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1. Introduction
Usnic acid (UA) [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] is a derivative of low 
molecular weight dibenzofuran. This yellowish material exists among the secondary lichen metabolites. Lichens are 
symbiotic organisms, which comprise algae, fungus and/or cyanobacteria. Usnic acid found in various lichen structures 
such as Alectoria, Cladonia, Evernia, Lecanora, Ramalina, Usnea and Xanthoparmelia has antimicrobial properties and 
plays role as an ingredient in products like cream, deodorant, toothpaste, mouthwash and sunscreen. Besides, it has 
antiviral, analgesic, antiproliferative, anti-inflammatory, cytotoxic and antitumor properties [1–4].

The conventional extraction processes of plants and plants-like structures have some drawbacks due to high temperature, 
toxic solvent and extra separation treatments. To overcome these difficulties, nonconventional extraction techniques such 
as supercritical fluid extraction (SFE), ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid 
extraction and pulsed electric fields extraction methods are used. If these methods are compared in terms of energy 
consumption, SFE process requires less energy than other techniques. So, SFE is more economically suitable for research 
and industrial applications. While the other methods applied in extraction fractionation and separation processes 
have some disadvantages such as high energy costs, low selectivity and large quantities of solvent waste, supercritical 
fluid extraction has no these limitations. Besides that, applying high temperature in microwave-assisted extraction and 
pressurized liquid extraction methods are not suitable for thermolabile compounds. Since thermolabile compounds are not 
damaged at critical temperature and pressure, using the supercritical extraction method is more advantageous than other 
methods [5–7]. Carbon dioxide (CO2) is the most preferred solvent for SFE process. Supercritical carbon dioxide (SC-
CO2) with mild critical values (31.1 °C and 7.28 MPa) and appropriate properties such as non-flammability, non-toxicity, 
high selectivity and cheapness is very suitable for food, pharmaceutical and environmental areas [8–10]. The studies about 
SC-CO2 extraction process with or without response surface methodology (RSM) were placed in the literature [11–15].

RSM is one of the most attractive experimental design method used by researchers in a number of chemical processes. 
The Taguchi method, central composite design (CCD) and Box–Behnken design (BBD) are the most commonly used 
experimental designs for optimization of supercritical fluid extraction in the literature. It is found that the Box-Behnken 
design proved to be much more favorable and efficient than the other response surface designs due to its effectiveness and 
use of three instead of five levels for each factor [16–18].
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In the literature, there are some studies in which usnic acid to be used in different applications is obtained by traditional 
and supercritical extraction methods from different lichen species. Cansaran-Duman et al. [19] obtained usnic acid from 
several species lichens collected from different regions in Turkey. The extraction from lichens such as Evernia illarica, 
Usnea barbata and Usnea longissima was carried out with acetone. Usnic acid contents was found between 0.14–6.49 dry 
weight percentages according to lichen species. Usnea barbata lichens were extracted with SC-CO2 at different pressure 
(30–50 MPa) and temperature (25–40 °C) conditions by Ivanovic et al. [20]. SC-CO2 extraction process was applied after 
different pre-treatment methods, including roller-, ultracentrifugal- and cutting mill. The highest extraction yield and 
usnic acid content in the extract were found as 2.08% and 632 g/kg, respectively. Fanovich et al. [21] extracted Usnea 
lethariiformis using SC-CO2 at 30 MPa and 40°C, and the usnic acid content in the extract was found as 50% (w/w). The 
lichen extract was used for impregnation of polycaprolactone scaffolds to determine antibacterial activity. Koçer et al. 
[22] obtained usnic acid from Usnea longissima lichen (1500 g) extract by refluxing dichloromethane. They synthesized 
hydroxyphenylimino ligands and their complexes with usnic acid and investigated antimicrobial and antimutagenic 
activities of synthesized materials. Zugic et al. [23] studied Usnea barbata (Old Man’s Beard) extraction with supercritical 
fluid (E1) and conventional (ether fraction E2, ethanol fraction E3 and macerate E4) methods. Usnic acid content (w/w%) 
was determined as 81.41, 67.09, 2.43 and 1.39 with E1, E2, E3 and E4 methods, respectively. The lichen extract was used to 
examine anticancer and antioxidant activities.

In this work, Usnea longissima (L.) Ach. was extracted by using supercritical carbon dioxide (SC-CO2) extraction, 
and the Response Surface Methodology (RSM) Box-Behnken Design (BBD) was realized to define the optimum process 
parameters of usnic acid extraction. To the best of our knowledge, this is the first study related to SC-CO2 extraction from 
U. longissima and optimization of this process by RSM.

