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Abstract: In the present work, we classify normalized null hypersurfaces x : (M, g,N) → Qn+2
1 (c) immersed into one

of the two real standard nonflat Lorentzian space-forms and satisfying the equation Lrx = Ux + b for some field of
screen constant matrices U and some field of screen constant vectors b ∈ Rn+2 , where Lr is the linearized operator of
the (r + 1)−mean curvature of the normalized null hypersurface for r = 0, ..., n . We show that if the immersion x is
a solution of the equation Lrx = Ux + b for 1 ≤ r ≤ n and the normalization N is quasi-conformal, then M is either
an (r+1)−maximal null hypersurface, or a totally umbilical (or geodesic) null hypersurface or an almost isoparametric
normalized null hypersurface with at most two non-zero principal curvatures. We also show that a null hypersurface
M , of a real standard semi-Riemannian nonflat space form Qn+2

t (c) , admits a totally umbilical screen distribution (and
then M is totally umbilical or totally geodesic) if and only if M is a section of Qn+2

t (c) by a hyperplane of Rn+3 . In
particular a null hypersurface M → Qn+2

t (c) is totally geodesic if and only if M is a section of Qn+2
t (c) by a hyperplane

of Rn+3 passing through the origin.

Key words: Normalized null hypersurface, screen quasi-conformal, second order differential operator, screen distribu-
tion, Higher order mean curvature

1. Introduction and main results
1.1. Literature review
The last four decades have been marked by a growing interest in the study of submanifolds whose coordinate
functions are eigenfunctions of the Laplacian operator and its various generalizations. In [32], Takahashi studied
isometric immersions into the Euclidean space whose coordinate functions are eigenfunctions of the Laplacian
operator, associated to the same eigenvalue λ . In the particular case where the codimension is one, Takahashi’s
theorem establishes that if x : Mn → Rn+1 is an (isometrically) immersed hypersurface in the real Euclidean
space and ∆ denotes its Laplacian operator with respect to the induced metric, then the immersion satisfies
∆x = λx , for some real constant λ , if and only if either λ = 0 and M is minimal in Rn+1 or λ > 0 and M

is an open piece of a round hypersphere of radius r =
√
n/λ centered at the origin of Rn+1 . In 1990, Garay

[22] has established an extension of Takahashi’s theorem and proved that if x : Mn → Rn+1 is an immersed
hypersurface in Euclidean space with ∆x = Ax , where A ∈ R(n+1)×(n+1) is a constant diagonal matrix then,
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M is minimal hypersurface in Rn+1 or an open piece of a round hypersphere or an open piece of generalized
right spherical cylinders.

However, Garay’s condition is not coordinate-invariant. This issue was remedied by Dillen et al. in [17],
where they considered surfaces in R3 whose immersion satisfies the condition ∆x = Ax+ b , where A ∈ R3×3 is
a constant matrix and b ∈ R3 is a constant vector, proving that the only such surfaces are minimal surfaces and
open pieces of round spheres and circular cylinders. Later on, the result of Dillen et al. has been independently
generalized to hypersurfaces in Rn+1 , using different techniques, by Hasanis and Vlachos [24], and Chen and
Petrovic [16].

It is well known that the Laplacian operator of a hypersurface M immersed into Rn+1 is a (intrinsic)
second-order linear differential operator which arises naturally as the linearized operator of the first variation
of the mean curvature for normal variations of the hypersurface. From this point of view, the Laplacian
operator ∆ can be seen as the first one of a sequence of n operators L0 = ∆, L1, ..., Ln−1 , where Lk

stands for the linearized operator of the first variation of the (k + 1)th− mean curvature arising from normal
variations of the hypersurface. These operators are given for their action on smooth function f on M by
Lk(f) = tr(Pk◦∇2f) , where Pk denotes the k−th Newton transformation associated to the second fundamental
form of the hypersurface and ∇2f denotes the selfadjoint linear operator metrically equivalent to the Hessian
of f . Alías and Gürbüz [3] initiated the study of non-degenerate hypersurfaces in the Lorentz–Minkowski
space Rn+1

1 satisfying the general condition Lkx = Ax+ b , where A ∈ R(n+1)×(n+1) is a constant matrix and
b ∈ Rn+1 is a constant vector. A first attempt to solve this question has been made by Yang and Liu [33]. They
showed that a spacelike hypersurface x : M → Rn+1

1 satisfies the condition Lrx = Rx + b , for some constant
matrix R ∈ R(n+1)×(n+1) and some constant vector b ∈ Rn+1

1 if and only if M is an r−maximal spacelike
hypersurface, an open piece of the totally umbilical hypersurface Hn(−c) , or an open piece of hypersurface
Hk(−c)× Rn−k , with r + 1 ≤ k ≤ n− 1 , where c > 0 is a constant.

Many other authors solved the equation Lkx = Ax+b for nondegenerate hypersurfaces in flat and nonflat
spaces [27–29]. But the case of degenerate (or lightlike or null) hypersurfaces has started to be considered in
[8] where the authors showed that: A UCC-normalized null hypersurface x : (M, g,N) → Rn+2

1 satisfies
the equation Lrx = Ax + b if and only if (M, g,N) is either an (r + 1)−maximal null hypersurface or an
almost isoparametric normalized null hypersurface with N = U0x+ b0 , for some field of screen constant matrix
U0 ∈ R(n+2)×(n+2) and field of screen constant vector b0 ∈ Rn+2 .

1.2. Main results
A rigging or a normalization for a null hypersurface M is a null vector field N defined over M and everywhere
transversal to M [21]. The triplet (M, g,N) , g being the restriction of the ambient metric on M , is then
called a normalized null hypersurface. Orthogonal projection on M being impossible, to study the extrinsic
geometry of M geometrical object of the ambient manifold are projected on M parallely to N . Therefore,
many properties regarding the extrinsic geometry of M should depend on N , that is on the direction used
for projections. That is why it is often necessary to choose a specific normalization or class of normalizations,
unless the property in investigation does not depend on the normalization as it is the case for maximality, total
umbilicity and total geodesibility.

In the present work, a classification result similar to the one in [8] is established when the ambient
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manifold is one the the two real standard nonflat Lorentzian space forms Qn+2
1 (c) , c = ±1 . As recall, Qn+2

1 (c)

is either the de Sitter space-time Sn+2 when c = +1 or the antide Sitter space-time Hn+2 when c = −1 . In
fact, we prove the following.

Theorem 1.1 Let x : (M, g,N) → Qn+2
1 (c) be a normalized null hypersurface isometrically immersed into a

real standard Lorentzian nonflat space-form Qn+2
1 (c) and furnished with a closed normalization N such that

AN−
⋆

Aξ= φ1P + φ2

⋆

Aξ with φ1 6= 0 or φ2 6= −1/2 and τ ≡ 0 . Let Lr be the linearized operator of the
(r+1)−mean curvature of M , for some fixed r = 1, ..., n . If the immersion x satisfies the equation Lrx = Ux ,
for some field of screen constant matrix U ∈ R(n+3)×(n+3) , then M is either an (r + 1)− maximal null
hypersurface, or a section of Q(c)n+2

1 with a hyperplane of Rn+3 or an almost isoparametric normalized null
hypersurface with exactly two nonzero principal curvatures.

An almost isoparametric normalized null hypersurface is a normalized null hypersurface whose the screen
principal curvatures are constant along the screen distribution. To prove the above theorem we first have to
classify null hypersurfaces admitting totally umbilical screen distribution in a real standard nonflat space-forms.

Theorem 1.2 Let (M, g,S (N)) be a null hypersurface of a semi-Riemannian nonflat space form Qn+2
t (c) ,

endow with a screen distribution S (N) .

The screen distribution is (proper) totally umbilical (and M is totally umbilical or geodesic) if and only if M

is a section of Qn+2
t (c) by a hyperplane of Rn+3 .

M is totally geodesic if and only if M is a section of Qn+2
t (c) by a hyperplane of Rn+3 passing through the

origin.

The associated metric introduced in [7] is used to define the gradient of smooth functions on M since
the induced metric g is degenerate and cannot be used to this ends. The above theorem will also be used in the
prove of the following one. A corollary of this following theorem is that the sections of Qn+2

1 (c) by hyperplanes
of Rn+3 passing through the origin are the only null hypersurfaces of Qn+2

1 (c) whose coordinate functions are
eigenfunctions of the Laplacian operator ∆η .

Theorem 1.3 Let λ ∈ R and b ∈ Rn+3 . If a normalized null hypersurface x : (M, g,N) → Qn+2
1 (c) satisfies

∆ηx = λx + b then M is an open piece of a section of Qn+2
1 (c) by a hyperplane of Rn+3 passing through the

origin.

