conclusion 

We studied the semileptonic decay of Λ! → Λℓ̅𝜈ℓ in a 2-flavor 163 × 32 lattice QCD simulation. We have extracted the 
dimensionless projected correlators, which lead to the Weinberg form factors. We have also computed the helicity form factors 
and compared our results to the other available lattice study. Most of our form factor results qualitatively agree with the 
predictions of other nonlattice works. However, there seems to be a quantitative disagreement for the 𝑔2 form factor, which calls 
for more investigations to resolve. 

Studying the semileptonic decays of charmed particles play a critical role in understanding the weak and strong interactions. 
Charm quark decays are also crucial for understanding the Standard Model parameters and searching for the signs beyond the 
standard model physics. Besides, examining the form factors of charm baryons present valuable information on their internal 
structure. The semileptonic transition of charm baryons have been studied in quark models [13, 14, 15, 16, 17], QCD sum rules 
[18, 19, 20, 42], bag model [21] and lattice QCD [22, 44, 45]. 

We have recently implemented a relativistic heavy quark action to our framework and studied the charm baryon spectrum 
[46] and electromagnetic transition form factors of doubly charmed baryons [47]. This work serves as a benchmark before 
extending our studies to the semileptonic form factors of charmed and bottomed hadrons. 
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