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1. Introduction
Primary liver cancer is one of the most prevalent 
cancers, holding the top second place among cancer-
related mortalities (Wong et al., 2017). Despite the 
major improvements in oncology, the prognosis of this 
devastating disease remains poor. Further understanding 
of underlying molecular and physiological factors and 
exploiting them for therapeutic purposes could help 
to overcome this situation. While it is certain that the 
molecular complexity of liver and the multiple cell types in 
this tissue adds to the phenomenon, primary liver cancers 
are almost always from the hepatocyte origin (Tummala 
et al., 2017). 

Hepatocellular carcinoma (HCC) has often been 
linked to an underlying liver condition such as fat 
deposition, steatosis or fibrosis as well as alcohol use 
and HPV/HCV infections (Llovet et al., 2016). From the 

molecular perspective, various influential pathways are 
involved. These include p53 and Rb pathways and other 
master cell cycle regulators. Also, signalling pathways 
including TGF-β, Wnt/β-catenin, Notch, Ras/MAPK and 
PI3K/AKT pathways were reported (Llovet et al., 2016). 
All of the events leading to hepatocarcinogenesis and 
resistance to therapy are undoubtedly projected from the 
genomic plasticity/instability and epigenetic dysregulation 
in cancerous liver cells (Niu et al., 2016; Toh et al., 2019).  

Aberrant patterns of DNA methylation as well as 
expression changes and mutations were observed in 
HCC for a significant number of epigenetic factors.  
Such pathological changes on the fabric of chromatin 
are thought to impair the genomic architecture, giving 
rise to plastic alterations in hepatocellular characteristics 
(Fernández-Barrena et al., 2020). A plastic genome is 
unstable and hence more suitable for molecular evolution 
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throughout the initial and metastatic stages of cancer.  
While many genes are influenced by this instability, it is 
highly likely that this is the result of a more generalised 
phenomenon, where chromatin is affected globally. To 
uncover and comprehend such global effects, sequences 
outside the genes should as well be studied elaborately. 
Among such sequences, repetitive DNA comes across 
as the predominant portion. Even though most of the 
genomic studies disregard the repeats, they actually make 
up almost half of the human genome (Richard et al., 2008).  
The dysregulation of these elements was not elucidated in 
many types of cancers including hepatocellular carcinoma, 
where this study focuses on. 

The human repeatome consists of more than a thousand 
types of repeat motifs, which include the satellites and 
transposons, including long interspersed nuclear elements 
(LINEs), short interspersed nuclear elements (SINEs), long 
terminal repeat (LTR) and DNA transposons. Specifically, 
satellites are well known for their functions in maintaining 
chromatin integrity and nuclear architecture by acting 
as the de novo triggers of heterochromatin (Probst et al., 
2010). On the other hand; transposons which are thought 
to be the evolutionary remnants of ancient virus infections 
are known to contribute to gene regulation by acting 
as chromatin modulatory units (Branco and Chuong, 
2020). Importantly, the dynamics of repeat expression is 
well regulated during human embryonic development 
(Yandim and Karakulah, 2019) and is also associated with 
cellular senescence (De Cecco et al., 2019). It is noteworthy 
though, most of the repeats are normally expressed only at 
basal levels in a healthy human cell (Iglesias and Moazed, 
2017). 

An interesting discovery was made in pancreatic cancer 
and various other epithelial origin cancers, where the 
satellite repeats HSATI (Zhu et al., 2011) and HSATII (Ting 
et al., 2011) were reported to be explicitly upregulated in 
the tumour tissue and contribute to genomic catastrophes 
by various molecular mechanisms (Zhu et al., 2011; 
Bersani et al., 2015; Kishikawa et al., 2016). In addition to 
these, many transposons were reported to be dysregulated 
in cancer (Burns, 2017).  Hence, the therapeutic potential 
of targeting the repeatome is now well-recognised (Ishak 
et al., 2018).  Also, the potential of repeat-arisen transcripts 
to serve as cancer biomarkers is being explored with 
promising results. For example, transcripts arisen from 
pericentromeric HSATII satellite DNA are known to be 
highly-enriched in the blood of pancreatic cancer patients 
and have the potential to serve as biomarker (Kishikawa 
et al., 2016). 