The rest of the paper is organized as follows: In Section 2 we recall some necessary preliminaries on null
hypersurfaces of the standard real nonflat space-forms. Section 3 is concerned with the classification of null
hypersurfaces admitting totally umbilical screen distribution in a standard real nonflat space-forms. In Section
4, we recall the definitions of (almost) isoparametric normalized null hypersurface intoduced in [8]. In Section
5 we solve the equation ∆x = λx + b for λ ∈ R , b ∈ Rn+3 and where the unknown x is a normalized null
hypersurface immersed in a nonflat space-form. In Section 6 we introduce the second-order differential operators
Lr . Finally in the last section, we solve the equation Lrx = Ax + b for null hypersurfaces in a real standard
Lorentzian nonflat space-forms.
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2. Necessary background materials on null hypersurfaces of Qn+2
t (c)

Let Rn+3
t be the (n+3)−dimensional pseudo-Euclidean space of index t ≥ 1 , whose metric tensor 〈, 〉 is given

by

〈, 〉 = −
t∑

i=1

dx2
i +

n+3∑
j=t+1

dx2
j ,

where (x1, ..., xn+3) is the cartesian coordinates in Rn+3 . Recall that, the de Sitter space of index t and radius
r > 0 is defined by

Sn+2
t (r) := {x ∈ Rn+3

t ; 〈x, x〉 = r2},

and the Anti-de Sitter space of index t and radius −r < 0 is defined by

Hn+2
t (−r) := {x ∈ Rn+3

t+1 ; 〈x, x〉 = −r2}.

Sn+2
t (r) , Rn+2

t and Hn+2
t (−r) are the real standard (n + 2)−dimensional semi-Riemannian space forms of

index t and constant sectional curvature 1/r > 0 , 0 and −1/r < 0 respectively.
Throughout this paper, we will consider the case of null hypersurfaces immersed into the pseudo-sphere of

index t and radius 1 , Sn+2
t := Sn+2

t (1) (which is the de Sitter space-time when t = 1), and the ones immersed
into the pseudo-hyperbolic space of index t and radius −1 , Hn+2

t := Hn+2
t (−1) (which is the antide Sitter

space-time when t = 1).

We denote by Qn+2
t (c) the space Sn+2

t or Hn+2
t , according to c = 1 or c = −1 (in Section 4 we shall

also consider the case c = 0 , i.e. Rn+2
t ). We denote by Rn+3

q , the corresponding pseudo-Euclidean space where

lives Qn+2
t (c) . Hence, q = t if c = 1 and q = t+ 1 if c = −1 , and the metric of Rn+3

q can be written as

〈, 〉 = −
t∑

a=0

dx2
a + cdx2

t+1 +

n+2∑
b=t+2

dx2
b .

Let x : (Mn+1, g) → Qn+2
t (c) be a connected null hypersurface, g := x∗〈, 〉 being the restriction of the

ambient metric on M . Then the normal bundle TM⊥ is a rank 1 vector subbundle of the tangent bundle
TM . Let S (N) be a subbundle of TM such that

TM = S (N)⊕Orth TM⊥, (2.1)

where ⊕Orth denotes a orthogonal sum. Such a subbundle is called a screen distribution. From [19], it is known
that there exists a unique rank 1 vector subbundle tr(TM) of TQn+2

t (c) over M , such that for any nonzero
section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N of tr(TM) on U

satisfying
〈N, ξ〉 = 1, 〈N,N〉 = 〈N,W 〉 = 0, ∀ W ∈ S (N)|U . (2.2)

Then TQn+2
t (c) splits as

TQn+2
t (c)|M = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕Orth S (N). (2.3)
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We call tr(TM) a (null) transversal vector bundle along M . Conversely, the choice of a null transversal vector
field N along M determines uniquely a screen distribution S (N) := TM ∩ N⊥ , a null transversal vector
bundle tr(TM) := Span(N) , and a section ξ of TM⊥ such that (2.2) and (2.3) hold. See [21] for more detail.

Let θ = 〈N, ·〉 be the 1− form metrically equivalent to N and η = x⋆θ its restriction to M . The
normalized null hypersurface (M, g,N) will be said to be closed if the 1− form η is closed. It is easy to check
that S (N) = ker(η) and that the screen distribution S (N) is integrable whenever η is closed. On a normalized
null hypersurface (M, g,N) , the Gauss and Weingarten formulas are given by

∇XY = ∇XY +BN (X,Y )N, (2.4)

∇XN = −ANX + τN (X)N, (2.5)

∇XPY =
⋆

∇X PY + CN (X,PY )ξ, (2.6)

∇Xξ = −
⋆

AξX − τN (X)ξ, (2.7)

for all X,Y ∈ Γ(TM) , where ∇ denotes the Levi–Civita connection on Qn+2
t (c) , ∇ denotes the connection on

M induced from ∇ through the projection along the rigging N and
⋆

∇ denotes the connection on the screen
distribution S (N) induced from ∇ through the projection morphism P from Γ(TM) onto Γ

(
S (N)

)
with

respect to the decomposition (2.1). Now the (0, 2) tensors BN and CN are the second fundamental forms on

TM and S (N) respectively, AN and
⋆

Aξ are the shape operators on TM and S (N) respectively and the
rotation 1− form τN a 1− form on TM defined by

τN (X) = 〈∇XN, ξ〉.

For the second fundamental forms BN and CN the following holds

BN (X,Y ) = g(
⋆

AξX,Y ), CN (X,PY ) = g(ANX,Y ) ∀X,Y ∈ Γ(TM), (2.8)

and

BN (X, ξ) = 0,
⋆

Aξ ξ = 0. (2.9)

It follows from (2.9) that integral curves of ξ are pregeodesics in both M and M , as ∇ξξ = ∇ξξ = −τN (ξ)ξ .
The induced connection ∇ is torsion-free, but not necessarily g−metric unless M be totally geodesic.

In fact we have for all tangent vector fields X,Y and Z in TM ,

(∇Xg)(Y, Z) = BN (X,Y )η(Z) +BN (X,Z)η(Y ). (2.10)

Also, due to the degeneracy of the induced metric g it cannot be used to do differential calculus on M ,
especially to define the gradient of a smooth function. We define on M the metric gη by

gη = g + η ⊗ η.

Clearly, gη defines a nondegenerate metric on M which plays an important role in defining the usual differential
operators gradient, divergence, Laplacian with respect to degenerate metric g on null hypersurfaces (see [7] for
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details). It is called the associated metric to g on the normalized null hypersurface (M, g,N) . The following
verifications are straightforward,

gη(ξ,X) = η(X), gη(X,Y ) = g(X,Y ) ∀X ∈ Γ(TM), ∀Y ∈ Γ(S (N)). (2.11)

In particular gη(ξ, ξ) = 1 and the last equality in (2.11) is telling us that restrict to S (N) the metrics gη and
g coincide.

For every x ∈ M ,

Rn+3 = ({span{ξx} ⊕ span{Nx}} ⊕Orth S (Nx))⊕Orth span{x}. (2.12)

Setting
◦
∇ the flat connection of Rn+3

q , we can write the Gauss formula of the immersion x : (M, g,N) →

Qn+2
t (c) → Rn+3

q as
◦
∇X Y =

⋆

∇X Y + C(X,Y )ξ +B(X,Y )N − 〈X,Y 〉cx, (2.13)

for every X,Y ∈ Γ(S (N)) .

Let us denote by R and R the Riemann curvature tensors of ∇ and ∇ , respectively. Then the following
are the Gauss–Codazzi equations [19, p. 93].

(∇XBN )(Y, Z) + τN (X)BN (Y, Z) = (∇Y B
N )(X,Z) + τN (Y )BN (X,Z), (2.14)

c(〈Y, Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉) =
〈
R(X,Y )Z,PW

〉
+BN (X,Z)CN (Y, PW )−BN (Y, Z)CN (X,PW ), (2.15)

CN (Y,
⋆

AξX)− CN (X,
⋆

Aξ Y ) = 2dτN (X,Y ), ∀X,Y, Z,W ∈ Γ(TM |U ), (2.16)

c(〈Y, Z〉η(X)− 〈X,Z〉η(Y )) =
〈
(∇XAN )Y, PZ

〉
−

〈
(∇Y AN )X,PZ

〉
+ τN (Y )

〈
ANX,PZ

〉
− τN (X)

〈
ANY, PZ

〉
, (2.17)

M is said to be totally umbilical (resp. totally geodesic) if there exists a smooth function ρ on M such
that BN = ρg (resp. BN vanishes identically on M ). These are intrinsic notions on any null hypersurface
in the sense that they do not depend on the choice of the normalization. The total umbilicity and the total

geodesibility conditions for M can also be written respectively as
⋆

Aξ = ρP and
⋆

Aξ = 0 . Also, the screen
distribution S (N) is totally umbilical (resp. totally geodesic) if CN (U,PV ) = λg(U, V ) for all U, V ∈ Γ(TM)

(resp. CN = 0), which is equivalent to AN = λP (resp. AN = 0).

