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Abstract: The Al/Mg2Si/p-Si Schottky diode was fabricated using spin coating. The real (ε ′) and imaginary (ε ′ ′)
components of complex dielectric (ε*), the real (M ′) and imaginary (M ′ ′) components of complex electric modulus
(M*) and AC electrical conductivity (σ AC ) of the fabricated Al/Mg2Si/p-Si Schottky diode (SD) were examined by
using the impedance spectroscopy (IS) measurements in a wide frequency range of 1 kHz-1 MHz. The ε ′ and ε ′ ′ were
obtained using the value of measured capacitance and conductance while the values of dielectric loss tangent (tanδ ,
M ′ , M ′ ′ and σ AC were obtained using the value of ε ′ and ε ′ ′ . While the values of ε ′ , ε ′ ′ and tanδ are almost
independent of the frequency in the inversion and accumulation region, their value changes with the frequency, especially
in the depletion region. The σAC was examined depending on the frequency and it was seen that its value increased
with increasing frequency especially in depletion and accumulation region. The experimental results showed that the
Mg2Si can be used instead of conventionally used dielectric materials (SnO2 , SiO2 ).

Key words: Dielectric properties, Al/Mg2Si/p-Si Schottky diodes, complex dielectric permittivity and electric modulus,
AC electrical conductivity, frequency-dependent

1. Introduction
The dielectric material is electrically insulating. Metal-oxide-semiconductor (MOS), metal-polymer-semiconductor
(MPS) or metal-ferroelectric-semiconductor (MFS) structures can store charge thanks to the properties of the
dielectric material used at the interface between metal and semiconductor. In these structures, charge storage
depends on the thickness of the dielectric material and especially on the dielectric constant (ε ′) of the dielec-
tric material. Such an interface layer separates the metal from the semiconductor and regulates the charge
transitions. Additionally, the interfacial layer provides to realize the decrease in the magnitude of the leakage
current, series resistance (Rs ) values and interface states (Nss ) in the devices, it also increases the short circuit
resistance (Rsh ), barrier height and rectification ratio. In other words, such a layer affects the performance and
reliability of the structure. Dielectrics materials are affected by an applied alternating electric field. By the
formation of polarization in the material, it gains a dipole moment. By providing electrical charge accumulation
on the dielectric surface, it exhibits capacitor behavior and can store charge [1–3]. The performance of semi-
conductor devices affects some factors such as the Nss , Rs , the density of the interface states, temperature,
frequency, voltage, and the form of the barrier between metal and semiconductor.
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Magnesium silicide (Mg2Si) is an intermetallic compound with relatively high melting temperature
(=1085 ◦C), low density (=1.99 g/cm3 ), a narrow-gap semiconductor (=0.6–0.7 eV), and a low thermal ex-
pansion coefficient (=7.5×10−− 6 K) [4–6]. Its conduction types are p-type and it has been widely used as
a semiconductor and thermoelectric material [6–10]. Mg2Si is one of the attractive materials for optoelec-
tronic application [11–13]. Additionally, researchers mostly focused on ceramic materials such as MgSiN2 and
Mg2Si (1−x)VxO4 [14, 15].For instance; according to Lenčéš et al. [14], the relative dielectric constant for
MgSiN2 powder obtained from a mixture of Mg2Si is 9.0 at 100 kHz.

The research on the dielectric properties of Mg2Si has been limited in the literature. Additionally, the
change in frequency has a significant effect on the dielectric properties of structures that can store charge. Thus,
in this study, the frequency-dependent properties of ε ′ , ε ′ ′ , tanδ M ′ , M ′ ′ and σ AC for Al/Mg2Si/p-Si SD
were examined by using the admittance measurements including measured capacitance and conductance data
in a wide frequency range from 1 kHz to 1 MHz, and detailed.

2. Materials and methods

The wafer (p-Si) with boron-doped p-Si with 1–10 Ω cm resistivity, approximately 525 µm thickness and (??)
orientation was chemically cleaned using acetone (C3H6O), isopropanol (C3H8O), and deionized (DI) water
for 5 min, respectively. To remove the native oxide layer on the surface of the wafer was washed with HF.
The wafer was washed again with DI for 5 min and dried with nitrogen. For omic contact, Al was coated
on the back of the wafer in thermal evaporation. For a low resistance, the Al metal was precipitated into
the semiconductor by annealing at 450 ◦C in N2 environment for 5 min. A mixture of 1 mL of chloroform
and 50 mg of Mg2Si in powder form was thoroughly mixed with the aid of a centrifuge and synthesis of
the interface layer was completed. Then, the interface layer was covered by spin-coating on the front of the
wafer. To form rectifier (Schottky) contacts with 0.5 mm radius, Al was evaporated on the interface-covered
surface and Al/Mg2Si/p-Si SD was fabricated. Frequency-dependent capacitance (C) and conductance (G/ω )
measurements of Al/Mg2Si/p-Si SD were performed by using HP4192A impedance analyzer. Figure 1 shows
the capacitance and conductance measuring system and the cross section of Al/Mg2Si/p-Si SD.