Despite the emerging role of genomic repeats in 
various cancers, their contribution to HCC transcriptome 
remains still elusive. Limited studies reported that simple 
microsatellite repeats with small repeat motifs (less than 

10 nucleotides) exhibited unstable genomic lengths (on 
DNA) in the HCC tissue (Togni et al., 2009).  As for the 
longer repeats motifs, aberrant DNA methylation patterns 
were reported for pericentromeric satellites and various 
other repeats along with LINE (L1) elements (Saito et al., 
2001; Anwar et al., 2019; Zheng et al., 2019).  Interestingly, 
methylation patterns of genomic repeats (specifically 
LINE- L1 family) are known to be influenced by hepatitis 
virus infections (HBV and HCV) (Honda, 2016; Zheng et 
al., 2019), resulting in the activation of repeat originated 
promoters in genes (Bard-Chapeau et al., 2014; Hashimoto 
et al., 2015). In line with this, jumping transposons and 
resultant insertions are now considered as a mutagenic 
force for the evolution of HCC (Schauer et al., 2018). 

Though previous studies pointed out certain repeat 
classes, the identities of differentially expressed individual 
repeat subtypes in HCC have not been elucidated yet 
in a holistic transcriptome analysis. Also, none of such 
studies checked classical satellite repeats within this 
concept. Importantly, repeat and noncoding RNA 
quantification is challenging in comparison to genes 
(Treangen and Salzberg, 2011) and unsuitable RNA-seq 
data could jeopardise the findings (Solovyov et al., 2018). 
In this study, we addressed these issues by employing 
two independent and publicly available Gene Expression 
Omnibus (GEO) RNA-sequencing HCC datasets, 
which were both previously published to be suitable for 
noncoding RNA and repeat quantification ( Yang et al., 
2017; Wu et al., 2020). We collected matched normal and 
primary tumour tissue RNA-seq data from 20 patients 
in the GSE77509 dataset (Yang et al., 2017), and from 17 
patients in the GSE101432 dataset (Li et al., 2019). We 
analysed the differential repeat expression profile of both 
datasets in liver tumour tissues in comparison to their 
matched normal liver tissue and determined 24 common 
repeats, half of which were upregulated and the other half 
downregulated. Additionally, we performed a weighted 
gene coexpression analysis (WGCNA) and identified 
common Gene Ontology (GO) terms in both datasets 
where repeats appeared in correlation with modules of 
protein-coding genes. The pericentromeric repeat GSATII 
stood out in our analyses and interestingly it showed 
significant correlation with HCC survival genes. 

2. Materials and methods
2.1. Transcriptome data acquisition and processing
Raw sequencing reads of both datasets were extracted 
from the Sequence Read Archive database (Leinonen, et al. 
2011) (SRA Accessions: SRP069212 and SRP111914) with 
the SRA Tool Kit (v.2.9.0), using “fastq-dump -gzip -skip-
technical -readids -dumpbase -clip -split-3” command. 
We only used data from primary tumours and disregarded 
relapse tumours or those with portal vein thrombosis.
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The human reference genome GRCh38 (hg38) and its 
reference annotation (release 34) in gene transfer format 
(GTF) were collected from the GENCODE project website.1 
Repetitive DNA annotation associated with GRCh38 
reference genome was downloaded from RepeatMasker.2 
The sequencing reads of both datasets were aligned to the 
human reference genome with the R-package Rsubread 
(v1.34.7) (Liao et al., 2019) using the following command: 
align(index={index file}, readfile1={input_1.fastq}, 
readfile2={input 2.fastq} type= “rna”). To sort and index 
all BAM files produced in the alignment step, we utilised 
SAMtools (v1.3.1) suite, commonly used for handling 
high-throughput sequencing data (Li et al., 2009).

