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1. Introduction
Rapeseed (Brassica napus L.) plays an important role 
in the world’s oil crops and is one of the world’s four 
major oil crops i.e. soybean, sunflower, rapeseed, peanut 
(Chaghakaboodi et al., 2021; Bakhshi et al., 2021a, 2021b; 
Zirgoli and Kahrizi, 2015). Its planting area accounts for 
more than the total area of oil-bearing crops in China, 
and its output accounts for more than the total output of 
oil-bearing crops in China. It is an oil-bearing crop with 
strong adaptability, wide use, high economic value and 
great development prospect. Rapeseed oil is the largest 
source of edible vegetable oil in China, accounting for 
more than 50% of domestic edible vegetable oil (Jahangiri 
and Kahrizi, 2015; Jahangiri and Kahrizi, 2015; Xia 
et al., 2019). Rapeseed oil is rich in unsaturated fatty 
acids, phytosterols, tocopherols, polyphenols and other 
nutritional components, and the composition of fatty acids 
is balanced, which is one of the healthiest edible vegetable 
oils (Kakaei and Kahrizi, 2011; Kahrizi, 2014; Sonobe et 
al., 2020).

Chlorophyll is a group of chromogenic groups 
existing in plants in various forms, and its derivatives 
are photosensitizers (Ghobadi et al., 2011; Shahadati-
Moghaddam et al., 2017). Under high-intensity light, the 
existence of chlorophyll will increase the photooxidation 

rate, cause a free radical reaction, promote lipid oxidation, 
lead to rancidity and deterioration of the oil, greatly reduce 
the stability of oil and shorten the shelf life of products. The 
chlorophyll content in fruits and vegetables is related to 
freshness. Spinach has high chlorophyll content, but poor 
stability. It is afraid of light, heat and oxygen, which often 
leads to discoloration of fresh vegetables during storage. 
It was found that chlorophyll will decompose during 
storage, and cold storage can prolong the decomposition 
rate of pigment. The decomposition rate of green pigment 
first increases and then slows down with the storage time, 
showing a stable and regular change (Viégas et al., 2018). 
Chlorophyll is one of the important quality parameters 
of rapeseed. For rapeseed with high chlorophyll content, 
decolorization and deodorization are complex in the 
process of oil processing, resulting in higher processing 
costs. Moreover, the level of chlorophyll content will also 
affect the appearance quality and nutritional quality of 
vegetable oil (Liu et al., 2019). According to the Canadian 
Grain Commission data, the chlorophyll content in 
rapeseed oil and seed is similar (Zhu et al., 2020).

With the advancement of rapeseed production 
mechanization in China, there is a big difference in the 
mature period of horned pericarp at harvest time, and the 
chlorophyll content in rapeseed increases significantly. 
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In order to meet the quality control of raw materials in 
the purchase, storage and processing, it is necessary to 
establish a rapid and non-destructive detection technology 
for chlorophyll in rape. Nondestructive testing technology 
of agricultural products is a new technology that uses its 
physical properties such as mechanics, optics, electricity 
and acoustics to carry out nondestructive testing on its 
quality, and carries out classification and sorting according 
to certain standards (Guo et al., 2019). At present, 
machine vision technology and spectrum technology 
are widely used in nondestructive testing of agricultural 
products because of their nondestructive, fast and reliable 
characteristics. Machine vision technology can effectively 
detect the external quality of agricultural products. The 
detection of the internal quality of agricultural products, 
such as protein, moisture, sugar content, acidity, etc., 
mainly relies on spectral technology, especially near-
infrared spectroscopy (Ling et al., 2019). However, near-
infrared spectroscopy can only detect a very small area 
of the detection object, and cannot carry out large-scale 
spatial detection. It has great limitations, which may lead 
to a large information difference between the modeling 
set and the prediction set, and thus cannot obtain a stable 
detection system (NamdaranGooran et al., 2021).