Lemma 2.1 [19] Let (M, g,N) be a totally umbilical rigged null hypersurface of a (n+2)−dimensional pseudo-
Riemannian space-form. Then ρ from the above definition satisfies

ξ(ρ) + ρτN (ξ)− ρ2 = 0 (2.18)

PU(ρ) + ρτN (PU) = 0, (2.19)

for all U ∈ Γ(TM) .
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As
⋆

Aξ is selfadjoint linear operator on each fiber TpM with
⋆

Aξ ξ = 0 and the screen structure S (N)

is Riemannian,
⋆

Aξ is diagonalizable and have (n + 1) real-valued eigenfunctions
⋆

k0= 0 ,
⋆

k1, ...,
⋆

kn . These

are the screen principal curvatures of the null hypersurface (i.e with respect to the shape operator
⋆

Aξ ). Let( ⋆

E0= ξ,
⋆

E1, . . . ,
⋆

En

)
be a quasi-orthonormal basis of eigenvectors fields.

The r − th mean curvature of the null hypersurface with respect to the shape operator
⋆

Aξ is given by

⋆

Hr =

(
n+ 1

r

)−1

σr(
⋆

k0, ...,
⋆

kn) and
⋆

H0= 1 (constant function 1),

where σr is the r − th elementary symmetric polynomial. We set
⋆

Sr= σr(
⋆

k0, ...,
⋆

kn) and
⋆

S
α

r= σr(
⋆

k0, ...,
⋆

kα−1

,
⋆

kα+1, ...,
⋆

kn) .

Definition 2.2 (r−maximality) Let 1 ≤ r ≤ n + 1 be an integer. A null hypersurface M with
⋆

Hr = 0 is
said to be r−maximal.

For 0 ≤ r ≤ n+ 1 , the r − th Newton transformation
⋆

T r with respect to the shape operator
⋆

Aξ is the
End(Γ(TM)) element given by

⋆

T r=

r∑
a=0

(−1)a
⋆

Sa

⋆

A
r−a

ξ .

Inductively,
⋆

T 0= I and
⋆

T r = (−1)r
⋆

SrI+
⋆

Aξ ◦
⋆

T r−1,

where I denotes the identity of Γ(TM) and
⋆

Tn+1= 0 (from Cayley–Hamilton theorem). By algebraic
computations, one shows the following.

Proposition 2.3 ([9]) 1.
⋆

T r is selfadjoint and commute with
⋆

Aξ ;

2.
⋆

T r

⋆

Eα= (−1)r
⋆

S
α

r

⋆

Eα ;

3. tr(
⋆

T r) = (−1)r(n+ 1− r)
⋆

Sr ;

4. tr
( ⋆

Aξ ◦
⋆

T r−1

)
= (−1)r−1r

⋆

Sr ;

5. tr

(
⋆

A
2

ξ ◦
⋆

T r−1

)
= (−1)r−1

( ⋆

S1

⋆

Sr −(r + 1)
⋆

Sr+1

)
;

6. tr(
⋆

T r−1 ◦∇X

⋆

Aξ) = (−1)r−1X(
⋆

Sr).

The following two lemmas are also proven in [9], the second being derived from the first one by taking
r = 1 .
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Lemma 2.4 ([9]) Let x : (M, g,N) → ω(c)n+2 be a normalized null hypersurface of a semi-Riemannian
manifold with constant sectional curvature. Then for r = 1, ..., n+ 1 ,

(−1)r−1ξ(
⋆

Sr) + τ(ξ)tr(
⋆

Aξ ◦
⋆

T r−1)− tr(
⋆

A
2

ξ ◦
⋆

T r−1) = 0. (2.20)

Lemma 2.5 ([9]) A null hypersurface M of a semi-Riemannian manifold with constant sectional curvature is
maximal if and only if M is totally geodesic.

Let (X0 = ξ,X1, ..., Xn) be a local gη−orthonormal basis of Γ(TM) with span{X1, ..., Xn} = S (N) .

The divergence of the operator
∗
T r is the vector field div∇

( ∗
T r

)
∈ Γ(TM) define as the trace of the

End(TM)−valued operator ∇
∗
T r and given by

div∇
( ∗
T r

)
= tr(∇

∗
T r) =

n∑
a,b=0

gabη (∇
∗
T r)(Xa, Xb) =

n∑
a=0

(∇Xa

∗
T r)Xa. (2.21)

3. Totally umbilical and totally geodesic null hypersurfaces in nonflat space-forms Qn+2
t (c)

3.1. Sections of Qn+2
t (c) by hyperplanes of Rn+3

q

Let T be a hyperplane of Rn+3 . Then, T can be defined by one of the two (normalized) equations

〈a, x〉 = c (3.1)

〈a, x〉 = 0, (3.2)

where a ∈ Rn+3 is a constant vector. Let M be the section of Qn+2
t (c) by the hyperplane T .

Lemma 3.1 M is a null hypersurface of Qn+2
t (c) if and only if T can be defined by Equation (3.1) for some

a ∈ Qn+2
t (c) or by Equation (3.2) for some constant null vector a .

Proof Let a be constant vector and f : Qn+2
t (c) → R , x 7→ 〈a, x〉 . First, we suppose that M = {x ∈

Qn+2
t (c); f(x) = 〈a, x〉 = c} . ∀X ∈ Γ(TM) ,

df(X) = 〈a,X〉 = 〈a⊤, X〉,

where a⊤ = a − c〈a, x〉x = a − x on M , is the orthogonal projection of a on TQ . Hence, ∇f = a⊤ = a − x

and 〈∇f(x),∇f(x)〉 = 〈a, a〉 − c for all x ∈ M . Finally, M is a null hypersurface if and only if ∇f is a null
vector field on M , if and only if 〈a, a〉 = c if and only if a ∈ Qn+2

t (c) .

Secondly, if M = {x ∈ Qn+2
t (c); f(x) = 〈a, x〉 = 0} then, a⊤ = a on M and 〈∇f(x),∇f(x)〉 = 〈a, a〉 for

all x ∈ M . Then in this case, M is a null hypersurface if and only if a is a constant null vector. 2

If T is defined by an equation of type (3.2) and a is a constant null vector then by Lemma 3.1, M is a
null hypersurface and the vector field ξ := a spanned the radical distribution, and ∀X ∈ Γ(TM) , ∇Xξ = 0 ,
thus M is a totally geodesic null hypersurface of Qn+2

t (c) .
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x0

Rn
+2

Figure 1. Section of Sn+2
1 by the hyperplane T : −

√
n+ 2x0 + x1 + · · ·+ xn+2 = 0 .

O

x0

Rn
+2

Figure 2. Section of Hn+2
1 by the hyperplane S : −

√
nx0 − x1 + · · ·+ xn+2 = 0 .

Example 3.2 The section of Sn+2
1 (resp. Hn+2

1 ) by the hyperplane T : −
√
n+ 2x0 + x1 + · · ·+ xn+2 = 0 , see

Figure 1, (resp. S : −
√
nx0 − x1 + · · ·+ xn+2 = 0 , see Figure 2) is a totally geodesic null hypersurface.

If T is defined by an equation of type (3.1) and a ∈ Qn+2
t (c) then by Lemma 3.1, M is a null hypersurface.

We consider on M the normalizing pair

N =
1

2

(
1 + ca20

(a0 − x0)2
− c

)
(a− x)− 1

a0 − x0
∂x0 −

x0

a0 − x0
ca,

ξ = a− x.

The shape operators are then given by

⋆

Aξ (X) = PX, AN (X) =
1

2

(
1 + ca20

(a0 − x0)2
− c

)
PX ∀X ∈ Γ(TM).
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Thus, the screen is totally umbilical and M is a totally umbilical null hypersurface.

3.2. Proof of Theorem 1.2
Lemma 3.3 Let (M, g,N) be a normalized null hypersurface of a semi-Riemannian space form Qn+2

t (c) . If

AN is symmetric and commute with
⋆

Aξ or M is totally geodesic then, there exists a (re-)normalization Ñ

such that τ Ñ ≡ 0 .

Proof Since AN is symmetric and commute with
⋆

Aξ or M is totally geodesic, Equation (2.16) shows that
the 1− form τN is closed and by the Poincaré lemma, it is locally exact. Thus, there exists a smooth function
f defined at least locally and such that τN = −df . Set φ = ef and consider the (re-)normalization Ñ = φN

(which conserve the screen distribution), one has by using Lemma 2.1 in [6],

τ Ñ = τN + d ln |φ| = τN + df = 0.

2

Proof [Proof of Theorem 1.2] If the screen distribution is totally umbilical then AN it is symmetric and

commute with
⋆

Aξ . Hence, AN is symmetric and commute with
⋆

Aξ or M is totally geodesic and by Lemma

3.3, there exists a normalization N for which τN ≡ 0 . Let ρ be the umbilicity factor of
⋆

Aξ (with ρ = 0 in the
case where M is totally geodesic) and (ρη)♯ the gradient of the 1− form ρη with respect to any non degenerate

metric on M (for example the associated metric gη ). Now, consider the (re-)normalization Ñ = e(ρη)
♯

N , one

has τ Ñ = ρη = ρe−(ρη)♯ η̃ . By using Lemma 2.1, one obtains

ξ
(
ρe(−ρη)♯

)
= 0 and PU

(
ρe−(ρη)♯

)
= 0 ∀U ∈ Γ(TM).