The featureCounts function of the Rsubread package 
was used for the quantification of repeat expressions as 
well as GENCODE-annotated genes (Liao et al., 2014). 
In this analysis step, we utilised the following command: 
featureCounts(files = {infile. bam}, annot.ext = “{infile.
gtf}”, isGTFAnnotationFile = T, GTF.featureType = 
“exon”, GTF.attrType = “gene_id”, useMetaFeatures = T, 
countMultiMappingReads = T, isPairedEnd = T). We 
removed repeat element features that overlapped with 
exonic regions of GENCODE-annotated genes from 
the annotation file to increase the accuracy of estimated 
repeat expressions. Only uniquely mapped sequencing 
reads aligned to DNA, LINE, SINE, LTR, and satellite 
repeat regions were considered, and repeat element and 
GENCODE-annotated gene counts were merged into a 
single expression matrix for downstream analysis.
2.2. Differential expression analysis of repeat elements 
and statistical metaanalysis of HCC data sets
We computed counts per million (CPM) values for each 
repeat element and GENCODE-annotated gene across all 
samples in both datasets. In order to increase detection 
sensitivity of differentially expressed repeat features, 
we removed all features with mean expression values 
less than one CPM in normal and tumour conditions. 
To find differentially expressed repeat features between 
normal and tumour for each dataset, the EdgeR package 
v3.24.3 of the R environment was used (Robinson et al., 
2010). Trimmed mean of M-values (TMM) normalisation 
(Robinson and Oshlack, 2010) was applied to count 
values, and dispersions were estimated with estimateDisp 
function for each comparison. To calculate the false 
discovery rate (FDR) of each repeat feature, we made use 
of exactTest function of edgeR.

For the meta-analysis of HCC datasets, we used 
Fisher p-value combination and inverse normal p-value 
combination methods (Hernandez-Segura et al., 2017). 
1GENCODE (2020). [online]. Website https://www.gencodegenes.
org [accessed 02.11.2020].
2RepeatMasker (2020). [online]. Website http://www.repeatmasker.
org/ [accessed 02.11.2020].

To apply these methods, we made use of fishercomb and 
invnorm functions of the R-package metaRNaseq (v1.0.3) 
(Rau et al., 2014). Repeat elements with a combined 
p-value ≤ 0.01 in both methods and absolute log2(fold 
change) ≥ 0.6 were considered as significant.
2.3. Weighted gene coexpression analysis (WGCNA) of 
protein-coding genes and repeat elements followed by 
module preservation analysis
We used the R-package WGCNA (v1.47) (Langfelder 
and Horvath, 2008) to construct individual coexpression 
networks for both HCC transcriptome datasets. 
Each correlation network was created by calculating 
correlations between all genomic features including repeat 
and protein-coding genes across samples. CPM values 
of features were used as input. The soft threshold value 
of the correlation matrix was selected as 12 and average 
linkage hierarchical clustering method was used for 
grouping the genes with similar expression patterns. To 
determine network modules, we used the dynamic tree cut 
algorithm (Langfelder et al., 2008) and minimum module 
size was designated as 30 genes. Next, we determined 
module eigengene values by calculating the first principal 
component of each module separately. 

In order to discover preserved network modules 
between two independent HCC datasets, we used 
modulePreservation function of WGCNA package with 
default parameters. The GSE77509 dataset was employed 
as the reference set while the GSE101432 expression data 
was used as the test set. Thus, we validated the network 
modules found in the GSE77509 data. We calculated 
the medianRank and Zsummary statistics of module 
preservation and number of permutations parameter was 
set to 200 times in this step.
2.4. Statistical analysis and graphical representation
We employed R (v4.0.2) programming language3 for 
all statistical computing and graphics in the study. GO 
enrichment analyses of WGCNA coexpression modules 
were performed with the clusterProfiler (v3.18.0) (Yu 
et al., 2012) package of the R environment, and the cor.
test function was used for the calculation of Pearson 
correlation coefficients and the significance levels. Other 
graphics were obtained using the ggplot2 (v3.3.2) package 
(Wickham, 2016). 
  