Hyperspectral imaging technology can obtain the 
spectral and spatial information of the research object at the 
same time. Spectral data can analyze the internal physical 
structure and chemical composition of objects, and 
image data can reflect the external characteristics, stains 
and surface defects of agricultural products. Therefore, 
in recent years, hyperspectral imaging technology has 
attracted more and more attention in the nondestructive 
testing of agricultural product quality (Wang et al., 2019). 
In foreign countries, hyperspectral imaging nondestructive 
testing technology started earlier, focusing on the 
quality of fruits and meat, there are also some studies in 
other agricultural products. In China, there are more 
researches on nondestructive testing of fruit quality, such 
as surface damage, internal components, etc., as well as 
nondestructive testing of meat, vegetables, crop seeds, etc. 
A large number of studies have proved that the contents of 
chlorophyll, carotenoids and anthocyanins in plants have 
their unique spectral absorption characteristics, and the 
characteristic bands are 640–660 nm, 430–450 nm and 537 
nm (Kovar et al., 2019). The quantitative inversion of plant 
pigment was realized by hyperspectral technology, and 
then the physiological characteristics of plant senescence, 
diseases and insect pests and environmental stress (water 
and temperature) were retrieved. The results were highly 
significantly correlated with the experimental results 
obtained by traditional methods (Corti et al., 2017).

At present, the application of hyperspectral imaging 
technology in the nondestructive testing of agricultural 

products is still in the initial stage of development. With 
the continuous improvement of experimental instruments 
and spectral resolution, hyperspectral imaging can 
record more and more abundant quality information of 
agricultural products, which will be an important tool 
for rapid and nondestructive detection of agricultural 
products quality. Because of its high content but poor 
stability, fresh vegetables often appear yellowing and 
fading during storage. Therefore, chlorophyll is often used 
to evaluate the freshness quality of rape.

The main detection method of chlorophyll is 
ultraviolet-visible spectrophotometry, which has high 
sensitivity and reliable results, but the detection cost is 
high due to the high cost of consumables and equipment 
needed, and it cannot meet the needs of on-site detection 
of acquisition, processing and other links. In this paper, 
the contents of chlorophyll a, chlorophyll b and total 
chlorophyll in rapeseed samples were determined by 
chemical experiments. Combined with visible and near-
infrared hyperspectral imaging technology, a variety 
of chemometrics methods were used to establish the 
prediction model of chlorophyll a, chlorophyll b and total 
chlorophyll in spinach leaves, aiming to explore a stable 
rapid and nondestructive detection of chlorophyll content 
in rapeseed for the future. The application of hyperspectral 
technology in the rapid classification of rapeseed 
chlorophyll provides strong technical support.

2. Materials and methods
2.1. Hyperspectral image acquisition
According to the cube, the number of hyperspectral images 
can be regarded as the superposition of gray images in each 
band. It cannot only provide the spectral band information 
of each pixel in the image but also provide the gray image 
under a certain band (Kaya et al., 2019). These gray images 
contain rich spatial distribution characteristics of samples, 
and spatial distribution information can be extracted by 
image processing technology. Spectral features and texture 
features are two basic features of hyperspectral images, 
and they are also the two basic elements for hyperspectral 
image analysis. Texture analysis is the process of extracting 
and analyzing the spatial distribution patterns of images, 
so as to obtain the qualitative or quantitative description 
of texture features.
2.1.1. Pretreatment of hyperspectral analysis
The pretreatment of hyperspectral technology analysis 
is mainly aimed at specific sample system, eliminating 
abnormal samples, eliminating spectral noise, screening 
data variables, optimizing spectral range, so as to reduce 
the impact of nonobjective factors on the spectrum, and 
lay the foundation for establishing spectral correction 
model and predicting unknown sample information (Sun 
et al., 2018). The pretreatment process is divided into two 
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aspects: (i) sample pretreatment, including the elimination 
of abnormal samples and the screening of modeling, set 
samples. The elimination of abnormal samples is based 
on the prediction of concentration residual, principal 
component score clustering, Mahalanobis distance 
calculation, leverage value and Student’s t-test. The 
selection of modeling set samples is mostly based on 
conventional modeling sample selection methods, such 
as the content gradient method, Kennard–Stone method 
and so on. Through screening, the number of samples 
of basic measurement data can be effectively reduced, 
and the cost of modeling can be reduced. (ii) spectral 
preprocessing includes spectral noise elimination and 
spectral feature extraction. In addition to the information 
of specific components of the sample, the collected spectra 
also contain other irrelevant information and noise, 
such as electrical noise, sample background and stray 
light. It is necessary to establish a quantitative model to 
eliminate noise. The commonly used methods are spectral 
smoothing, derivative, light scattering correction, wavelet 
transform, orthogonal signal correction and so on. In 
addition, by optimizing the spectral range and extracting 
the characteristic bands, the irrelevant variables can be 
eliminated effectively, and the calculation efficiency and 
prediction ability can be improved, thus a more robust 
correction model can be established. The commonly used 
wavelength selection methods include the correlation 
coefficient method, stepwise regression method, interval 
partial least squares method, genetic algorithm and so on.
2.1.2. Obtaining hyperspectral information of rapeseed 
leaves
The leaf image information was collected by a hyperspectral 
imaging system within three hours after rapeseed samples 