2. Materials and methods
2.1. Materials
Usnea longissima (L.) Ach. was collected from Fırtınaderesi/Zilkale-Rize (Turkey). CO2 of 99.9% was supplied from Linde 
Group (Ankara, Turkey). High purity ethanol and commercial usnic acid were purchased from Sigma Aldrich.  
2.2. Usnea longissima (L.) Ach. extraction 
The U. longissima extract was obtained by ISCO-Sitec modified SFX 220 supercritical fluid extraction system (Figure 
1). Two high pressure syringe pumps (Model 100 DX, ISCO Inc., NE), extraction unit (SFX 220, ISCO Inc., NE) and 
controller unit (D-Series Pump Controller, ISCO Inc., NE) were essential parts of the supercritical system. One of the two 
syringe pumps was used for CO2 and the other for ethanol as co-solvent. 

1 2 

3 

5 

4 

6 

7 

8 

9 
10 

Figure 1. ISCO-Sitec modified SFX 220 supercritical fluid extraction system (1) CO2 storage, (2) circulator, (3) 
co-solvent storage, (4) controller, (5) CO2 pump, (6) co-solvent pump, (7) extraction unit, (8) capillary nozzle, 
(9) expansion vessel, (10) restrictor temperature controller.
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In the experiments, 220 mg of U. longissima lichen was filled in 2.5 mL stainless steel extraction cell, and the loaded 
cell was placed in the extraction unit. The extraction temperature and pressure were set to the desired values. Extraction 
pressure (300 bar) and supercritical carbon dioxide flow rate (5.5 mL/min) were kept constant during the process. The 
system has been run as a batch process at certain periods to allow U. longissima extraction by supercritical carbon dioxide 
with or without co-solvent. Supercritical solution was expanded rapidly through a capillary nozzle with L = 3–4 mm, D = 
50 μm, and the lichen extract was obtained in solid form (Figure 1).
2.3. Determination of usnic acid (UA)
The amount of UA in the supercritical extract was determined by HPLC analysis. The calibration solutions were prepared 
in acetone (0.5–50 mg/ L) with commercial usnic acid, and the extracts from U. longissima were analyzed by dissolving 
in acetone. Shim-Pack CLC-ODS column (4.6 × 250 mm; 5 µm) was used to detect UA and the system was operated with 
mobile phase PBS / methanol (30:70%), flow rate 0.8 mL/min, column temperature 30 °C, injection volume 20 µL and UV 
detector wavelength at 245 nm [24]. Each analysis was performed in triplicate.

Fourier-transformed infrared spectroscopy (FTIR, 8400 S Shimadzu) was applied using the KBr pellet method.
2.4. Experimental design
The response surface methodology (RSM) Box-Behnken Design (BBD) was applied (Design Expert software version 
10.0.3.0, Stat-Ease) to determine the optimum process parameters of usnic acid extraction. RSM, which is used for modelling 
and analysis, includes a group of experimental techniques to find the relationship between controlled experimental 
independent variables and measured responses (dependent variables). This method allows several experiments to reach 
the most information at the certain points. In this study, extraction temperature (35–45 °C), amount of co-solvent (0%–
5%), extraction time (5–9 h) were selected as independent variables based on the pre-experiments, and the response 
variable was the amount of UA (g) for 100 g lichen (g UA/100g lichen). The relation between the actual and coded values 
of the independent variables was expressed by following equation (1):
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where xi symbolizes the coded value, Xi represents the actual value, X0 is the actual value at the center point and ΔXi is the 
step change of the actual value.  The actual and coded values of the independent variables are given in Table 1. 

RSM Box-Behnken design (BBD) suggested 17 experiment for three independent variables. The response variables 
were correlated into the second-order polynomial given in equation (2): 
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where Y is indicates the response, b0 is a constant, bi, bii and bij are the linear, quadratic and interactive coefficients, xi and 
xj represent variables. Analysis of variance (ANOVA) was applied to analyze the result based on the significance level of 
0.05 [25–27].

3. Results and discussion 
FTIR spectra of commercial UA and supercritical lichen extract (40 °C, 2.5%, 7h) are given in Figure 2. When the FTIR 
spectrum of commercial usnic acid were examined, -OH: 3441 cm–1, C = O: 1689 cm–1, C = C: 1543 cm–1, CO: 1072, 1118, 
1141 cm–1, CH (aromatic): 3093 cm–1 and CH (aliphatic): 2931 cm–1 characteristic peaks [28–29] were observed. In the 
FTIR spectrum of the SC-CO2 extract (40 °C, 2.5%, 7h) (-OH: 3448 cm–1, C = O: 1689 cm–1, C = C: 1543 cm–1, CO: 1064, 
1118, 1141 cm–1, CH (aromatic): 3086 cm–1 and CH (aliphatic): 2924 cm–1) similar peaks to the commercial structure were 
obtained. It is observed that the structure of the supercritical extract and commercial UA were compatible with each other.