Then, ρe−(ρη)♯ is constant on M . Now, setting a = e−(ρη)♯ξ + ρe−(ρη)♯x a direct calculation gives
o

∇U a = 0

(where
o

∇ is the flat connection of Rn+3
q ). Then, a is a constant vector on M which can be extended to a

constant vector on Rn+3
q . Finally,

∀x ∈ M, 〈a, x〉 = ρe−(ρη)♯c.

That proves the direct sense of the two items and the converse was shown in subsection 3.1. 2

4. Almost isoparametric and isoparametric normalized null hypersurfaces

A nondegenerate hypersurface M in a real space-form Q(c) of constant sectional curvature c is said to be
isoparametric if it has constant principal curvatures. An isoparametric hypersurface M in Rn can have at
most two different principal curvatures, and M must be an open subset of a hyperplane, hypersphere or a
spherical cylinder Sk × Rn−k−1 . This was shown by Levi–Civita [26] for n = 3 and by Segre [31] for arbitrary
n . Similarly, Cartan [12] proved that an isoparametric hypersurface M in a hyperbolic space Hn can have at
most two different principal curvatures, and M must be either totally umbilical or else be an open subset of a
standard product Sk ×Hn−k−1 in Hn .
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Definition 4.1 a) A normalized null hypersurface (M, g,N) is said to be isoparametric if the screen principal

curvatures (eigenfunctions of
⋆

Aξ) are constants.

b) A normalized null hypersurface (M, g,N) is said to be almost isoparametric if the screen distribution
S (N) is integrable and all the screen principal curvatures are constants on each leaf of S (N) .

Example 4.2 Every totally geodesic null hypersurface is isoparametric.

Let us recall the following result which gives Cartan’s identity for null hypersurfaces.

Theorem 4.3 [10] Let (M, g,N) be a lightlike hypersurface of an (n+2)−dimensional Lorentzian space-form

Qn+2
t (c) with τ = 0 . Assume that E0 = ξ, E1, ..., En are eigenfunctions of

⋆

Aξ satisfying
⋆

Aξ Ei = λiEi (i ≥ 1)
and λi is constant along S (N) . Then for every i ≥ 1 ,

∑
j=1,λj ̸=λi

c+ λjg(ANEi, Ei) + λig(ANEj , Ej)

λi − λj
= 0.

Lemma 4.4 Let x : (M, g,N) → Qn+2
1 (c) be an almost isoparametric normalized null hypersurface isommetri-

cally immersed into a Lorentzian space-form with constant sectional curvature c ≤ 0 . If there exists a conformal
screen (re-)normalization with vanishing 1− form τ , then M has at most two different screen principal curva-
tures. In particular when c = 0 , M has at most one nonzero screen principal curvature and when c < 0 , M

has exactly two or no nonzero screen principal curvatures.

Proof Let x : (M, g,N) → Qn+2
1 (c) be a almost isoparametric normalized null hypersurface with conformal

screen distribution (AN = φ
⋆

Aξ ) and τ = 0 . Let λ1, ..., λp be all distinct screen principal curvatures of the

sharp operator
⋆

Aξ , with algebraic multiplicities ν1, ..., νp . By the previous theorem for any i = 1, ..., p Cartan’s
identity can be written as ∑

j=1,j ̸=i

νj
c+ 2φλjλi

λi − λj
= 0. (4.1)

Without loss of generalities, we may assume λ1 < λ2 < · · · < λp , and λp ≥ 0 . Choose the largest nonnegative
λi such that 2φλiλi−1 ≤ c . Then

c+ 2φλjλi

λi − λj
≤ 0

for any j 6= i . Hence 2φλiλj = c if i 6= j . Therefore p ≤ 2 . 2

5. Normalized null hypersurfaces x : (M, g,N) → Qn+2
1 (c) , c 6= 0 satisfying ∆ηx = λx+ b, λ ∈ R, b ∈

Rn+3

Let x : (M, g,N) → Qn+2
1 (c) ⊂ Rn+3

q be a normalized null hypersurface immersed into a nonflat Lorentzian

space-form Qn+2
1 (c) and let a ∈ Rn+3

q be a fixed vector. We can write

a = a⊤ + 〈ax, ξ〉N + c〈a, x〉x,
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where ax is the orthogonal projection of a on TQn+2
1 (c) and a⊤ is the projection of ax on TM with respect

to decomposition (2.1). Then, 〈x, a〉 ∈ C∞(M) and ∀U ∈ Γ(TM) using the fact that 〈ax, ξ〉 = 〈a, ξ〉 one has

gη(∇η〈x, a〉, U) = U · 〈x, a〉 = 〈U, a〉 = gη(Pa⊤ + 〈ξ, a〉ξ, U).

Thus,
∇η〈x, a〉 = Pa⊤ + 〈ξ, a〉ξ = a− 〈N, a〉ξ − 〈ξ, a〉N + 〈ξ, a〉ξ − 〈ξ, a〉x, (5.1)

and for all U ∈ Γ(TM) , by using (2.6), (2.7), we get

∇U∇η〈x, a〉 = 〈AN (U)−
⋆

Aξ (U)− 2τ(U)ξ, a〉ξ + 〈N, a〉
⋆

Aξ (U)

+ (AN (U)−
⋆

Aξ (U))〈ξ, a〉 − c〈x, a〉U. (5.2)

It follows that
∆η〈x, a〉 = trace(∇∇η〈x, a〉)

= 〈ANξ, a〉+ (S1−
⋆

S1 −2τ(ξ))〈ξ, a〉+
⋆

S1 〈N, a〉 − c(n+ 1)〈x, a〉. (5.3)

We extend ∆η on ⊗n+3C∞(M) by

∆η(f0, ..., fn+2) = (∆ηf0, ...,∆
ηfn+2), (5.4)

for all (f0, ..., fn+2) ∈ ⊗n+3C∞(M). Let (e0, ..., en+2) be the standard orthonormal basis of Rn+3
q . Then by

using (5.3) and (5.4),

∆ηx = (ϵ0∆
η〈x, e0〉, ..., ϵn+1∆

η〈x, en+1〉1)

= ANξ + (S1−
⋆

S1 −2τ(ξ))ξ+
⋆

S1 N − c(n+ 1)x, (5.5)

where ϵA = 〈eA, eA〉 = ±1 . We say that a normalized null hypersurface (M, g,N) is pseudo-harmonic (of first
kind) provided ∆ηx = 0 .

Lemma 5.1 Pseudo-harmonic normalized null hypersurface does not exist in de Sitter and antide Sitter spaces.

Proof As ANξ ∈ S (N) and ξ , N and x are linearly independent, Equation (5.5) show that ∆ηx cannot
vanish. 2

Proof [Proof of Theorem 1.3] Suppose that x satisfies ∆ηx = λx+ b then,

AN (ξ) + (S1−
⋆

S1 −2τ(ξ))ξ+
⋆

S1 N − c(n+ 1)x = λx+ b. (5.6)

Taking covariant derivative of (5.6) by ξ and using Gauss–Weingarten equations one obtains

λξ =
⋆

∇ξ ANξ−
⋆

S1 ANξ + (ξ·
⋆

S1 +τ(ξ)
⋆

S1)N − c
⋆

S1 x

+
[
C(ξ,AN (ξ)) + ξ · S1 − ξ·

⋆

S1 −2ξ · τ(ξ)

− S1τ(ξ)+
⋆

S1 τ(ξ) + 2τ(ξ)2 − c(n+ 1)
]
ξ. (5.7)
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Hence, 

⋆

∇ξ AN (ξ) =
⋆

S1 AN (ξ)

ξ·
⋆

S1 +τ(ξ)
⋆

S1= 0
(2.20)
=⇒ tr

(
⋆

A
2

ξ

)
= 0

⋆

S1= 0

C(ξ,AN (ξ)) + ξ · S1 − ξ·
⋆

S1 −2ξ · τ(ξ)− S1τ(ξ)+
⋆

S1 τ(ξ) + 2τ(ξ)2 − c(n+ 1) = λ

.