were collected. Firstly, focus the inspector v10e high 
spectral imager, set the exposure time of the system 
to 0.06 s, and the moving speed of the mobile platform 
to 3.5 mm/s. In order to eliminate the influence of 
different lighting conditions and environmental factors 
on the image acquisition quality, a white board and dark 
environment were used to calibrate the hyperspectral 
imager. Before each experiment, white board made 
of polytetrafluoroethylene was used for white board 
correction, and then the light source and lens cover were 
closed for dark environment correction. After correction, 
the blade of rapeseed was placed flat on the measuring 
platform, and the hyperspectral image data was collected. 
The image resolution of the hyperspectral camera is 672 × 
512, and the spectrum range is 380–1030 nm, with a total 
of 512 bands. The original image is corrected according to 
formula (1).
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In formula (1), I is the calibration image of the 
sample, I0 is the original image of the sample, and B is the 
calibration image in an all black environment (reflectance 
close to 0%, white standard image (reflectance close to 
99%). The effect of different spectral conditions on the 
image of the measured object is different. Hyperspectral 
image data acquisition is based on spectral cube (v10e and 
n17e; Isuzu Optics Corporation, Taiwan, China) software 
platform.
2.1.3. Establishment and evaluation of hyperspectral 
estimation model
The flow chart of establishing spectral prediction model 
is shown in Figure 1. Firstly, a certain number of samples 

Sample collection and preparation

Chemical analysis Spectral scan

Sample Spectral
Library

Modeling set Validation set

Stoichiometric model Accuracy verification

Predict sample
component

content
 

Figure 1. Analysis flow of hyperspectral technology.
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are selected, and their chemical values of component 
content are measured by standard chemical method, and 
their spectral signals are measured by spectrometer; these 
samples are divided into modeling set and prediction 
set, and statistical regression method (such as multiple 
linear regression) is used through the relationship 
between spectral signal and chemical value of modeling 
set (MLR), principal component regression (PCR), 
partial least squares (PLS) and artificial neural network 
(ANN) were used to establish the calibration model; 
further, the calibration model was tested by predicting 
the corresponding chemical value of component content 
through the spectral signal of the prediction set and the 
established calibration model (Lu et al., 2020 ).