Table 1. Coded and actual independent variables.

Symbol Variables Coded and actual levels

–1 0 1

x1 Extraction temperature (°C) 35 40 45
x2 Amount of co-solvent (%) 0 2.5 5
x3 Extraction time (h) 5 7 9
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The extraction yield (%), UA content (%) and g UA/100g lichen values ​​were calculated in the experiments carried 
out under the conditions determined by the RSM (Table 2). The extraction efficiency was calculated from the differences 
between initial and final amount of lichen during the extraction process, and the UA content (%) was found from the peak 
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Figure 2. FTIR spectra of commercial UA and supercritical extract (40 °C, 2.5%, 7h).

Table 2. Experimental program using Box-Behnken design, response and calculated extraction values.

Factor 1 Factor 2 Factor 3 Response

Std Run
x1:
Extr. temp. 
(°C)

x2:
Amount of
co-solvent (%)

x3:
Extr. time
(h)

g UA/ 
100 g lichen

Amount of UA
(mg)

Extraction yield
(%)

UA content
(%)

10 1 40 5 5 0.290 0.639 4.54 71.87
14 2 40 2.5 7 0.302 0.665 4.13 73.64
9 3 40 0 5 0.271 0.596 3.77 77.24
8 4 45 2.5 9 0.171 0.377 4.91 73.91
17 5 40 2.5 7 0.317 0.697 4.31 71.34
12 6 40 5 9 0.295 0.650 3.22 77.12
13 7 40 2.5 7 0.266 0.586 4.22 71.41
7 8 35 2.5 9 0.045 0.098 4.90 76.30
5 9 35 2.5 5 0.077 0.170 3.54 75.50
4 10 45 5 7 0.297 0.654 5.40 82.57
11 11 40 0 9 0.051 0.113 3.68 77.02
16 12 40 2.5 7 0.286 0.629 3.45 74.84
6 13 45 2.5 5 0.184 0.404 4.81 74.95
15 14 40 2.5 7 0.302 0.665 4.13 73.64
2 15 45 0 7 0.223 0.490 4.72 82.37
1 16 35 0 7 0.071 0.156 2.77 73.71
3 17 35 5 7 0.150 0.330 3.59 80.42
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Figure 3. HPLC chromatograms of the (a) calibration solution (50 mg / L) (b) center point experiment (40 °C, 2.5%, 7h). 

ratio obtained by HPLC chromatograms. HPLC chromatograms of the samples of the calibration solution (50 mg / L) and 
center point experiment (40 °C, 2.5%, 7h) are given in Figure 3. 

Extraction yield%, UA content and g UA/ 100g lichen values ​​were calculated in the range of 2.77–5.4, 71%–82%, 0.045–
0.317, respectively. These values ​​were compared with limited studies of the lichen extraction by SC-CO2 in the literature. 
Zizovic et al. [30] found the extraction yield as 0.38% and 0.60%, usnic acid content as 59.48% and 36.49%, and g UA/100g 
lichen as 0.219 and 0.226, respectively. Brovko et al. [31] obtained 91% UA content by evaluating the peaks in the HPLC 
chromatogram for the first 10 min. In this study, the duration of the analysis was extended (40 min), and the peaks of the 
possible components except the UA were considered. The UA content was determined as 71%–82%. No purification was 
required due to the high percentage of UA content in the extract. 

The results of the variance analysis (ANOVA) of the quadratic model used for the optimization of the UA extraction 
parameters were given in Table 3. In addition, the polynomial equation was presented below:

g UA/ 100g lichen = 0.29 + 0.067*x1 + 0.052*x2 – 0.033*x3 – 1.250E-003*x1x2
 + 4.750E-003 x1x3 + 0.056*x2x3

 – 0.11*x1
2

 –	
9.250E-004*x2

2 + 0.067*x3
2	 (3)

Probe > F values ​​less than 0.05 indicated that the model parameters were significant. The F test and Probe > F values 
of the model were found as F = 16.32 and Probe > F = 0.0007, which shows that the model was significant. According to 
ANOVA results, x1, x2, x3, x2x3, x1