Thus, M is maximal and by Lemma 2.5, M is totally geodesic and by Theorem 1.2, M is an open piece of a
section of Qn+2

1 (c) with hyperplane of Rn+3 passing through the origin. 2

6. The second-order differential operators Lr

We assume now that the normalization N is closed with 1− form τN such that τN |S (N) ≡ 0 . Then ANξ = 0

and
C(ξ,X) = 0, ∀Y ∈ Γ(S (N)). (6.1)

Let (X0 = ξ,X1, ..., Xn) be a gη−orthonormal basis of Γ(TM) with span{X1, ..., Xn} = S (N) . Let f be a
smooth function on M . By a direct calculating,(

∇ξ

⋆

T r

)
ξ = (−1)rξ

( ⋆

Sr

)
ξ. (6.2)

By definition,

div∇(
⋆

T r ∇ηf) = trace(∇
⋆

T r ∇ηf)

=

n∑
i=1

{〈(
∇Xi

⋆

T r

)
∇ηf,Xi

〉
+
〈 ⋆

T r ∇Xi∇ηf,Xi

〉}
+ η(∇ξ

⋆

T r ∇ηf). (6.3)

For each i , 〈(
∇Xi

⋆

T r

)
∇ηf,Xi

〉
=

〈(
∇Xi

⋆

T r

)
Xi,∇ηf

〉
− η(

⋆

T r ∇ηf)B(Xi, Xi)

+ η(∇ηf)B(
⋆

T r Xi, Xi)

=
〈(

∇Xi

⋆

T r

)
Xi,∇ηf

〉
− (−1)r

⋆

Sr η(∇ηf)B(Xi, Xi)

+ η(∇ηf)B(
⋆

T r Xi, Xi)

=
〈(

∇Xi

⋆

T r

)
Xi,∇ηf

〉
+ η(∇ηf)

〈
⋆

A
2

ξ ◦
⋆

T r Xi, Xi

〉
.

Hence,

div∇(
⋆

T r ∇ηf) =
〈
∇ηf, div∇(

⋆

T r)
〉
+ η(∇ηf)tr(

⋆

A
2

◦
⋆

T r−1) + tr(
⋆

T r ◦∇2
ηf)

− η(
⋆

T r ∇ξ∇ηf) + η(∇ξ

⋆

T r ∇ηf) (6.4)
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By using (2.6) and (6.1),

η(∇ξ

⋆

T r ∇ηf) = (−1)rη(∇ξ

⋆

Sr ∇ηf) + C(ξ,
⋆

T r−1 ◦
⋆

Aξ ∇ηf)

η(∇ξ

⋆

T r ∇ηf) = (−1)rη(∇ηf)ξ(
⋆

Sr) + (−1)r
⋆

Sr η(∇ξ∇ηf), (6.5)

and,

η(
⋆

T r ∇ξ∇ηf) = (−1)r
⋆

Sr η(∇ξ∇ηf). (6.6)

Replace (6.5) and (6.6) in (6.4) we obtain

div∇(
⋆

T r ∇ηf) =
〈
∇ηf, div∇(

⋆

T r)
〉
+ tr(

⋆

T r ◦∇2
ηf)

+ η(∇ηf)

(
(−1)rξ(

⋆

Sr) + tr(
⋆

A
2

◦
⋆

T r−1)

)
. (6.7)

Thanks to [2] and since the ambient has constant sectional curvature, the divergence div∇(
⋆

T r) is TM⊥−valued

and (−1)rξ(
⋆

Sr) + tr(
⋆

A
2

ξ ◦
⋆

T r−1) = τN (ξ)tr(
⋆

Aξ ◦
⋆

T r−1) . Hence (6.7) becomes

div∇(
⋆

T r ∇ηf) = tr(
⋆

T r ◦∇2
ηf) + η(∇ηf)τN (ξ)tr(

⋆

Aξ ◦
⋆

T r−1). (6.8)

Let r be an integer with 0 ≤ r ≤ n . We define the second-order differential operator Lr : C∞(M) → C∞(M)

for a normalized null hypersurface in a Lorentzian space-form by

Lrf = tr(
⋆

T r ◦∇2
ηf) + η(∇ηf)τN (ξ)tr(

⋆

Aξ ◦
⋆

T r−1), ∀f ∈ C∞(M). (6.9)

It is easy to check that Lo is nothing but the first kind pseudo-Laplacian operator ∆η and that Lr satisfies for
f, g ∈ C∞(M) ,

Lr(fg) = fLrg + gLrf + 2
〈 ⋆

T r ∇ηf,∇ηg
〉
+ 2η(

⋆

T r ∇ηf)η(∇ηg). (6.10)

7. Normalized null hypersurfaces x : (M, g,N) → Qn+2
1 (c) satisfying Lrx = Ux+ b

Definition 7.1 A Lr−normalized null hypersurface of Qn+2
1 (c) is a normalized null hypersurface x : (M, g,N) →

Qn+2
1 (c) satisfying the following linear condition on the second order differential equation

Lrx = Ux+ b, (7.1)

for some field of screen constant matrices U ∈ R(n+3)×(n+3) and field of screen constant vectors b ∈ Rn+3 .

Our goal in this section is to classify Lr−normalized null hypersurfaces x : (M, g,N) → Qn+2
1 (c) . In

[28], the authors showed that nondegenerate hypersurface of Qn+2
1 (c) satisfying the above Equation (7.1)

with U ∈ R(n+3)×(n+3) , b ∈ Rn+3 , constant matrix and constant vector respectively, are (r + 1)−maximal
hypersurfaces, totally umbilical hypersurfaces or isoparametric hypersurfaces with at most two different principal
curvatures. In our case (of null hypersurfaces), we will assume that the matrix U and the vector b are constant
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along the leaves of the screen distribution, since in nondegenerate case, the screen distribution is nothing but
the tangent space globally. Furthermore, a difficulty to solve this problem in the degenerate case is the choice of
normalization. In [8], to find null hypersurfaces in the Lorentz-Minkowski space Rn+2

1 satisfying the equation
(7.1), the authors considered a specific set of normalizations that they called UCC-normalization with vanishing
1− form τ . But, the existence of a UCC-normalization with vanishing 1− form τ is improbable for several null
hypersurfaces of Qn+2

1 (c) . For instance, a totally geodesic null hypersurface of Qn+2
1 (c) does not admit such a

normalization since the screen distribution cannot be totally geodesic (see [20]). So, we will first consider closed
normalizations such that τN |S (N) = 0 .

Let a ∈ Rn+3 be a fixed vector. Using definition of the second-order operator and (5.2) one has

Lr〈x, a〉 = trace(
⋆

T r ◦∇2
η〈x, a〉)

= tr(
⋆

T r ◦〈AN−
⋆

Aξ −2τN (ξ)ξ, a〉ξ) + 〈N, a〉tr(
⋆

T r ◦
⋆

Aξ)

+ 〈ξ, a〉tr
( ⋆

T r ◦(AN−
⋆

Aξ)
)
− c〈x, a〉tr(

⋆

T r).

By using Proposition 2.3 one obtains

Lr〈x, a〉 = (−1)r(r + 1)
⋆

Sr+1 〈N, a〉+ (−1)r
⋆

Sr 〈ANξ − 2τN (ξ)ξ, a〉

+ tr
( ⋆

T r ◦(AN−
⋆

Aξ)
)
〈ξ, a〉 − (−1)rc(n+ 1− r)

⋆

Sr 〈x, a〉. (7.2)

After extending Lr on ⊗n+3C∞(M) , one has

Lrx = (−1)r(r + 1)
⋆

Sr+1 N + (−1)r
(
ANξ − 2τN (ξ)ξ

) ⋆

Sr

+ tr
( ⋆

T r ◦(AN−
⋆

Aξ)
)
ξ − (−1)rc(n+ 1− r)

⋆

Sr x.

If one assumes that the normalization is such that AN−
⋆

Aξ= φ1P + φ2

⋆

Aξ, from the last equation one
obtains

Lrx = f1N + f2ξ + f3x, (7.3)

with f1 = (−1)r(r + 1)
⋆

Sr+1 , f2 = (−1)r
[
(n− r)φ1

⋆

Sr +(r + 1)φ2

⋆

Sr+1

]
,

f3 = (−1)r+1(n− r + 1)
⋆

Sr c .

Our goal is then to find closed Lr−normalized null hypersurfaces x : (M, g,N) → Qn+2
1 (c) with

τN |S (N) = 0 .

7.1. Examples

7.1.1. Screen totally umbilical or totally geodesic normalized null hypersurfaces x : (M, g,N) →
Qn+2

1 (c)

We have already shown that screen totally umbilical or totally geodesic normalized null hypersurfaces x :

(M, g,N) → Qn+2
1 (c) are sections of Qn+2

1 (c) by hyperplanes of Rn+3
q .
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Let a ∈ Rn+3
q be a constant vector such that 〈a, a〉 = c and M the null hypersurface, section of Qn+2

1 (c)

by the hyperplane passing through a . Thus,

M = {x ∈ Qn+2
1 (c); f(x) = 〈a, x〉 = c}.

We consider (locally) on M the Normalizing pair

N =
1

2

(
1 + ca20
a0 − x0

− c(a0 − x0)

)
(a− x)− ∂x0 − x0ca,

ξ =
1

a0 − x0
a− x.

By a direct calculating,

⋆

Aξ= P, AN =
1

2

(
1 + ca20

(a0 − x0)2
− c

)
P, τ = 0, η = x⋆dx0,

and it follows that

⋆

Sr=

(
n

r

)(
1

a0 − x0

)r

, AN−
⋆

Aξ=
1

2

(
ca20 − 1− (a0 − x0)

2c
) ⋆

Aξ .