When the quantitative model based on the 
hyperspectral image is established, the performance of the 
model needs to be evaluated quantitatively to judge the 
advantages and disadvantages of the model. The prediction 
performance evaluation indexes of the model established 
by the chemometrics modeling method mainly include the 
correlation coefficient and root mean square error between 
the sample measured value and the predicted value. The 
closer the correlation coefficient (RC) is to the root mean 
square error, the better the prediction performance and 
the higher the prediction accuracy. In this study, the 
correlation coefficient of prediction set samples and the 
root mean square error of prediction set samples are the 
main discriminant criteria, and the correlation coefficient 
(RMSEC) and root mean square error (RMSE) of modeling 
set samples are used as auxiliary criteria. The calculation 
formula of correlation coefficient and root mean square 
error (Wu et al., 2018) is as follows:

Correlation coefficient (R)
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In formula (2), xi is the measured value of sample I; x̄ is 
the average value of xi; yi is the predicted value of sample 
I; y is the average value of yi; n is the number of samples.

Root mean square error (RMSE):
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In formula (3), xi is the measured value of sample I; yi 
is the predicted value of sample I.

The larger the R2 value of interactive verification of 
modeling set is, the more stable and accurate the model 
is; the smaller the R2 value and RMSE of validation set are, 
the better the prediction effect is.

2.1.4. Chemometrics modeling method
Hyperspectral image data contains rich spectral 
information and image texture information, which is used 
to reflect the composition, properties and structure of 
substances. However, due to a large amount of information 
and the fact that important information is often covered 
up, it is usually impossible to establish a qualitative and 
quantitative relationship model between the spectral and 
texture information and the characteristics of material 
targets. Therefore, it is necessary to use a chemometrics 
algorithm for data mining and feature extraction of 
original hyperspectral information. As long as the new 
sample is input into the model quickly, the new sample can 
be processed quickly. A partial least square method is used 
in this modeling.

Partial least squares (PLS) is the most commonly 
used multivariate statistical method in chemometrics 
modeling and analysis and is widely used in spectral 
data modeling and analysis (Zhang et al., 2020). The 
principle is to decompose the spectral matrix and the 
target feature matrix into multiple latent variables (LVS) 
simultaneously by factor analysis. The order of potential 
variables is following their contribution rate. Based on the 
cumulative contribution rate of the first several potential 
variables and the performance of the model established 
based on the number of different potential variables, the 
optimal number of potential variables was selected for 
regression calculation. Meanwhile, spectral data variables 
and chemical index data variables were considered, so 
the performance of the model was better. The calculation 
process is as follows:

X = TP + E	 (4)
Y = UQ + F	 (5)
T and U are the score matrix of matrix X and matrix Y 

respectively, P and Q are the load of matrix X and matrix 
Y respectively, i.e. principal component) matrix and E and 
F are the errors introduced when fitting X and Y with the 
PLS model respectively.

Let T and U be linear regression. B is the correlation 
coefficient matrix:

U = TB	 (6)
B = TU(TT)-1	 (7)
In the prediction, the TP of the unknown sample x 

matrix is obtained from the matrix XP of the unknown 
sample and the corrected PV. The results are as follows:

YP = TP + BQ	 (8)
When building a PLS model, how to select the 

optimal number of potential variables is very important. 
When the number of potential variables is small, the 
selected potential variables cannot replace the spectral 
characteristics of the samples, resulting in the decline of 
the prediction accuracy of the model; when the number 
is too large, the noise interferes with the model will be 
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introduced. Calculating the sum of squares of predicted 
residuals (press) is a common criterion for selecting the 
optimal number of potential variables. The larger the press 
is, the greater the model error is, while the higher the 
press is, the higher the prediction accuracy of the model 
is. At present, there are many methods to calculate the 
sum of squares of residual errors, including the leverage 
point prediction method, self prediction method and 
interactive verification method, and the most commonly 
used method is the interactive verification method. The 
interactive verification method selects some samples from 
the modeling samples as the verification samples and the 
remaining samples as the modeling samples. A series of 
validation models are obtained through the cycle. Then 
calculate the model to select the optimal number of 
potential variables. Due to the repeated cycle modeling, 
the interactive verification method can well verify the 
accuracy of the model and whether it is overfitted, to avoid 
the model performance difference caused by a different 
selection of modeling samples.
2.2. Rapid detection of chlorophyll content in rape
2.2.1. Preparation of rapeseed samples
The chemical value measurement method of rapeseed leaf 
nutrients will be taken back to the laboratory from the 
field. First, the soil and other debris on the leaves were 
wiped and cleaned, and then the hyperspectral image was 
obtained. Then, the leaf samples were put into a sealed 
bag and put into the oven at 110 ºC for 30 min. After 
sterilization, the leaves were dried in an oven at 60 ºC for 
10 h and weighed with a balance until the weight of the 
leaves did not change.
2.2.2. Determination of chlorophyll content
The rapeseed leaves were quickly cut and weighed 
accurately about 0.1 g and weighed once on the left and 
right sides of the leaves respectively. The chlorophyll a 
value of each sample was measured twice, and the average 
value was finally taken, and the vein part of the leaf was 
avoided as far as possible. Then cut into thin filaments and 
transfer into a clean centrifuge tube. Add 10 mL of 95% 
ethanol extract into the tube. Keep the sample completely 
white at room temperature (shake the extract several times 
during this period). The extraction solution is measured 
by UV-Vis spectrophotometer at the wavelength of 665, 
The whole experiment was carried out at 4 ºC. The content 

of chlorophyll a was calculated according to formula (9) 
and formula (10), and the unit was mg/g.

Chla(mg / L) = 13.95D665 – 6.88D649	 (9)
Chla(mg / g) = [C(mg / L) x V (ml)]/[m(g)x1000]  (10)
The residual method was used to eliminate the 

abnormal samples. In this study, nine abnormal samples 
were eliminated, and the remaining 81 samples were 
randomly divided into 54 modeling set samples and 27 
prediction set samples according to the ratio of 2:1. The 
number, range, mean value and deviation of total chlorosin 
content in total samples, modeling sets and prediction sets 
are shown in Table 1.

The calculation formula of chlorophyll b content is as 
follows:

Chlb(mg / L) = 24.96D649 – 7.32D665	 (11)
Chlb(mg / g) = [C(mg / L) x V (ml)]/[m(g)x1000]   (12)
The residual method was used to eliminate the 

abnormal samples, and 10 abnormal samples were 
eliminated. The remaining samples were randomly 
divided into 62 modeling set samples and 28 prediction set 
samples according to the ratio of 2:1, which were used for 
modeling and prediction respectively. The number, range, 
mean value and deviation of chlorophyll content of the 
total sample, model set and prediction set are shown in 
Table 2.

The total chlorophyll content is the sum of chlorophyll 
a and chlorophyll b, which is calculated according to the 
following formula.
Chl(a+b)(mg / L) = Chla + Chlb = 18.08D645 – 6.63D663
	 (13)
Chl(a+b)(mg / g) = [C(mg / L) x V (ml)]/[m(g)x1000] (14)

The residual method was used to divide the abnormal 
samples, and 15 abnormal samples were eliminated. 
The remaining samples were randomly divided into 70 
modeling set samples and 30 prediction set samples 
according to the ratio of 2:1, which were used for modeling 
and prediction respectively. The number, range, mean 
value and deviation of total chlorophyll content of total 
samples, modeling sets and prediction sets are shown in 
Table 3.
2.2.3. Prediction model of chlorophyll a content based on 
the full band
The whole leaf of rapeseed was selected as the region of 
interest (ROI) by ENVI4 software, and then the average 

Table 1. Statistical results of chlorophyll a content in each sample set.

Sample category Number of samples Range Mean value Standard deviation

Total sample 81 0.7589–3.3993 2.0439 0.4145
Modeling set 54 0.7589–3.3993 2.0591 0.4408
Survey set 27 1.1613–2.6727 2.0136 0.362
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spectral curve in the region of interest was extracted. Cut 
off the noise of 380–438 nm and 945–1023 nm of the 
whole spectrum, and retain the average spectrum in the 
range of 439–943 nm (400 bands), and obtain the visible 
and near-infrared spectra of 81 rapeseed samples at 20 ºC 
as shown in Figure 2.