3. Results
3.1. Global profile of repeat expression in HCC
In order to compare the repeat expression profiles in 
the tumour and matched normal tissue, we calculated 
the CPM values for each individual gene and repeat – 
separately for both HCC datasets. Next, we converted 
3The R Foundation (2020). The R Project for Statistical Computing 
[online]. Website https://www.r-project.org/ [accessed 02.11.2020].

http://www.repeatmasker.org/
http://www.repeatmasker.org/
https://www.r-project.org/
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the expression values to read percentages, where the 
maximum CPM values were presented as 100% (Conesa 
et al., 2016).  The distributions of read percentages were 
slightly different both for genes and repeats – albeit not 
statistically significant (Figure 1A). A slight increase in 
the global expression profile of repeats was noticed in the 
tumour tissues in comparison to matched normal. The MA 
plots, which help to visualise the distribution of differential 
expression (McDermaid et al., 2019), revealed upregulated 
and downregulated repeats for each HCC dataset (Figure 
1B). Next, we wanted to identify the genomic repeats 
that were differentially expressed in both datasets. After 
applying a differential expression analysis, where we 
performed Fisher p-value combination and inverse 
normal p-value combination methods for both datasets 
(Hernandez-Segura et al., 2017), we realised 12 repeats 
were downregulated and 12 of them were upregulated in 
both datasets with a combined adjusted p-value less than 
0.01 and absolute log2(fold change) threshold greater than 
or equal to 0.6 (Figure 1C). 
3.2. Individual genomic repeats differentially expressed 
in HCC
We plotted the raw CPM values of statistically significant 
12 downregulated and 12 upregulated repeats in both 
datasets separately and realised that some of them displayed 
higher variation among patients along with outliers 
(Figure 2). This could indicate that subgroups of patients 
display a more pronounced effect. Among the repeats that 
were differentially expressed in both independent HCC 
datasets, there were some DNA and LTR transposons and 
LINE elements (Table 1). We were not able to detect any 
SINE elements. L1 family members of LINE elements 
only came up as downregulated. Members of the HERV/
HERVK subfamily of the ERV1 LTR transposons only 
came up among the upregulated repeats. Various particular 
LTR elements and DNA transposons were also detected. 
Interestingly, there was one satellite repeat that came 
upregulated; the pericentromeric repeat GSATII. Some of 
the repeats in this list were previously mentioned in cancer 
literature, and some of them were novel as discussed later.
3.3. Differentially expressed repeats and their possible 
contribution to biological functions in HCC
Due to reported involvement of repetitive DNA to 
molecular functions in the cell (Shapiro and von Sternberg, 
2005; Yandim and Karakulah, 2019), we aimed to dissect 
genes, which simultaneously coexpress with repeats so 
that we could reveal the possible biological functions 
where repeat dysregulation in HCC could be influential. 
We performed WGCNA analysis (Zhang and Horvath, 
2005) in the pool of repeat- and gene-arisen transcripts, 
separately for each HCC dataset. This analysis revealed 
several modules represented with different colours. To 

highlight the consistency, we identified the preserved 
modules in both datasets using a previously defined 
pipeline (Hu et al., 2018). We determined five preserved 
modules, where repeats were coexpressed with genes 
(Figure 3A). The repeats falling into each module were 
given in Table 2. 