Therefore, Equation (7.3) leads to

(r + 1)−1

(
n

r + 1

)−1

(a0 − x0)
−rLrx =

[
ca20

a0 − x0
+

(a0 − x0)c

n− r

]
x

+

[
(a0 − x0)c+

ca20
a0 − x0

− c

]
a+ ∂x0,

which is solution of Equation (7.1).

7.1.2. Standard degenerate product in Sn+2
1

Let f : Rn+3
1 ⊃ Sn+2

1 → R , x 7→ −x2
0 + x2

1 + · · · + x2
m , 1 ≤ m ≤ n + 1 , be a smooth function. Set D =

diag[1, ..., 1, 0, ..., 0] , one then has f(x) = 〈Dx, x〉 . For all x ∈ Sn+2
1 , df(x) = −2x0dx0+2x1dx1+· · ·+2xmdxm .

setting M = f−1(0) , and taking the restriction of f on the open subset Sn+2
1 ∖{0}×Sn−m+2 to remove singular

points and make M a hypersurface of Sn+2
1 one has

M = Λm
0 × Sn−m+1.

It follows that df(x)(Xx) = 〈Dx,Xx〉 , thus Dx is normal to M and since Dx is null vector. One concludes
that M is a null hypersurface of Sn+2

1 (c) . Now, we consider the globally defined normalizing pair {N, ξ} given
by

N =
1√
2

(
x0 +

1

x0

)
Dx−

√
2∂x0 −

√
2x0x, ξ =

1

x0

√
2
Dx.
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By direct calculating, one gets

⋆

Aξ (X) = X0

x2
0
Dx− 1

x0

√
2
DX = − 1

x0

√
2
DPX

AN (X) = x0

√
2X + 1√

2

(
X0

x2
0
−X0

)
Dx− 1√

2

(
1
x0

+ x0

)
DX

= x0

√
2PX − 1√

2

(
1
x0

+ x0

)
DPX

τN ≡ 0

η =
√
2dx0

.

Using the (local) basis
X0 = ξ, X1 = −xm∂x1 + x1∂xm, · · · , Xm−1 = −xm∂xm−1 + xm−1∂xm,

Xm = −xn+2∂xm+1 + xm+1∂xn+2, ..., Xn = −xn+2∂xn+1 + xn+1∂xn+2,

the principal curvatures are
⋆

k0= 0,
⋆

k1= · · · =
⋆

km−1= − 1

x0

√
2
,

⋆

km= · · · =
⋆

kn= 0,

k0 = 0, k1 = · · · = km−1 = − 1√
2

(
x0 −

1

x0

)
, km = · · · = kn =

√
2x0.

Then, the r−th mean curvatures of the shape operator
⋆

Aξ are given by

⋆

Hr=

(
n+ 1

r

)−1
⋆

Sr=

{(
n+1
r

)−1(m−1
r

) (
− 1

x0

√
2

)r

if 0 ≤ r ≤ m− 1

0 if m ≤ r ≤ n+ 1
.

A direct calculating gives AN−
⋆

Aξ=
√
2x0P + x2

0

⋆

Aξ and

tr
( ⋆

T r ◦(AN−
⋆

Aξ)
)

=
√
2x0tr

( ⋆

T r ◦P
)
− x2

0tr
( ⋆

T r ◦
⋆

Aξ

)
= (−1)r(n− r)x0

√
2

⋆

Sr −(−1)r(r + 1)x2
0

⋆

Sr+1 .

• If m ≤ r ≤ n+ 1 , then (7.3) becomes
Lrx = 0,

which is a solution of Equation (7.1) with U = 0 and b = 0 .

• If 0 ≤ r ≤ m− 2 , then (7.3) becomes

Lrx =
1

2

(
1

x0

√
2

)r [
(2n−m− r + 1)

(
m− 1

r

)
− 1− 1

x2
0

]
Dx

+

(
m− 1

r

)(
1

x0

√
2

)r [
(m− r − 2)

1

x0
∂x0 − (n−m+ 2)x

]
,

which is a solution of Equation (7.1).

•

Lm−1x = −
(

1

x0

√
2

)m−1

[(n−m+ 1)D − 1]x,

which is a solution of Equation (7.1).
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7.1.3. Standard degenerate product in Hn+2
1

Let f : Rn+3
2 ⊃ Hn+2

1 → R , x 7→ −x2
0 + x2

2 · · · + x2
m+1 , 1 ≤ m ≤ n + 1 , be a smooth function. Set

D = diag[1, 0, 1..., 1, 0, ..., 0] , one then has f(x) = 〈Dx, x〉 . For all x ∈ Hn+2
1 (c) , df(x) = −2x0dx0 + 2x2dx2 +

· · ·+2xm+1dxm+1 . We set M = f−1(0) , and take the restriction of f on the open subset Hn+2
1 ∖{0}×Hn−m+2

to remove singular points and make that M be a hypersurface of Hn+2
1 . It follows that

M = Λm
0 ×Hn−m+1,

and df(x)(Xx) = 〈Dx,Xx〉 . Thus, Dx is normal to M and since Dx is null vector. One concludes that M is
a null hypersorface of Hn+2

1 . Now, we consider the global defined normalizing pair {N, ξ} given by

N =
1√
2

(
1

x0
− x0

)
Dx−

√
2∂x0 +

√
2x0x, ξ =

1

x0

√
2
Dx.

By direct calculating, one gets



⋆

Aξ= − 1
x0

√
2
D ◦ P

AN = − 1√
2

(
1
x0

− x0

)
D ◦ P −

√
2x0P

τN ≡ 0

η =
√
2dx0

.

Using the (local) basis

X0 = ξ, X1 = −xm+1∂x2 + x2∂xm+1, · · ·Xm−1 = −xm+1∂xm + xm∂xm+1,

Xm = −xn+2∂x2 + x2∂xn+2,

Xm+1 = −xn+2∂xm+2 + xm+2∂xn+2 · · ·Xn = −xn+2∂xn+1 + xn+1∂xn+2,

the principal curvatures are

⋆

k0= 0,
⋆

k1= · · · =
⋆

km−1= − 1

x0

√
2
,

⋆

km= · · · =
⋆

kn= 0,

k0 = 0, k1 = · · · = km−1 = − 1√
2

(
x0 +

1

x0

)
, km = · · · = kn = −

√
2x0.

Then, the r−th mean curvatures of the shape operator
⋆

Aξ are given by

⋆

Hr=

(
n+ 1

r

)−1
⋆

Sr=

{(
n+1
r

)−1(m−1
r

) (
− 1

x0

√
2

)r

if 0 ≤ r ≤ m− 1

0 if m ≤ r ≤ n+ 1
.

A direct calculating gives AN−
⋆

Aξ= −
√
2x0P − x2

0

⋆

Aξ and

tr
( ⋆

T r ◦(AN−
⋆

Aξ)
)

= −
√
2x0tr

( ⋆

T r ◦P
)
− x2

0tr
( ⋆

T r ◦
⋆

Aξ

)
= −(−1)r(n− r)x0

√
2

⋆

Sr −(−1)r(r + 1)x2
0

⋆

Sr+1 .
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• If m ≤ r ≤ n+ 1 , then (7.3) becomes
Lrx = 0,

which is solution of Equation (7.1) with U = 0 and b = 0 .

• If 0 ≤ r ≤ m− 2 , then (7.3) becomes

Lrx = −
(
m− 1

r

)(
1

x0

√
2

)r [(
m− r − 1

2x2
0

+ n−m+ 1

)
D + (n+m− 2r)I

]
x

+ (m− r − 2)

(
m− 1

r

)(
1

x0

√
2

)r
1

x0
∂x0,

which is solution of Equation (7.1).

• Finally,(())

Lm−1x = −
(

1

x0

√
2

)m−1

[(n−m+ 1)D + (n−m+ 2)I]x,

which is solution of Equation (7.1).

7.2. Classification of null hypersurfaces x : (M, g,N) → Qn+2
1 (c) , satisfying Lrx = Ux

In the same manner we defined Lrf in Section 6, let us introduce Lr|S f to be the trace of the restriction of

the endomorphism
⋆

T r ◦∇2
ηf : Γ(TM) → Γ(TM) on Γ(S (N)) . From now on, X,Y, Z are sections of S (N)

and we assume that the normalization is such that

AN−
⋆

Aξ= φ1P + φ2

⋆

Aξ, (7.4)

with φ1, φ2 ∈ C∞(M) . Let us compute Lr|S (x) , Lr|S (N) , Lr|S (Lrx) and Lr|S (ξ) .

• Lr|S (x)

〈
⋆

∇ 〈a, x〉, X〉 = X · 〈a, x〉 = 〈Pa⊤, X〉

⇒
⋆

∇ 〈a, x〉 = Pa⊤ = a− 〈a,N〉ξ − 〈a, ξ〉N − 〈a, x〉cx.

Take covariant derivative,

◦
∇X

⋆

∇ 〈a, x〉 = 〈a,N〉
⋆

Aξ (X) + 〈a, ξ〉AN (X)− 〈a, x〉cX.