54 samples of modeling set were used for PLS 
modeling, and the full band prediction model of total 
chlorosis in rapeseed leaves was obtained. The model was 
tested with 27 prediction set samples. The scatter diagram 
of the PLS model for prediction of modeling set and 
prediction set sample is shown in Figures 3a and 3b. The 
correlation coefficient rc = 0.8991, RMSE = 0.1912 and rp = 
0.8393, RMSE = 0.1933. The full spectrum PLS model can 
effectively predict the total chlorophyll content.
2.2.4. Prediction model of chlorophyll b content based 
on the full band
The visible and near-infrared spectra of rapeseed samples 
with chlorophyll content b are shown in Figure 4.

The full band prediction model of spinach leaf 
chlorophyll b was obtained by PLS modeling with 90 
modeling set samples, and then the model was tested with 
64 prediction set samples. The scatter diagram of the PLS 
model for prediction of modeling set and prediction set 
sample is shown in Figures 5a and 5b. The correlation 
coefficient of prediction set is RC = 0.8952, rsepc = 0.0869, 
correlation coefficient of prediction set prediction is RC 
= 0.8856, rsepc = 0.0876. The results show that the full 
spectrum model can obtain satisfactory prediction results 
and obtain an ideal prediction effect.
2.2.5. Prediction model of total chlorophyll content 
based on the full band
The visible and near-infrared spectra of rapeseed samples 
for detecting total chlorophyll content are shown in Figure 6.

The full band prediction model of total green content in 
leaves of Chinese cabbage was obtained by PLS modeling 
with 100 modeling set samples. The model was tested with 
70 prediction set samples. The scatter diagram of PLS 
model for prediction of modeling set and prediction set 
sample is shown in Figure 7. The correlation coefficient of 
the model set prediction is RC = 0.8452, rsepc = 0.2785, 
the correlation coefficient of prediction set prediction 
RP = 0.8449, rsepc = 0.2964. The results show that the 
full spectrum model can effectively predict the total 
chlorophyll content, in order to obtain a better prediction 
effect.

Table 2. Statistical results of chlorophyll b content in each sample set.

Sample category Number of samples Range (mg/g) Mean value (mg/g) Standard deviation

Total sample 90 0.2985–0.8624 0.5928 0.1158
Modeling set 62 0.2928–0.8659 0.6251 0.1186
Survey set 28 0.3258–0.8294 0.5864 0.1182

Table 3. Statistical results of total chlorophyll content of each sample set.

Sample category Number of samples Range (mg/g) Mean value (mg/g) Standard deviation

Total sample 100 0.9748–3.7982 2.2864 0.5075
Modeling set 70 0.9748–3.7659 2.3481 0.5018
Survey set 30 1.1685–3.4825 2.2949 0.5049
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Figure 2. The spectral curve of rapeseed sample for chlorophyll 
detection. (a) Modeling set. (b) Prediction set.
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3. Discussion
Hyperspectral technology has great potential in the field 
of ecology due to its high spectral resolution. However, 
there are still some problems to be solved and improved 
in practical application: The accuracy of hyperspectral 
inversion and its application range is limited.

Compared with the traditional chemical analysis 
methods, hyperspectral technology can obtain better 
prediction accuracy in the inversion of ground feature 
attributes, which has the advantages of fast, non-destructive, 
low-cost and repeatable. However, in the research which 
requires high precision, the prediction results often cannot 
support the original scientific hypothesis, or even cause 
the opposite research results. For example, hyperspectral 

technology in soil detection, soil organic matter and water 
content prediction results are good, but the prediction 
ability of trace elements (such as boron, zinc, copper) 
is limited. In addition, due to the limitation of visible 
and near-infrared spectral penetration, hyperspectral 
technology can only retrieve the apparent parameters of 
ground objects (such as topsoil, upper forest canopy, etc.), 
but cannot predict the internal component parameters 
of ground features, which limits the application scope of 
hyperspectral technology. Therefore, in future research, 
we should deeply tap the potential of spectral technology. 
While exploring new modeling methods to improve the 
prediction accuracy, we need to comprehensively consider 
the mechanism of surface features and spectrum, and 
better use hyperspectral technology to accurately obtain 
the apparent parameter information of ground objects.