2 and x3
2

 model parameters had an important effect on the g UA/100g lichen. The regression 
coefficient (R2) indicated how the relation between the independent variables was expressed by suggested model. R2 and 
R2

adj (adjusted regression coefficient) values were determined as 0.9545 and 0.8960, respectively. The value of the lack of 
fit was found as not significant (p = 0.0764). This indicated that the model fitted the data well [32]. The BBD model was 
acceptable with considering all these values. When the equation coefficients were examined, it was seen that the increase 
of extraction temperature (x1) and amount of co-solvent (x2) causes the g UA/ 100g lichen to increase, while the increase of 
extraction time (x3) had a negative effect on the g UA/ 100g lichen. The increasing of the temperature at constant pressure 
leads to decrease of the density of the supercritical fluid. On the other hand, the increase of the vapor pressure of the solute 
causes to increase the solubility of the solute. The addition of co-solvent (ethanol) to apolar compound carbon dioxide 
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Table 3. The results of the ANOVA of the quadratic model.

Source Sum of squares df Mean square F value p-value Prob > F

Model 0.15 9 0.017 16.32 0.0007
x1 0.035 1 0.035 34.53 0.0006
x2 0.022 1 0.022 21.11 0.0025
x3 8.450E-003 1 8.450E-003 8.25 0.0239
x1x2 6.250E-006 1 6.250E-006 6.100E-003 0.9399
x1x3 9.025E-005 1 9.025E-005 0.088 0.7752
x2x3 0.013 1 0.013 12.35 0.0098
x1

2 0.049 1 0.049 48.31 0.0002
x2

2 3.603E-006 1 3.603E-006 3.516E-003 0.9544
x3

2 0.019 1 0.019 18.40 0.0036
Residual 7.173E-003 7 1.025E-003
Lack of fit 5.670E-003 3 1.890E-003 5.03 0.0764
Pure error 1.503E-003 4 3.758E-004
Cor total 0.16 16
R2 0.9545

R2 Adj 0.8960

Figure 4. 3D response surface plots of the g UA/100g lichen affected by (a) amount of co-solvent and extraction 
temperature (b) extraction temperature and extraction time (c) amount of co-solvent and extraction time.
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Figure 5. Comparison of experimental and predicted values of the g UA/100g lichen.

medium enhances the solubility of the polar compounds in the supercritical medium. The long extraction time can cause 
degradation of compound or conversion to other compounds [33–35].

In Figure 4, the binary effects of the independent variables on the response were given graphically. Amount of co-solvent/ 
extraction temperature binary interaction was determined as not significant (p = 0.9399) in Table 3. However, the 3D graph 
(Figure 4a) shows that this binary interaction passes through an apparent maximum ridge. While the extraction temperature 
makes the Y variable between 41–43°C maximum, the amount of co-solvent does not cause a significant change; however, as 
its amount increases, it makes an increasing contribution to the Y variable. Extraction temperature/ extraction time binary 
interaction was determined as not significant (p = 0.7752). On the other hand, the 3D graph (Figure 4b) indicates that this 
binary interaction has gone through a significant circular maximization. The extraction temperature and the extraction time 
make the Y variable maximum between 41–43°C and 7–8 h, respectively. Amount of co-solvent/ extraction time binary 
interaction was determined as significant (p = 0.0098) in Table 3. The 3D graph (Figure 4c) shows that this binary interaction 
passes through an apparent maximum ridge. The values at which the extraction time makes the Y variable maximum change 
within 7–8 h. While the Y variable is affected negatively in the range of 8–9 h of extraction time, Y variable increases by 
increasing of amount of co-solvent. According to the statistical results, it was determined that the extraction temperature and 
amount of co-solvent are more positive effective parameters than extraction time on the Y variable. 

The optimum conditions were predicted as 42 °C extraction temperature, 4.3% amount of co-solvent (ethanol) and 7.48 h 
extraction time with 0.338 ± 0.015 g UA/100g lichen response value. The supercritical extraction of the lichen was performed 
three times at the optimum conditions, and the response was determined as 0.372 ± 0.022, which was compatible with 
theoretical model value. The relationship between predicted and experimental values verified the accuracy of the model with 
points clustering around the diagonal line (Figure 5).

4. Conclusion
In conclusion, U. longissima lichen was extracted in supercritical carbon dioxide (SC-CO2) successfully. Box-Behnken design 
(BBD) of response surface methodology (RSM) was applied to obtain the high amount of UA in the lichen. The optimum 
conditions were determined as 42 °C extraction temperature, 4.3% amount of co-solvent (ethanol) and 7.48 h extraction time. 
The recommended model was acceptable, and the theoretical and experimental response values, which realized at optimum 
supercritical conditions were compatible.
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