From here using the assumption (7.4) and formula (2.13) one obtains

⋆

∇X

⋆

∇ 〈a, x〉 = 〈a,N + (1 + φ2)ξ〉
⋆

Aξ (X) + 〈a, ξ〉φ1X − 〈a, x〉cX

From here, using the definition of Lr|S and Proposition 2.3,

Lr|S (x) = (−1)r(r + 1)
⋆

Sr+1 (N + (1 + φ2)ξ)

+ (−1)r(n− r)
⋆

Sr ξ − (−1)r(n− r)
⋆

Sr cx. (7.5)
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• Lr|S (N)

〈
⋆

∇ 〈a,N〉, X〉 = X · 〈a,N〉 = −〈AN (a⊤), x〉.

Hence,

⋆

∇ 〈a,N〉 = −(1 + φ2)
⋆

Aξ (a
⊤)− φ1Pa⊤. (7.6)

Take covariant derivative, use the assumption (7.4) and formula (2.13),

⋆

∇X

⋆

∇ 〈a,N〉 = −
(
φ2
1X + 2φ1(1 + φ2)

⋆

Aξ (X) + (1 + φ2)
2

⋆

Aξ (X)2
)
〈a, ξ〉

+
(
(1 + φ2)

⋆

Aξ (X) + φ1X
)
c〈a, x〉 − (1 + φ2)

(
∇a⊤

⋆

Aξ

)
X

− φ1

⋆

Aξ (X)〈a,N〉+ (1 + φ2)C(X,
⋆

Aξ (a
⊤))ξ.

Hence by using Proposition 2.3,

Lr|S (N) = (−1)r+1
[
(n− r)φ2

1

⋆

Sr +2φ1(1 + φ2)(r + 1)
⋆

Sr+1

]
+ (1 + φ2)

2
[ ⋆

S1

⋆

Sr+1 −(r + 2)
⋆

Sr+2

]
ξ

+ (−1)r
[
(1 + φ2)(r + 1)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

]
cx (7.7)

+ (−1)r+1
⋆

∇
⋆

Sr+1 +(−1)r+1(r + 1)φ1

⋆

Sr+1 N.

• Lr|S (Lrx) applying Lr|S to equality (7.3) and using (6.10) and (7.6),

Lr|S (Lrx) = f1Lr|S (N) + Lr|S (f1)N + f2Lr|S (ξ)

+ Lr|S (f2)ξ + f3Lr|S (x) + Lr|S (f3)x

− 2
(
AN◦

⋆

T r

)( ⋆

∇ f1

)
+ 2

⋆

T r

( ⋆

∇ f3

)
(7.8)

− 2
( ⋆

Aξ ◦
⋆

T r

)( ⋆

∇ f2

)
.

• Lr|S (ξ) by the same manner,

Lr|S (ξ) = (−1)r+1
[
(r + 1)φ1

⋆

Sr+1 −(1 + φ2)
( ⋆

S1

⋆

Sr+1 −(r + 2)
⋆

Sr+2

)]
ξ

+ (−1)r
⋆

∇
⋆

Sr+1 +(−1)r(r + 1)
⋆

Sr+1 cx. (7.9)

Let us make the assumption that the immersion x : (M, g,N) → Q(c)n+2
1 satisfies Equation (7.1). Then
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we have Lr|S (Lrx) = ULr|S (x) , that jointly with (7.8) and (7.3), yields

f1Lr|S (N) + Lr|S (f1)N + f2Lr|S (ξ) + Lr|S (f2)ξ

+ f3Lr|S (x) + Lr|S (f3)x

− 2
(
AN◦

⋆

T r

)( ⋆

∇ f1

)
− 2

( ⋆

Aξ ◦
⋆

T r

)( ⋆

∇ f2

)
+ 2

⋆

T r

( ⋆

∇ f3

)
= (−1)r(r + 1)

⋆

Sr+1 (UN + (1 + φ2)Uξ) (7.10)

+ (−1)r(n− r)φ1

⋆

Sr Uξ − (−1)r(n− r)
⋆

Sr cUx.

On the other hand, from (7.1), and using again (7.3), we have

Ux = −Pb⊤ + (f1 − 〈b, ξ〉)N + (f2 − 〈b,N〉)ξ + (f3 − 〈b, x〉c)x (7.11)

from here and (7.10), we get

f1Lr|S (N) + Lr|S (f1)N + f2Lr|S (ξ) + Lr|S (f2)ξ + f3Lr|S (x)

+ Lr|S (f3)x− 2
(
AN◦

⋆

T r

)( ⋆

∇ f1

)
− 2

( ⋆

Aξ ◦
⋆

T r

)( ⋆

∇ f2

)
+ 2

⋆

T r

( ⋆

∇ f3

)
− (−1)r(n− r)

⋆

Sr cPb⊤ + (−1)r(n− r)
⋆

Sr cφ1c(f1 − 〈b, ξ〉)N

+ (−1)r(n− r)
⋆

Sr c(f2 − 〈b,N〉)ξ + (−1)r(n− r)
⋆

Sr c(f3 − 〈b, x〉c)x

= (−1)r(r + 1)
⋆

Sr+1 (UN + (−1)r
[
(r + 1)(1 + φ2)U

⋆

Sr+1

+ (n− r)φ1

⋆

Sr Uξ − (−1)r(n− r)
⋆

Sr

]
ξ. (7.12)

Since U and b are constants on the leaves of the screen distribution, taking covariant on (7.3) and using (7.1)
one has

UX = −f1AN (X)− f2
⋆

Aξ (X) + f3X

+ 〈
⋆

∇ f1, X〉N + 〈
⋆

∇ f2, X〉ξ + 〈
⋆

∇ f3, X〉x. (7.13)

〈UX,Y 〉 = −f1〈AN (X), Y 〉 − f2〈
⋆

Aξ (X), Y 〉+ f3〈X,Y 〉.

Therefore U is selfadjoint if and only if the following conditions hold.

{
〈UX, ξ〉 = 〈X,Uξ〉, 〈UX,N〉 = 〈X,UN〉 〈UX,x〉 = 〈X,Ux〉
〈UN, ξ〉 = 〈N,Uξ〉 〈UN, x〉 = 〈N,Ux〉 〈Uξ, x〉 = 〈ξ,Ux〉

From here and by using (7.11) and (7.13) one see that

⋆

∇ 〈b, x〉 = c
⋆

∇ f3 = (−1)r(n+ 1− r)
⋆

∇
⋆

Sr, (7.14)
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and so 〈b, x〉 − (−1)r(n+ 1− r)
⋆

∇
⋆

Sr is constant on S (N) . A direct consequence is that

(−1)r(n+ 1− r)Lr|S

( ⋆

Sr

)
= Lr|S (〈b, x〉) (7.15)

= (−1)r
(
(n− r)φ1

⋆

Sr +(1 + φ2)(r + 1)
⋆

Sr+1

)
〈b, ξ〉

+ (−1)r(r + 1)
⋆

Sr+1 〈b,N〉 − (−1)r(n− r)
⋆

Sr c〈b, x〉.

With (7.12) one has

(−1)r(r + 1)
⋆

Sr+1 〈(UN,X〉+ (−1)r
[
(r + 1)(1 + φ2)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

]
〈Uξ,X〉

= (−1)r(1 + φ2)f1〈
⋆

∇
⋆

Sr+1, X〉 − (−1)rf2〈
⋆

∇
⋆

Sr, X〉 − 2φ1〈
⋆

T r (
⋆

∇ f1, X〉

− 2(1 + φ2)〈
( ⋆

Aξ ◦
⋆

T r

)( ⋆

∇ f1

)
, X〉 − 2〈

( ⋆

Aξ ◦
⋆

T r

)( ⋆

∇ f2

)
, X〉

+ 2〈
⋆

T r

( ⋆

∇ f3

)
, X − (−1)r(n− r)

⋆

Sr c〈Pb⊤, X〉. (7.16)

From here, using the fact that 〈UX,N〉 = 〈
⋆

∇ f2, X〉 and 〈UX, ξ〉 = 〈
⋆

∇ f1, X〉 one gets[
(r + 1)2φ2

⋆

Sr+1 +(r + 1)(n− r)φ1

⋆

Sr +(r + 1)2(1 + φ2)
⋆

Sr+1

−(1 + φ2)(r + 1)
⋆

Sr+1

] ⋆

∇
⋆

Sr+1 +2(−1)r(r + 1)φ1

⋆

T r

( ⋆

∇
⋆

Sr+1

)
+ 4(−1)r(r + 1)(1 + φ2)

( ⋆

Aξ ◦
⋆

T r

)( ⋆

∇
⋆

Sr+1

)
(7.17)

=
[
−(r + 1)(n− r)φ1

⋆

Sr+1 −(n− r)φ1

⋆

Sr − (r + 1)φ2

⋆

Sr+1

− (n− r)(n+ 1− r)
⋆

Sr c
] ⋆

∇
⋆

Sr −2(−1)r(n− r)φ1

( ⋆

Aξ ◦
⋆

T r

)( ⋆

∇
⋆

Sr

)
− 2(−1)r(n+ 1− r)c

⋆

T r

( ⋆

∇
⋆

Sr

)
.