WGCNA exposed six differentially expressed repeats 
(i.e. HERV1_LTRc, LTR32, LTR9, MER11C, MER11D and 
MER57C1) and many additional elements. Intriguingly, 
all of the differentially expressed repeats were those that 
were downregulated in the HCC tissue (Figure 2), and all 
were detected in the red module. Our GO term analysis 
on the preserved modules (Figure 3B) brought several 
biological functions as determined by the coexpressed 
genes among with repeats. Red module was associated 
with ribonucleoprotein complex biogenesis; sulphur, 
drug, coenzyme, lipid and organic acid metabolism/
catabolism. On the other hand, turquoise module pointed 
out viral infection related genes and RNA catabolism, 
and the yellow module brought out functions involved 
in lymphocyte differentiation. Brown module was linked 
to keratinization and the black module was involved in 
several metabolic pathways including cellular respiration 
and ATP metabolism. 
3.4. GSATII as an emerging satellite repeat in hepatocel-
lular carcinoma
As introduced above, the degenerative potential of 
abnormally expressed satellite DNA on the chromatin 
architecture has been well recognised as a major 
pathological factor in cancer (Ting et al., 2011; Bersani et 
al., 2015; Biscotti et al., 2015; Iglesias and Moazed, 2017; 
Velazquez Camacho et al., 2017). Interestingly, the only 
satellite repeat (among the 25 members of this repeat class) 
differentially expressed in the HCC primary tumours was 
the pericentromeric γ satellite; GSATII, a 216 base pair 
long tandem repeat according to Repbase (Bao et al., 2015) 
and DFAM databases (Hubley et al., 2016). GSATII was 
upregulated in the primary tumours of HCC patients; in 
all 20 patients in the GSE77509 dataset and in 14 patients 
out of 17 patients in the GSE101432 dataset (Figure 4A); 
highlighting this satellite’s upregulation in more than 
90% of patients. Next, we checked crucial survival-linked 
genes in HCC as listed in the GEPIA webtool (Tang et 
al., 2017). This tool relies on the information of survival 
and gene expression utilising the HCC dataset of The 
Cancer Genome Atlas (TCGA 2017) and lists statistically 
significant survival linked genes based on a log-rank test. 
Strikingly, 11 out of the top 100 survival-related genes 
were found to be correlated with GSATII expression in the 
GSE77509 dataset (Pearson’s r ≥ 0.6). These were given in 
Table 3. Out of these 11 survival-linked genes, six of them 
were correlating with GSATII in the GSE101432 dataset 
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Figure 1. Metaanalysis of differentially expressed repeats in HCC tumour vs. matched normal tissues in two independent datasets 
(GSE77509 and GSE101432). (A) Violin plots representing the distribution of transcripts. (B) MA plots indicating upregulated (UP), 
downregulated (DOWN) repeats and other nonsignificant (NS) repeats. (C) Venn diagrams indicating down- and upregulated repeats 
in both datasets  (a filter of |log2(fold change) |≥ 0.6 and combined p-value <0.01 was applied.).
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as well (Pearson’s r ≥ 0.5). These were CDC20, CHEK1, 
GPSM2, KIF2C, UCK2 and XPO5. Representative survival 
and correlation graphs were given for CDC20, CHEK1 
and XPO5 (Figure 4B).

4. Discussion
Understanding the molecular phenomena that 
hepatocellular carcinoma exploits is difficult. The high 
level of genomic instability reflected by epigenetic events 
makes the therapy challenging (Fernández-Barrena et 
al., 2020). Even though the current treatments in clinics 
focus on multikinase inhibitors (e.g. sorafenib), resistance 
to therapy emerges easily (Chen and Wang, 2015). In this 
study, we revealed the complete repeatome dynamics of 
HCC tumours to shed light on the unknown dimensions 
of pathological genomic dysfunction. Among more than 
a thousand repeat motifs, we uncovered 24 differentially 
expressed elements, which consistently appeared in two 
independent HCC datasets. 

Our results indicate only one satellite RNA (GSATII) and 
various LTR, LINE and DNA transposons. The upregulated 
expression of GSATII could imply the decay of the healthy 
genomic architecture in HCC as these peri-/centromeric 
elements are normally not expressed after the first few cell 
divisions of the human embryonic development (Yandim 
and Karakulah, 2019), and expressed only at basal levels 
in the healthy pancreatic tissue with a downregulation 
in pancreatic adenocarcinoma (Ting et al., 2011). As 
opposed to other peri-/centromeric repeats, members of 
the γ-satellite subfamily –where GSATII belongs to– are 
known to protect nearby gene expression from the invasion 
of pericentromeric heterochromatin suggesting their 
insulation activity (Kim et al., 2009). Ikaros and CTCF 
binding sites are also present on these satellites (Kim et al., 
2009). Interestingly, both of these factors were related to 
HCC (Zhang et al., 2014; Zhang et al., 2017). In addition, 
another study pointed out GSATII upregulation in blood 
specimens of nine colon cancer patients (Kondratova et al., 

Table 1. Genomic repeats that were differentially expressed in both HCC datasets.