Figure 1. The capacitance and conductance measuring system and the cross section of Al/Mg2Si/p-Si SD.
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3. Results
The equivalent circuit for Al/Mg2Si/p-Si SD is shown in Figure 2. As can be seen from Figure 2, the equivalent
circuit consists of the total series resistance (Rs ), a parallel junction capacitance (C) and the shunt resistance
(Rsh ), where C and Rsh are connected in parallel while Rs is connected in series to both C and Rsh [16,17].

Figure 2. The equivalent electrical circuit for Al/Mg2Si/p-Si SD.

Metal/semiconductor contacts behave like a parallel plate capacitor. In the presence of an insulating or
organic interface layer, a capacitance (C) is formed between the metal and the semiconductor. The relationship
of this capacitance and the capacitance of the interface layer (Cox ) and the capacitance of the semiconductor
(Csc ) is given as follows [17,18]:

1

C
=

1

Coc
+

1

Csc
. (1)

The capacitance (C) and conductance (G) measurements for Al/Mg2Si/p-Si SD are carried out in a wide range of
frequencies (1 kHz–1 MHz). The dielectric properties of the structures are examined using these measurements.
The ε* of a structure provides information on its ε ′ and ε ′ ′ . Thus, ε* is given as follows [19,20]:

ε∗ = ε′ − jε′′ =

(
Cmdi
ε0A

)
− j

(
Gmdi
ε0A

)
, (2)

where ε ′ ,ε ′ ′ , Cm , Gm , d i , A and ε 0 are the real part and the imaginary part of complex dielectric
permittivity, measured capacitance, measured conductance, the interfacial layer thickness, the area of the diode
and the permittivity of vacuum, respectively [21–24]. ε ′ is the maximum value of the energy stored in the
dielectric material under the external electric field and it depends on some physical and chemical factors such
as frequency, defects of dielectric materials and the chemical structure [2,25,26]. ε ′ ′ is the energy loss caused
by the slow polarization currents and the orientation of molecular dipoles in the dielectric material under the
external electric field [26]. Briefly, ε ′ represents the charging while ε ′ ′ represents the loss current. The ε ′ -V
and ε ′ ′ -V plots for the Al/Mg2Si/p-Si SD were given in Figures 3 and 4, respectively. The ε ′ -V and ε ′ ′ -V
plots have regions of inversion, depletion, and accumulation for each frequency. As shown in Figure 3, ε ′
was taken an almost constant value in the inversion and accumulation region and it increases with decreasing
frequency in the depletion region. The space charges have not enough time to orient themselves in the direction
of the alternating field at high frequencies. However, they have enough time for orientation at low frequencies.
Hence, dielectric constant increases due to such behavior of space charges at low frequencies [27–32].

The ε ′ ′ value of Al/Mg2Si/p-Si SD behaves just like ε ′ in the inversion and accumulation region.
Especially at low frequencies, the high values of ε ′ and ε ′ are higher than their high-frequency values due to
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Figure 3. ε � ′ -V plot for Al/Mg2Si/p-Si SD in a wide frequency range.

Figure 4. ε ′ ′ -V plot for Al/Mg2Si/p-Si SD in a wide frequency range.

interfacial polarization. The distributions in ε ′ and ε ′ ′ with frequency may be caused by electronic and ionic
polarization effective at high frequencies (f ≥ 109 Hz) and bipolar and surface polarizations that are effective at
low frequencies (f ≤ 103 Hz). Also, the correlation of ε ′ and ε ′ ′ with frequency is related to the capacitance
and conductance values. Additionally, while the existence of Nss , which can follow the alternating signal at low
or intermediate frequencies, contributes to the capacitance and conductivity values in depletion and inversion
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regions, Rs is effective in the accumulation region.
The tanδ , indicating the energy loss of the structure during AC current conduction, is a measure of the

ratio of electrical energy loss to stored energy at applied bias voltage and is given as follows [33]:

tan δ =
ε′′

ε′
. (3)

tanδ depends on interface polarization and dipole orientations [34]. The tanδ -V plot for Al/Mg2Si/p-Si SD
was given in Figure 5. As shown in Figure 5, it was taken an almost constant value in the inversion and
accumulation region. However, it has apronounced and sharp peak that arises from the Nss at low frequencies.
The peak behavior of the tanδ -V has occurred especially in the depletion region between ∼0 V and ∼2 V.
Such phenomena of tanδ are due to a particular distribution of charges and interfacial polarization mechanism,
the density of the Nss and the thickness of the interface layer (Mg2Si) [3, 25]. Additionally, the peak value
loses its effect with increasing frequency since charge carrier hopping cannot follow the external signal in high
frequency. This indicates a relationship between dielectric behavior and conduction mechanisms of the diode.

Figure 5. tanδ -V plot for Al/Mg2Si/p-Si SD in a wide frequency range.