Hyperspectral modeling is easily disturbed by external 
factors: Because the research object of ecology is often 
the combination or mixture of different substances, its 
spectral information is also interfered with by other 
irrelevant information and noise, such as background, 
stray light and instrument noise, so it is necessary to 
eliminate the interference of these external factors. 
At present, the commonly used methods include data 
smoothing, derivative transformation, light scattering 
correction and so on. In recent years, new methods such 
as orthogonal signal correction, wavelet transform and 
orthogonal external factors have been developed and 
applied to eliminate the interference of external factors, 
and the prediction ability of the model has been improved 
in varying degrees. Therefore, how to better use the new 
stoichiometry method to eliminate the interference of 
external factors in the mixed spectrum is a very important 
content in future hyperspectral technology research.
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Figure 3. Scatter plot of full-spectrum PLS model for prediction of chlorophyll a.
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detection. (a) Modeling set. (b) Prediction set.
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Hyperspectral inversion model lacks universality: At 
present, there are a lot of ground feature attribute inversion 
models established by hyperspectral technology, but there is 
still no universal model method for the same kind of ground 
features. The spectral information required by each model 
is significantly affected by temperature, light conditions, 
instrument installation, etc.; and for the same ground 
objects (such as hyperspectral technology has become one 
of the frontier technologies in the field of ecological data 
acquisition), the technology relies on the response mechanism 
of surface feature spectrum, and can accurately monitor the 
evolution process information of ecosystem, which provides 
the basis for the rapid development of ecology. At present, 
hyperspectral technology has made a lot of research results in 
the field of soil, plant physiology, agricultural product quality 
detection and ecosystem carbon cycle, but it is still in the 

initial stage and development stage. Mature hyperspectral 
technology needs to be explored and studied continuously. 
With the development of remote sensing technology, the 
application of hyperspectral remote sensing extends the 
spectral analysis technology to the spatial domain, which 
provides a broader application prospect for the large-scale 
data mining and ecological modeling of ground objects 
spectral information, and is expected to become a new mode 
of data acquisition for future ecological development.

4. Conclusion
Based on hyperspectral imaging technology, taking rapeseed 
leaves as the research object, spectral preprocessing was 
carried out. The chemical index characteristic wavelengths 
of rapeseed leaves were determined by various characteristic 
wavelength selection methods. The contents of chlorophyll 
a, chlorophyll b and total chlorophyll were calculated. The 
detection method of chlorophyll content was established 
by the chemical index prediction modeling method Good 
modeling results are obtained. The results of this study 
provide a reference direction and theoretical basis for further 
exploring the stable and reliable detection of chlorophyll 
content in vegetables. However, due to the limited time and 
energy, further research is needed in the following aspects: 
However, there are many kinds of rape, and there are great 
differences between different varieties. It is not clear whether 
this conclusion applies to other varieties of rape. Therefore, 
the follow-up experiments should be based on the study 
of different varieties of the same vegetable, or extended to 
the study of multiple vegetables. The experimental study 
combines the chemical detection method and spectral 
nondestructive testing, the sample size for modeling analysis 
cannot be too small, but the increase of sample size will 
increase the difficulty of chemical index detection and will 
reduce the accuracy of the results. In order to achieve the 
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Figure 5. Scatter plot of full-spectrum PLS model for prediction of chlorophyll a.
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research results, it is suggested that the number of indexes 
detected in each experiment should not be too much, and the 
experiments should be carried out separately many times. 
In addition, several chemical indexes studied in this paper 
are not comprehensive enough, and the content of pigment 
varies greatly in different vegetables, so it is difficult to be 
widely used.
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