Repeat name Repeat 
family

Repeat 
class

log2 (fold change) 
GSE77509

log2 (fold change) 
GSE10432

Fisher-combined 
p-value

Inverse-normal-
combined p-value

GSATII centr Satellite 1.2196 0.7492 6.36907E-11 1.72882E-09
LTR4 ERV1 LTR 1.1205 0.7178 1.01284E-08 5.00577E-08
HERV3-int ERV1 LTR 1.0284 0.7978 3.78805E-15 4.06385E-15
LTR70 ERV1 LTR 0.9535 1.0513 0.000130102 7.18428E-05
HERVK14C-int ERVK LTR 0.8582 0.8363 5.30701E-06 4.43727E-06
HERVL18-int ERVL LTR 0.7911 0.8835 0.000441129 0.000441129
MER74C ERVL LTR 0.7724 0.6144 0.001072908 0.000779251
HERVE_a-int ERV1 LTR 0.7444 1.0580 2.15513E-05 2.51666E-05
HERV-Fc1-int ERV1 LTR 0.7400 0.9694 2.02374E-05 0.000125362
HERVK11D-int ERVK LTR 0.7134 0.7460 0.005541907 0.003559382
Tigger17b TcMar-Tigger DNA 0.6751 0.6499 0.003213935 0.00213086
LTR52-int ERVL LTR 0.6487 0.9452 0.001411917 0.000863754
L1M3b L1 LINE –0.6799 –0.8455 1.43746E-09 6.09163E-10
MLT2A2 ERVL LTR –0.6928 –0.8314 1.72498E-11 1.49777E-11
Tigger15a TcMar-Tigger DNA –0.7015 –0.6200 4.22716E-13 1.66187E-12
LTR9 ERV1 LTR –0.7692 –0.9815 4.31236E-12 1.6477E-12
MER9a1 ERVK LTR –0.7718 –0.9807 6.23882E-08 3.05986E-08
L1M3de L1 LINE –0.9121 –0.6030 7.06219E-12 6.67229E-11
LTR32 ERVL LTR –1.0702 –0.8866 3.78805E-15 3.78805E-15
MER11C ERVK LTR –1.1146 –0.8702 0 0
Charlie12 hAT-Charlie DNA –1.2912 –1.0844 3.42E-09 1.55174E-09
MER57C1 ERV1 LTR –1.6387 –1.2711 0 0
MER11D ERVK LTR –1.8497 –1.2960 0 0
HERV1_LTRc ERV1 LTR –3.4956 –1.6466 0 0
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2014) and a statistically insignificant upregulation trend 
was mentioned in ER+/HER2- primary breast tumours 
(Yandım and Karakülah, 2019). Our study pointed out 
an increase in GSATII expression in the majority (> 90%) 
of HCC patients. The paucity of information on this 
satellite repeat in literature does not give much room for 

exploration on the mechanisms; however, future studies 
on this element within the context of HCC are definitely 
warranted.