Physically, the complex electric modulus (M*) is used to understanding the dielectric relaxation process
of the material. M* provides information about polarization mechanisms in the material and electrical transport
process parameters such as carrier hopping rate and conductivity relaxation time. M* is calculated using ε ’
and ε” and is given as follows [35, 36]:

M∗ =
1

ε∗
= M ′ + jM ′′ =

(
ε′

(ε′)
2
+ (ε′′)

2

)
+ j

(
ε′′

(ε′)
2
+ (ε′′)

2

)
, (4)

where M ′ and M ′ ′ the real and the imaginary part of M*, respectively. Thus, M ′ -V and M ′ ′ -V plots for the
Al/Mg2Si/p-Si SD were given in Figures 6 and 7, respectively. As shown in Figure 5, the M ′ is independent of
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frequency in the accumulation region. The M ′ value reaches its maximum value at high frequencies since the
dielectric relaxation mechanisms depend on frequency [37]. As seen in Figure 7, while M ′ ′ is independent of
frequency in the inversion and accumulation region, it has a peak of different magnitude for all frequencies in the
depletion region. M ′ ′ reaches the maximum value in high frequency. The peak is shifting to the accumulation
region with increasing frequency and its magnitude decreases. This situation is due to the Maxwell–Wagner
type (MWt) interface polarization and the distribution of Nss ingrained at the junction of the interfacial layer
(the Mg2Si) and the semiconductor (p-Si) [38,39]. The charges placed in Nss affect both the electrical and
dielectric properties. Because these traps or permitted energy levels can both hold and release some loads under
an electric field or applied bias voltage. Most types of Nss that have different lifetimes can be used at low
frequencies because they can catch up with the ac signal.

Figure 6. M ′ -V plot for Al/Mg2Si/p-Si SD in a wide frequency range.

The conductivity properties and load storage capability of the structure can be examined using the AC
electrical conductivity (σ AC ) given in Eq. 5 [40,41].

σAC = ωC (tan δ)

(
di
A

)
= ωε0ε

′′. (5)

According to Eq. (5), σ AC only depends on ε”. Figure 8 shows the σ AC -V plot of Al/Mg2Si/p-Si SD in a wide
frequency range. As shown in Figure 8, σ AC is independent of frequency in the inversion and accumulation
region and it takes a constant value in these regions. As the frequency increases, the value of σ AC increases
due to the decrease of the interface polarization, especially in depletion and accumulation regions. This increase
causes an increase in eddy current. Such phenomena can be explained by a gradual decrease in series resistance
(Rs ) of the structure with increasing frequency [42–44]. In other words, the energy loss increases due to
the increasing eddy currents. As the electrical conductivity increases, the value of tanδ also increases. The
increasing σ AC values are the result of ε”, especially at high frequencies. In recently, similar results have been
reported in the literature by various workers [37, 45–48].
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Figure 7. M ′ ′ -V plot for Al/Mg2Si/p-Si SD in a wide frequency range.

Figure 8. σ AC -V plot for Al/Mg2Si/p-Si SD in a wide frequency range.

4. Discussion

The complex dielectric permittivity (ε*=ε ’–jε”), dielectric loss tangent (tanδ ), the complex electric modulus
(M∗=M ′+jM ′ ′) of the Al/Mg2Si/p-SiSD and its AC electrical conductivity (σ AC ) were calculated using the
admittance measurements including measured capacitance and conductance data in a wide range from 1 kHz
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to 1 MHz. The variation of the frequency-dependent dielectric properties mainly depends on the electric dipole
polarization, the interface polarization and the density distribution of the Nss . Additionally, the values of ε ′ ,
ε ′′ , tanδ , M ′ and M ′ ′ for the Al/Mg2Si/p-Si SD were found as 0.756, 0.425, 0.562, 1.005 and 0.565 for 1
MHz at +5 V bias, respectively. The ε ’ is associated with interfacial and directional polarization while ε”is
associated with transmission loss. The variation in values of ε ’, ε” and tanδ was attributed to the surface states,
interfacial polarization and the decrease of C and G with increasing frequencies. Nss follows the alternating
signal especially at low or intermediate frequencies and affects the capacitance and conductivity values. The
tanδ has a peak at low frequencies and this peak decreases with increasing frequency. This decrease was
attributed to the inability of the hopping electrons to follow the external ac signal, with the dipole and surface
polarizations reaching a constant value at high frequencies. The maximum value of the M ′ at high frequencies
is due to the frequency sensitivity of the dielectric relaxation mechanisms. The peak behavior of M ′ ′ in the
depletion region has been attributed to the distribution of Nss ingrained at the junction of the Mg2Si and
the p-Si and the MWt interface polarization. The increase in σ AC with increasing frequency only contributes
to the dielectric loss. Besides, the lost current caused by this increase increases the tanδ . This situation has
been explained as the Rs decreases gradually with the increase in frequency. The obtained results showed that
all-dielectric parameters (ε ’, ε”, tanδ , M ′ , M ′ ′ and σ AC ) of the fabricated Al/Mg2Si/p-Si SD depend on
extreme frequency. Additionally, experimental results showed that the Mg2Si, which is coated between the
metal and semiconductor interface via spin coating method, can be used for more electronic charge storage
instead of conventionally used dielectric materials (SnO2 , SiO2 ).
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