Lemma 7.2 Let x : (M, g,N) → Qn+2
1 (c) be a normalized null hypersurface endowed with a closed normaliza-

tion N such that AN−
⋆

Aξ= φ1P + φ2

⋆

Aξ with φ1 6= 0 or φ2 6= −1/2 and τ ≡ 0 . Assume that M satisfies

Equation (7.1) for some r = 1, ..., n . If the r− th mean curvature
⋆

Hr is screen constant then, the (r + 1)− th

mean curvature
⋆

Hr+1 is also screen constant.

Proof Let us assume that
⋆

Hr is screen constant. Let L be a leaf of S (N) and consider the open set

Ur+1 = {p ∈ L;
⋆

∇
⋆

H
2

r+1 (p) = 0}.

We need to show that Ur+1 is empty. If Ur+1 is not empty then, from (7.12),[
rφ1+

⋆

Sr +(r + 1)(r + 2)(1 + 2φ2)
⋆

Sr+1

] ⋆

∇
⋆

Sr+1

= 2(−1)r+1(r + 1)
[
φ1

⋆

T r

( ⋆

∇
⋆

Sr+1

)
+ (1 + 2φ2)

⋆

T r+1

( ⋆

∇
⋆

Sr+1

)]
.
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Consider {
⋆

E0= ξ,
⋆

E1, . . . ,
⋆

En} a local pseudo-orthonornal basis of principal direction of
⋆

Aξ. One can write
⋆

∇
⋆

Sr+1=
∑n

i=1

〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉 ⋆

Ei, and by using Proposition 2.3,

n∑
i=1

[
rφ1+

⋆

Sr +(r + 1)(r + 2)(1 + 2φ2)
⋆

Sr+1

]
〈
⋆

∇
⋆

Sr+1,
⋆

Ei〉
⋆

Ei

= 2(r + 1)

n∑
i=1

[
(1 + 2φ2)

⋆

S
i

r+1 −φ1

⋆

S
i

r

]
〈
⋆

∇
⋆

Sr+1,
⋆

Ei〉
⋆

Ei . on Ur+1,

for every i = 1, ..., n . Therefore, for every i such that 〈
⋆

∇
⋆

Sr+1,
⋆

Ei〉 6= 0 , one gets

[
rφ1

⋆

Sr +(r + 1)(r + 2)(1 + 2φ2)
⋆

Sr+1

]
= 2(r + 1)

[
(1 + 2φ2)

⋆

S
i

r+1 −φ1

⋆

S
i

r

]
on Ur+1. (7.18)

We claim that 〈
⋆

∇
⋆

Sr+1,
⋆

Ei〉 = 0 for some i . Otherwise, taking summation in (7.18) and using Proposition 2.3,

(r + 1)(1 + 2φ2)(2n+ r − 4)
⋆

Sr+1= (2(r + 1)(n− r)− rφ1)
⋆

Sr, (7.19)

and then,
⋆

Hr+1 is constant on Ur+1 , which is a contradiction. Now rearranging the local pseudo-orthonormal
basis if necessary or even taking another pseudo-orthonormal basis of principal directions, we may assume that
there exists some m ∈ {1, ..., n− 1} such that

〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉
6= 0 for i = 1, ...,m, and

⋆

k1< · · · <
⋆

km〈 ⋆

∇
⋆

Sr+1,
⋆

Ei

〉
= 0 for i = m+ 1, ..., 1

. (7.20)

Using the same method in the proof of the Lemma 7.1 in [8], one proves that for every subset J ⊂ {1, ...,m} ,

2(r + 1)(1 + 2φ2)
⋆

S
J

r+1 −2(r + 1)φ1

⋆

S
J

r=
[
rφ1

⋆

Sr +(r + 1)(r + 2)(1 + 2φ2)
⋆

Sr+1

]
on Ur+1. (7.21)

From (7.13) and (7.20) one has

U
⋆

Ei= Ci

⋆

Ei for i = 1, ...,m,

where

Ci = (−1)r+1
[(

(r + 1) + (r + 1)(1 + 2φ2

⋆

ki

) ⋆

Sr+1 +
(
(n− r)φ1

⋆

ki +(n− r + 1)c
) ⋆

Sr

]
is screen constant as

eigenvalue of the screen constant matrix U . From (7.21) for the set J = {1, ...,m} we get[
rφ1

⋆

Sr +(r + 1)(r + 2)(1 + 2φ2)
⋆

Sr+1

] [
(r + 1)(1 + 2φ2)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

]r+1

= 2(r + 1)(1 + 2φ2)
∑

m<i1<···<ir+1<n

ηi1 · · · ηir+1
(7.22)

− 2(r + 1)φ1

[
(1 + 2φ2)(r + 1)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

] ∑
m<i1<···<ir<n

ηi1 · · · ηir ,
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where ηi = Ci − (r + 1)
⋆

Sr+1 +(n − r + 1)c
⋆

Sr . Looking (7.22) as an equation in
⋆

Sr+1 , its both sides are

trivially zero if and only if φ1 = 0 and φ2 = −1/2 . Then for φ1 6= 0 or φ2 6= −1/2 ,
⋆

Hr+1 is locally constant
on Ur+1 , which is a contradiction. This completes the proof. 2

Proof [Proof of Theorem 1.1] Let us assume that the immersion x : (M, g,N) → Qn+2
1 (c) satisfies the condition

Lrx = Ux , for some screen constant matrix U ∈ R(n+2)×(n+2) . Since b = 0 , Equation (7.14) implies that
⋆

Hr

is screen constant and by Lemma 7.2,
⋆

Hr+1 is also screen constant. Let us assume that
⋆

Hr+1 is a nonzero
constant (otherwise, there is nothing to prove). Then, from (7.10) one obtains

f1Lr|S (N) + f2Lr|S (ξ) + f3Lr|S (x) + (−1)r(n− r)
⋆

Sr cf3x

+ (−1)r(n− r)
⋆

Sr cφ1cf1N + (−1)r(n− r)
⋆

Sr cf2ξ

= (−1)r(r + 1)
⋆

Sr+1 UN + (−1)r
[
(r + 1)(1 + φ2)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

]
Uξ,

what we write as

α1ξ + α2x+ α3N = (r + 1)
⋆

Sr+1 UN +
[
(r + 1)(1 + φ2)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

]
Uξ.

From here, taking covariant derivative and use the assumption (7.4) one gets

(−1)r+1(r + 1)φ1

⋆

Sr+1 UX + α4U
⋆

Aξ (X) = −(α1 + α3(1 + φ2))
⋆

Aξ (X)

+ (α2 − α3φ1)X + 〈
⋆

∇ α1, X〉ξ, (7.23)

for every X ∈ Γ(S (N)) . Also, (7.13) and (7.11) give

UX = −f1AN (X)− f2
⋆

Aξ (X) + f3X, (7.24)

and

Ux = f1N + f2ξ + f3x, (7.25)

Applying
⋆

Aξ on (7.24) and using the assumption (7.4),

U
⋆

Aξ (X) = (f3 − f1φ1)
⋆

Aξ (X)− (f2 + (1 + φ2)f1)
⋆

Aξ
2(X).

Jointly this with (7.23) and (7.24) it follow that α1 is screen constant and

α5X + α6

⋆

Aξ (X) + α7

⋆

Aξ
2(X) = 0,
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where, 

α2 = (r + 1)
⋆

Sr+1

[
(r + 1)(1 + 2φ2)

⋆

Sr+1 +2(n− r)φ1

⋆

Sr

]
c

α3 = (r + 1)2
⋆

S
2

r+1 −(r + 1)
⋆

Sr

⋆

Sr−1 c

α4 = (−1)r+1
[
2(r + 1)(1 + φ2)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

]
α5 = −(r + 1)

⋆

Sr+1

[
(r + 1)(1 + 2φ2)

⋆

Sr+1 +(n− r)φ1

⋆

Sr

]
α6 = (r + 1)2(1 + φ2)φ1

⋆

S
2

r+1 +(α1 + α3(1 + φ2))

+(r + 1)
⋆

Sr+1 φ1

[
(n− r)φ1

⋆

Sr +(r + 1)φ2

⋆

Sr+1

]
−(−1)rα4

[
(n+ 1− r)

⋆

Sr c+ (r + 1)φ1

⋆

Sr+1

]
α7 = (−1)r+1α4

[
(r + 1)(1 + φ2)

⋆

Sr+1 +(n− r)φ1

⋆

Sr +(r + 1)φ2

⋆

Sr+1

]

,

α5, α6, α7 are screen constant. Then M has at most two nonzero principal curvatures and is a totally
umbilical or an almost isoparametric normalized null hypersurface of Q(c)n+2

1 with exactly two nonzero principal
curvatures. 2
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