Though the transposon involvement in HCC was 
reported before (Bard-Chapeau et al., 2014; Hashimoto et 
al., 2015; Honda, 2016; Schauer et al., 2018; Anwar et al., 

Figure 3. Weighted gene coexpression network analysis (WGCNA) for repeats and genes to reveal their putative biological cooperation. 
(A) Preserved WGCNA modules shown by their median ranks (left panel) and preservation Z summaries (right panel). (B) Gene 
ontology analysis revealing biological functions in the preserved WGCNA modules. 
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2019), to our knowledge this is the first study that outlines 
the individual subtypes dysregulated in HCC among the 
overwhelming number of transposons. Dysregulated 
L1 subtypes L1M3b and L1M3de could be worth being 
investigated further as L1 family in general was related to 
patient survival in HCC (Anwar et al., 2019). L1M3b was 
implicated in splicing, chromatin organisation and organ 
development in terms of its cooperation with genes during 
embryonic development (Yandim and Karakulah, 2019).  
Interestingly, LTR70 transposon that was upregulated in 
HCC also appeared in the same expression modules with 
L1M3b in the same study (Yandim and Karakulah, 2019). 
Another similar element; LTR4 that was upregulated 
in HCC was also upregulated in lung cancer (Arroyo et 
al., 2019). Other upregulated repeats that we uncovered 
included members of the human endogenous retrovirus 
(HERV) subfamily. Upregulated HERV-FC1-int was 
reported to be overtly activated in multiple sclerosis (Laska 

Table 2. Repeats coexpressed with genes involved in distinct 
biological functions in preserved WGCNA modules as given 
in Figure 3. (*) indicates significantly dysregulated repeats.

WGCNA 
module Repeat name Repeat family Repeat class

black MER63D hAT-Blackjack DNA
black SAR Satellite Satellite
brown (CATTC)n Satellite Satellite
brown (GAATG)n Satellite Satellite
brown ACRO1 acrocentric Satellite
brown CR1-8_Crp Satellite LINE
brown D20S16 Satellite Satellite
brown GSAT centromeric Satellite
brown HERV-Fc1_LTR2 ERV1 LTR
brown HERV-Fc2-int ERV1 LTR
brown HERV9-int ERV1 LTR
brown HERVFH19-int ERV1 LTR
brown HERVFH21-int ERV1 LTR
brown HERVH-int ERV1 LTR
brown HERVK11-int ERVK LTR
brown HSATI Satellite Satellite
brown L1P4e L1 LINE
brown LSAU Satellite Satellite
brown LTR103b_Mam ERV1 LTR
brown LTR1C1 ERV1 LTR
brown LTR1C3 ERV1 LTR
brown LTR27D ERV1 LTR
brown LTR30 ERV1 LTR
brown LTR46-int ERV1 LTR
brown LTR53-int ERVL LTR
brown LTR59 ERV1 LTR
brown LTR7 ERV1 LTR
brown LTR72 ERV1 LTR
brown LTR7A ERV1 LTR
brown LTR7C ERV1 LTR
brown LTR7Y ERV1 LTR
brown LTR9D ERV1 LTR
brown MLT1E1-int ERVL-MaLR LTR
brown X1_LINE CR1 LINE
red ERV3-16A3_LTR ERVL LTR
red Eulor1 DNA DNA
red HERV1_I-int ERV1 LTR
red HERV1_LTRc* ERV1 LTR
red HERV1_LTRe ERV1 LTR
red LTR19-int ERV1 LTR

WGCNA 
module Repeat name Repeat family Repeat class

red LTR22A ERVK LTR
red LTR28 ERV1 LTR
red LTR32* ERVL LTR
red LTR47A ERVL LTR
red LTR9 ERV1 LTR
red LTR9A1 ERV1 LTR
red MamRep1879 hAT-Tip100 DNA
red MER11C* ERVK LTR
red MER11D* ERVK LTR
red MER44B TcMar-Tigger DNA
red MER57C1* ERV1 LTR
red MER84-int ERV1 LTR
turquoise AluYe5 Alu SINE
turquoise AluYk2 Alu SINE
turquoise Charlie10a hAT-Charlie DNA
turquoise HERV1_LTRd ERV1 LTR
turquoise HERVIP10B3-int ERV1 LTR
turquoise LTR109A2 ERV1 LTR
turquoise LTR10B1 ERV1 LTR
turquoise LTR12E ERV1 LTR
turquoise LTR6A ERV1 LTR
turquoise LTR86B2 ERVL LTR
turquoise MSTC-int ERVL-MaLR LTR
yellow AluSx4 Alu SINE
yellow LTR21A ERV1 LTR
yellow LTR21B ERV1 LTR
yellow MST-int ERVL-MaLR LTR
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Figure 4. GSATII expression in primary HCC tumours and its correlation with HCC survival genes. (A) Raw GSATII CPM values for 
individual patients in both HCC datasets. (B-D) Kaplan–Meier survival analyses of TCGA survival genes (left panel) as shown by the 
GEPIA webtool and their correlations with GSATII in both HCC datasets (middle and right panels). 



KARAKÜLAH and YANDIM / Turk J Biol

610

et al., 2012). Moreover, HERVL14C-int upregulation was 
also reported for breast cancer (Yandım and Karakülah, 
2019) and HERV3-int for lung cancer (Arroyo et al., 2019). 
It is of note that  HERV1_LTRc, which was reported to 
be robustly upregulated in primary breast tumours, was 
shown to be significantly downregulated in our study for 
HCC. The latter could be one of the key examples on how 
genomic repeats behave differently across different cancer 
types. 

Our analysis on coexpression networks showed that 
six dysregulated repeats and many other additional repeats 
act in orchestration with genes highlighting biological 
pathways. However, contribution of repetitive RNA to 
cellular function is yet to be figured out. One interesting 
example could be the sequestering effect of HSATII 
transcripts on DNA repair proteins (Kishikawa et al., 2016). 
Given that GSATII structure is highly similar to HSATII 
(Bersani et al., 2015), such mechanisms could be explored 
for HCC. GSATII correlation with crucial HCC survival 

genes in our study suggests the functional importance 
of this element. On the other hand, whether the rise in 
GSATII repeat transcripts is indeed due to transcription 
or due to the expansion of these repeats at the DNA level 
also remains to be studied further. Expansion of HSATII 
on DNA was reported for pancreatic cancer (Bersani et 
al., 2015) and a similar manifestation could be possible for 
GSATII. 

Given the fact that repeat contents of mouse and 
human genome differ significantly (Komissarov et 
al., 2011), biopsy or surgery samples collected from 
patients are of invaluable use in repeat quantification of 
the transcriptome. Also, repeats are known to behave 
pathologically in real tissues and cell lines do not provide 
the necessary platform for such studies (Ting et al., 2011). 
Indeed, one challenge prior to our study was to find the 
datasets suitable for noncoding repeat quantification. 
Unfortunately large datasets such as those in TCGA 
were prepared specifically for mRNA transcripts with a 
poly(A) bias. To assess the genome fully, it is essential to 
produce sequencing datasets suitable for both coding and 
noncoding transcripts. Previously mentioned biases mostly 
were set to save from the expenses but we believe that with 
the reduction of the costs in sequencing technologies 
in time, this limitation will be lifted and hence it will be 
easier to illuminate the unexplored sites of the genome. 
Despite such challenges, we were still able to confirm our 
findings in two independent and suitable GEO datasets 
that comprise primary HCC patient specimens. The 
functional contribution of dysregulated repeats identified 
in this study could be illuminated with further research. 
Moreover, these differentially expressed genomic elements 
could be targeted for therapy and they also bring the 
tantalising possibility of serving as a biomarker for disease 
progress as future studies are warranted.
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Table 3. HCC survival genes and Pearson’s 
correlation scores for GSATII. Significant survival 
genes were obtained from GEPIA webtool [50]. 

                          Dataset
Survival genes GSE77509 GSE101432

CDC20 0.7152 0.5028
CHEK1 0.6615 0.5767
GARS1 0.6645 0.2194
GPSM2 0.6195 0.5898
KIF2C 0.6723 0.5085
NUP37 0.7258 0.4426
PES1 0.6488 0.2914
PIGU 0.7101 0.3337
UBE2S 0.7021 0.4267
UCK2 0.7082 0.6159
XPO5 0.7632 0.5730
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